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ABSTRACT

We present a new release of the immune epitope
database analysis resource (IEDB-AR, http://tools.
immuneepitope.org), a repository of web-based
tools for the prediction and analysis of immune
epitopes. New functionalities have been added to
most of the previously implemented tools, and a total
of eight new tools were added, including two B-cell
epitope prediction tools, four T-cell epitope predic-
tion tools and two analysis tools.

INTRODUCTION

Understanding immune epitope recognition is important
for the development of vaccines and diagnostics targeting
infectious and autoimmune diseases, allergies and cancers.
Epitopes can be defined as parts of molecules that are
specifically recognized by molecules of the immune
system. They are normally divided into T-cell epitopes
that are presented by major histocompatibility complex
(MHC) molecules and recognized by T-cell receptors
(TCRs), and B-cell epitopes that are recognized by B-cell
receptors (BCRs) or their soluble counterpart antibodies.
The IEDB-AR covers a broad range of tools facilitating
the prediction of new B- and T-cell epitopes in proteins of
interest, and tools for the analysis of epitope sets collected
from within the IEDB (1) or submitted by the user. This
article presents an overview of the tool capabilities
provided in the IEDB-AR with a focus on previously
unpublished additions.

The overall goal of the IEDB-AR is to provide access to
well-documented and tested epitope-related tools through
a common style of web interface. This unified interface

allows users to easily make direct comparisons between
and among various prediction methods. Epitope and
protein sequences can be submitted to each tool directly,
or by selecting epitopes retrieved through a query of the
IEDB. Help pages providing instructions and examples of
input data accompany each tool.

THE WEB RESOURCE

Table 1 lists all the tools currently available from
IEDB-AR.

T-cell epitope prediction

T-cell epitopes can be classified as either class I or class II
epitopes. Class I epitopes are typically peptides presented
by MHC class I (MHC-I) molecule and recognized by
cytotoxic T lymphocytes (CTLs) that can kill infected cells.
Class II epitopes are generally peptides that are presented
by MHC class II (MHC-II) molecules and recognized
by helper T lymphocytes (HTLs). Presentation of peptides-
MHC-I complexes to T lymphocytes is a multistep process.
In the IEDB-AR there are both tools that can predict
the individual steps—such as cleavage of the polypeptide
chain by the proteasome, transport of peptides into the
endoplasmatic reticulum (ER) by the transporter asso-
ciated with processing (TAP) and binding to MHC
molecules—as well as methods that integrate these steps
into one prediction.
All T-cell epitope predictionmethods implemented in the

IEDB-AR take protein sequences encoded by their single
letter symbols as an input. In addition, the user can specify
the MHC molecule for which they want to make
predictions, as different MHC molecules have different
binding specificities. Each input protein sequence is split
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into all possible peptides meeting the length preference of
the selected MHC molecule. The output contains this list
of peptides, each with a predicted score that reflects its
likelihood of being a T-cell epitope. Depending on the
chosen tool, this score reflects the disposition of a peptide
to bindMHC, be processed from its parent protein or both.

MHC class I binding predictions

Three MHC class I peptide binding prediction methods
are provided through the IEDB-AR: artificial neural
network (ANN), stabilized matrix method (SMM) and
average relative binding (ARB). Two of the methods,
SMM and ARB, model binding specificity of an MHC
molecule using position-specific scoring matrices (PSSM)
(2–4). ANN, on the other hand, uses neural networks with
diverse sequence encoding schemes to model-binding
specificity (5).
The three prediction methods have been previously

trained and evaluated (6) using 5-fold cross-validation.
Since then, a new set of peptide-binding data for MHC
class I molecules has become available, motivating the
retraining and testing of all three MHC-I peptide
prediction methods. For all MHC alleles with additional
data available, new algorithms were trained that should
exhibit improved prediction quality compared to the
previous version, as the prediction accuracy is largely
dependent on the amount of training data available. Also,
the number of different MHC molecules for which
predictions can be made was enhanced by eight new
additions, including alleles from humans, mice, chimpan-
zees, macaques and gorillas. To accommodate historic
comparisons, the IEDB-AR website now hosts two
versions of the prediction methods, the previously
published one and the updated implementations.
The availability of the new binding dataset gives us an

opportunity to re-evaluate the 5-fold cross-validation used
in ref. (6) to measure performance of these methods.
Specifically, we made binding predictions for all peptides
in the newly available data (called the ‘Independent Data

