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Abstract

Motivation: Dimensionality reduction is a key step in the analysis of single-cell RNA-sequencing data. It produces a
low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear techni-
ques are most suitable to handle the intrinsic complexity of large, heterogeneous single-cell data. However, with no
linear relation between gene and embedding coordinate, there is no way to extract the identity of genes driving any
cell’s position in the low-dimensional embedding, making it difficult to characterize the underlying biological
processes.

Results: In this article, we introduce the concepts of local and global gene relevance to compute an equivalent of
principal component analysis loadings for non-linear low-dimensional embeddings. Global gene relevance identifies
drivers of the overall embedding, while local gene relevance identifies those of a defined sub-region. We apply our
method to single-cell RNA-seq datasets from different experimental protocols and to different low-dimensional
embedding techniques. This shows our method’s versatility to identify key genes for a variety of biological
processes.

Availability and implementation: To ensure reproducibility and ease of use, our method is released as part of des-
tiny 3.0, a popular R package for building diffusion maps from single-cell transcriptomic data. It is readily available
through Bioconductor.

Contact: antonio.scialdone@helmholtz-muenchen.de or carsten.marr@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) has massively improved
the resolution developmental trajectories Baron et al. (2016) and
allowed unprecedented insights into the heterogeneity of complex
tissues Tritschler et al. (2017) and Vento-Tormo et al. (2018). On
the flip side, new challenges have arisen due to the amount of data
that needs to be processed Angerer et al. (2017), higher levels of
technical and biological noise Yuan et al. (2017), and identification
and interpretation of known and novel cell types Pliner et al. (2019).
To exploit the new opportunities and deal with the new challenges,
a large number of algorithms and tools have been developed Zappia
et al. (2018).

Dimension reduction methods create a low-dimensional
embedding of the high-dimensional gene expression space.
Those embeddings are widely used for two applications: They (i)
serve as a visual overview of the data on which gene expression pro-
files and per-cell or per-cluster statistics can be compared. They (ii)
serve as inputs for further downstream computational analysis. For
example, principal component analysis (PCA) is a popular technique
to identify orthogonal linear combinations of genes that explain
variance in the data. PCA loadings quantify the contribution of
genes to each principal component and help understand the genetic
drivers of the underlying molecular processes. However, linear
methods are often not able to capture the complexity of high-
dimensional datasets (Haghverdi et al., 2015), which is why
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nonlinear dimension reduction methods have become the standard
for scRNA-seq data analysis [see e.g. t-SNE (t-Stochastic
Neighborhood Embedding) Husnain et al. (2019), diffusion maps;
Coifman et al. (2005), Haghverdi et al. (2015) and Husnain et al.
(2019); UMAP (Uniform Manifold Approximation and Projection)
Becht et al. (2018) and McInnes et al. (2018); and graph-based
methods Islam et al. (2011)]. However, no intrinsic measure of indi-
vidual genes’ contribution to each embedding dimension exists for
non-linear embeddings. Without such a measure, the identification
of genes that drive the variability in the data requires tedious manual
inspection and prior knowledge about possible target genes.

Here, we introduce gene relevance, a measure for a gene’s contri-
bution to variance in low-dimensional embeddings, and present a
method to infer a local as well as a global gene relevance score from
any kind of low-dimensional embedding. To demonstrate the utility of
the method, we apply gene relevance to several datasets prepared with
different droplet- and plate-based protocols (see Supplementary Table
S1). Gene relevance is available as part of the R package destiny
Angerer et al. (2016).

2 Materials and methods

We define gene relevance as a measure of how much a gene contrib-
utes to the cell-to-cell variability in a low-dimensional embedding of a
scRNA-seq dataset (see Fig. 1). It can be interpreted as a generalization
of PCA loadings to non-linear dimensionality reduction techniques.
Note that PCA loadings are constant with respect to the PC space
while feature importance in a non-linear embedding is naturally a
non-constant function of the embedding coordinates. A ranking of
genes based on their relevance is built for every cell of the embedding.
These rankings can be combined to obtain a measurement of the local
or global relevance of each gene (see Fig. 1e–f), which highlight genes
relevant in defined sub-regions of the embedding and all cells, respect-
ively. To explore and visualize the results further, the method also pro-
vides a gene relevance map, where the locally most relevant genes are
displayed along with their corresponding neighborhoods in the embed-
ding (see Fig. 1g). Below, we describe in details every step in the esti-
mation of global and local gene relevance.

2.1 Neighborhoods
If a k nearest neighbor (kNN) search has been performed as part of
the embedding, it can be efficiently used for estimating the gene rele-
vance. To perform the kNN search, destiny offers the choice be-

tween euclidean distance, cosine distance, and spearman rank
correlation distance. The latter was used in all analyses performed

for this article.

2.2 Gene expression changes
The differential dgc of gene g in cell c describes the change in gene
expression xgc along a change in embedding coordinates spc, where

p 2 f1; . . . ;Pg is the embedding dimension and dgc corresponds to
the partial derivatives of the gene expression with respect to each
embedding coordinate:

dgc ¼
@xgc

@s1c
; . . . ;

@xgc

@sPc

� �
(1)

We estimated dgc from the cells’ neighborhood NNkðcÞ in gene
expression space using finite differences. To address the high drop-

out rate present in scRNA-seq data, we do not define dgc for xgc ¼ 0.

ddgc

� �
p
¼

NA; if xgc ¼ 0

median
n2NNkðcÞ^n6¼c

xgc � xgn

spn � spc
; otherwise

8<
: (2)