Set’ from here on). The ability of each method to
discriminate high affinity binders (IC50< 500 nM) from
those with lower affinity was measured using the Area
under Receiver-Operating-Characteristic curves (AUC)
values (7). Figure 1 shows AUC values published in ref.
(6) compared to those attained with the Independent Data
Set. This clearly indicates that the two performance
evaluation methods give similar results overall.
Importantly, there is no evidence for the previous cross-
validation overestimating the performance of the predic-
tion methods: out of 127 cases total, the independent
dataset had the higher AUC in 64 cases, while the cross-
validated results were higher in the remaining 63 cases.
Confirming our earlier analysis (6), SMM and ANN
perform better than ARB using a different performance
evaluation measure. While both ARB and SMM use
PSSM to model-binding specificity, they arrive at these
matrices in a different manner. For each element in
a PSSM, ARB bases the matrix entry on the average
affinity of peptides sharing the corresponding residue.
In contrast, all elements of PSSM for SMM are calculated
simultaneously using a least squares fitting approach. This
apparently leads to a better representation of binding
specificity.

MHC class I processing predictions

Additional events apart from peptide–MHC binding
determine if a peptide is likely to be a T-cell epitope.
These include proteasomal cleavage of the source protein
and transport of peptides into the ER from the cytosol by
the TAP transporter. The IEDB-AR provides an imple-
mentation of such predictions described in ref. (8), which
can be combined with the updated MHC class I binding
predictions described above. In the new release, alternative
approaches were implemented: NetChop (9) uses novel
sequence encoding methods to predict proteasomal
cleavage, and NetCTL (10,11) combines these with
predictions of MHC binding and TAP transport. Both
tools were implemented with a common user interface,

Table 1. Epitope related tools available at IEDB-AR

Category Tool description

T-cell epitope prediction Peptide binding to MHC class I
moleculesa

Determines peptide’s ability to bind to a specific MHC class I molecule

Peptide binding to MHC class II
moleculesa

Provides the Sturniolo, ARB, SMM-align and a consensus approach to predict
MHC class II binding peptides

Proteasomal cleavage/TAP trans-
port/MHC class I and com-
bined predictora

Combines predictors of proteasomal processing, TAP transport and MHC binding
to produce an overall score for each peptide’s potential of being an epitope. Two
implementations are provided, one based on matrices and one on neural
networks (NetChop and NetCTL)

B-cell epitope prediction Prediction of B-cell epitopes from
protein sequencesa

Provides a common user interface to access a collection of previously published
B cell prediction tools based on amino acid scales, including Bepipred that
incorporates similar scales into a position-specific scoring matrix

Prediction of B-cell epitopes from
protein structuresa

Predicts discontinuous epitopes based on amino acid statistics, spatial information
and surface accessibility

Epitope analysis Population coverage Calculates the fraction of individuals predicted to respond to a given set of
epitopes with known MHC restrictions

Epitope conservancy analysis Calculates degree of conservancy of an epitope within a given protein sequence set
Epitope cluster analysisa Groups epitopes into clusters based on sequence identity
Homology mappinga Maps linear epitopes to 3D structures of proteins

aTools that have been implemented or updated since the previous release of the IEDB-AR.
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where a user can select to use either NetChop or NetCTL
methods.

Compared to the highly selective peptide binding to
MHC molecules, proteasomal cleavage and TAP trans-
port have little influence on epitope generation. This
makes predictions made by these tools less informative,
but can be helpful to explain why some peptides that bind
MHC molecules well are not naturally presented.

MHC class II binding predictions

Contrary to the closed binding groove of MHC class I
molecules, the MHC class II groove that binds peptides is
open at both ends and can thus accommodate peptides of
variable length (12). This flexibility in binding makes
MHC class II binding prediction substantially more
difficult as compared to MHC class I binding prediction
(6,13,14), leading to an overall lower prediction accuracy.

The MHC class II binding prediction service hosted
at the IEDB-AR provides four prediction methods: ARB,
SMM_align, Sturniolo’s method (which is also the basis
of TEPITOPE), and a consensus approach. ARB was the
only method implemented in the last release, and is based
on ARB matrices (2). SMM-align (15) is a matrix-based
method with extensions incorporating flanking residues
outside of binding grooves. Both methods can predict
the IC50 values of peptides. The Sturniolo method
implemented at IEDB-AR is a direct implementation
of the matrices published in Sturniolo’s original article
(16), which provides scores on a nominal scale rather than
IC50 values.

The consensus method is developed to combine the
results of those three methods. We first scanned a random
set of Swiss-Prot proteins and generated scores for
2 000 000 random peptides. The set of scores were then
used as a reference to rank new predictions. The consensus
approach then uses the median rank of the three methods
as the final prediction score.

In order to independently evaluate the performance of
the four methods, we generated an independent dataset by
combining MHC class II binding data from several recent

publications (17–20). The average AUCs for the four
methods tested on the independent dataset are as follows:
ARB-0.75, SMM-align-0.74, Sturniolo-0.72 and consen-
sus-0.77. In addition to this new dataset, we have
previously evaluated the performance of those methods
with �20 000 peptide–MHC binding affinities generated
by the Sette group (manuscript submitted for publication).
The four methods implemented at the IEDB-AR are the
top performing ones with average AUC values ranging
from 0.71 to 0.76, which are consistent with the new
independent evaluation.

B-cell epitope prediction

B-cell epitopes (or, antibody epitopes) can be defined as
regions on molecules that are specifically bound by B-cell
receptors (antibodies). They can include native protein
structures, linear peptides, carbohydrates and other
biological macromolecules. The majority of short linear
peptides have the potential to be B-cell epitopes (21,22).
This makes their prediction much harder than for T-cell
epitopes, which require binding to the highly selective
MHC molecules. The IEDB-AR includes seven methods
for B-cell epitope prediction; five of them are previously
published approaches for which no web implementation
had been available. Two recently developed tools,
BepiPred and DiscoTope, were implemented in the new
release of IEDB-AR. BepiPred combines a PSSM with a
propensity scale method to predict linear epitopes (23).
DiscoTope is a method for discontinuous epitope predic-
tion that uses protein 3D structural data as input (24). It is
based on amino acid statistics, spatial information and
surface accessibility for a set of discontinuous epitopes
determined by X-ray crystallography of antibody/antigen
protein complexes. It exhibits better performance for
predicting residues of discontinuous epitopes than meth-
ods based solely on sequence information (24). Both
BepiPred and DiscoTope were implemented on the IEDB-
AR website with new features that include structural
visualization of predicted discontinuous epitopes on
protein 3D structures (Figure 2), based on the Jmol

Figure 1. Performances of prediction methods measured using either cross-validation or independent data set. Each data point represents an area
under a receiver-operating-characteristic curve (AUC) for an MHC molecule (and its preferred peptide length). AUCs generated using cross-
validation were taken from ref. (6), while those using independent data set are presented here for the first time. For independent data set, prediction
methods trained on the old data used in ref. (6) were tested on the new, and thus independent, peptide-binding data that recently became available.
In the case of cross-validation, however, an AUC value is an average of AUCs generated by training a prediction method on 4/5 of a data set and
testing on the remaining one. Each data set for an MHC molecule had at least 50 binding affinity measurements.
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package (Jmol: an open-source Java viewer for chemical
structures in 3D. http://www.jmol.org/).

Epitope analysis

The IEDB-AR provides five analytical tools for: (i)
calculating the epitope population coverage; (ii) assessing
the degree of conservancy of an epitope; (iii) visualization
and analysis of 3D structures of molecules containing
epitopes; (iv) clustering of epitope sequences and (v)
mapping of epitopes onto 3D protein structures. The last
two tools have not been published before.

Clustering of epitope sequences

In evaluating groups of peptide epitopes for vaccine
applications, it is important to remove redundant

sequences or sequences with high similarity. The clustering
tool was designed for this purpose. It groups epitopes into
clusters based on sequence identity. A cluster is defined as
a group of sequences, which have a sequence similarity
greater than the minimum sequence identity threshold
specified by a user.

Analysis of conserved epitopes

In an epitope-based vaccine setting, the use of conserved
epitopes would be expected to provide broader protection
across multiple strains, or even species, than epitopes
derived from highly variable genome regions (25). The
conservancy tool was designed to analyze the variability
or conservation of epitopes. This tool calculates the degree
of conservancy of a set of peptide/epitope sequences
within a given set of protein sequences. The degree of

Figure 2. Screenshot of the ‘3D View’ page for the DiscoTope tool on IEDB-AR. The input for this prediction is the PDB structure file of AMA1
from Plasmodium falciparum (28) (PDB ID 1Z40). On the left is the 3D display of this structure, with all predicted epitope residues for chain A
highlighted in yellow. The table on the right lists details of these predicted residues. Clicking on the ‘CPK’ button in the table highlights that specific
residue in the 3D display, as seen on the top.
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conservation is defined as the fraction of protein sequences
containing the peptide sequence at a given identity level.

Homology mapping tool

The knowledge of a T-cell epitope location in the protein
3D structure may elucidate the mechanisms of the epitope
processing, MHC binding and recognition by TCRs.
Likewise, the mapping of B-cell epitopes to protein
structure is useful for assessing epitope structural features
recognized by antibodies. The IEDB-AR homology
mapping tool provides the mapping of a linear epitope
from a source protein to the proteins with known 3D
structures by sequence similarity search of the epitope
source sequence against protein sequences in the Protein
Data Bank (PDB) (26). The tool’s output displays the
alignments between the epitope source sequence and
homologous sequences from the PDB and, using the
EpitopeViewer application (27), allows visualization and

analysis of the 3D structure of the homologous protein
with the epitope mapped to it.

VISUALIZATION AND ANALYSIS OF 3D
STRUCTURES OF MOLECULES CONTAINING
EPITOPES

The 2.0 version of the EpitopeViewer (24) has been
enhanced by adding several new visualization features,
permitting a more detailed 3D structural analysis of
the epitope/antigen and immune receptor molecules,
and the interactions between them. Specifically, the
following new features have been added: hiding/showing
selected residues, chains or atoms; centering the structure
on the selected atom, residue or chain; displaying
the distance between any two selected atoms/residues;
representing atoms, bonds and ribbons in different
styles; coloring residues by types, secondary structures

Figure 3. Screenshot of the EpitopeViewer 2.0 showing the 26-2F epitope of human angiogenin [PDB ID: 1H0D, chain C] in red (the rest of the
antigen is invisible) and paratope in yellow in CPK representation. The distance between the atom N of residue 34 Gly and atom Ca of residue 91
Pro of the epitope is 14.23 Å (red line).
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and hydrophobicity; and coloring atoms by elements,
B-factors and colors of corresponding residues. In
addition to the image export file formats available in the
1.0 version are options to save images of the 3D structure
and interaction plots. The 2.0 release expands on this
functionality by allowing to save both the curated and on-
the-fly calculated atomic intermolecular contacts between
the epitope/antigen and the receptor (Figure 3).

SUMMARY

We presented in this article a new release of IEDB-AR. It
provides multiple tools to predict MHC class I and MHC
class II restricted T-cell epitopes, linear and discontinuous
B-cell epitopes and tools to analyze epitope sequences and
structures. The updates in this new release take advantage
of the additional data available in the IEDB to create
improved prediction methods, and implement feature
requests from the user community.
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