2.3 Local gene relevance
The basis of local and global gene relevance is the score of gene g 2
f1; . . . ;Gg in cell c 2 f1; . . . ;Cg, defined as the euclidean norm
jjdgcjj2 of the differential dgc:

jjdgcjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

p¼1
ðdgcÞ2p

r
(3)

In each cell c, genes can be ranked according to their score
jjdgcjj2, from most to least relevant. Given the ranks rgjjdgc jj2 of gene

g and a rank cutoff rgmax, we define the local gene relevance
LRrgmax

ðg;WÞ of a gene for a set of cells W � f1; . . . ;Cg as:

(a) (b) (c) (d) (e)

(f) (g)

Fig. 1. The gene relevance concept. (a) A gene expression matrix from a scRNA-seq experiment is (b) reduced to a low-dimensional embedding spc, with each dot representing

a cell, and the color representing the expression xgc of gene g 2 fA;B; . . . ;Zg in cell c. (c) Expression changes are calculated from estimates of partial derivatives with respect

to the embedding, which results in one value per cell�gene�dimension combination. (d) We score the relevance of each gene in each cell according to the partial derivatives’

euclidean norm. This score indicates how relevant each gene is within its neighborhood. (e) For local gene relevance scores, we subdivide the embedding into bins and deter-

mine the fraction of cells per bin for which a given gene is among the (e.g. 10) most relevant genes (indicated by ‘%top rank’ in the figure legend). We color bins of the

embedded cells according to their local gene relevance score, and fade them according to the number of cells they contain (indicated by ‘#cells’ in the legend). (f) For the global

gene relevance score, we determine local relevance for all cells instead of a bin. In our illustrative example, Gene B has been ranked among the top 10 genes in 5.4% of all cells.

(g) A gene relevance map indicates all cells where a given gene has the largest norm of partial derivatives (with or without a smoothing step—see Section 2). Such cells mark

the areas where that gene has high local relevance
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LRrgmax
ðg;WÞ ¼

P
c2W rgjjdgc jj2 < rgmax½ �

jWj (4)

with the Iverson bracket notation

½P� ¼ 1; if P is true
0; otherwise

; for any statement P

�
(5)

In our analyses, we used the default rgmax ¼ 10. The method is

robust against the cutoff used, with the most relevant genes stable
even for higher cutoffs >100 (see Supplementary Fig. S7).

2.4 Global gene relevance
The global relevance GRrgmax

ðgÞ can simply be defined as the local
gene relevance for the set of all cells f1; . . . ;Cg.

GRrgmax
ðgÞ ¼ LRrgmax

ðg; f1; . . . ;CgÞ (6)

2.5 Local gene relevance plots
The local gene relevance of genes can be visualized by evenly divid-

ing the embedding space into bins b 2 f1; . . . ;Bg and calculating
LRrgmax

ðg;WbÞ for the set of cells falling into each bin Wb. This visu-

alization is shown in Figures 1e and 2d.

2.6 Gene relevance maps
For a set of genes of interest X � f1; . . . ;Gg (which can be chosen,

e.g. among those with highest global relevance) and each cell c, we
define the locally most relevant gene lmc after a number of smoothing

steps m:

lmc ¼ arg max
g2X

jjdgcjj2; if m ¼ 0
1

k

X
n2NNkðcÞ

lm�1
n ¼ g
� 	

; otherwise:

8<
: (7)

During a smoothing iteration, we replace the local gene rele-
vance score of cell c and gene g with the fraction of neighbors that

have g as the most relevant gene.

The amount of smoothing is controlled by the smoothing param-
eter m. Decreasing m will result in more locality and more genes
with a high relevance in a small region will appear on the map, while
genes with a medium relevance in more or larger regions will vanish.
When determining the locally most relevant gene using the globally
most relevant genes as X, the aforementioned parameter rgmax can
be used as a sensitivity parameter, with higher values resulting in
more genes being selected as relevant. Finding the globally most rele-
vant genes are robust to both parameters (see Supplementary Fig.
S7), while locally relevant genes are affected to a larger extent.
Importantly, due to the short computation time of gene relevance
maps, one can explore several combinations of parameters. For cell
sizes in the range of few hundreds, the running time is less than one
to a few seconds with 40 000 cell�gene combinations per second
processed. For cell sizes in the thousands 20 000 cell�gene combina-
tions per second are processed, resulting in run times of a few
minutes (run times have been measured on a single 3.6 GHz CPU
core).

2.7 scRNA-seq data
We demonstrate our method on four datasets (see Section 3 and
Supplementary Table S1 for details).

In the mouse gastrulation data from Scialdone et al. (2016), we
used count data from 271 cells mostly of the neural plate (embryonic
Day 7.5) and head fold (embryonic Day 7.75) development stages of
mouse embryos. There, the libraries were constructed using the
Smart-seq2 protocol, read counts were obtained via HTseq-count.
The 271 cells we used correspond to the clusters annotated as ‘blood
progenitor’ and ‘primitive erythroid’ in the original publication. We
selected highly variable genes using the method of Brennecke et al.
(2013) because of its stable performance Yip et al. (2018), and
embedded the log-transformed data using the diffusion map imple-
mentation destiny Angerer et al. (2016).

For the two human cell datasets, we applied the same analysis
steps, starting from the highly variable gene selection (see
Supplementary Fig. S3). The human endocrine cell data from Veres
et al. (2019) was sequenced using the inDrops platform, while the
human brain organoid data from Gray Camp et al. (2015) used the
SMARTer Ultra Low RNA Kit in combination with an Illumina se-
quencer. The data from Kolodziejczyk et al. (2015) used Nextera
kits together with an Illumina sequencer. For further details about
the pre-processing of these data, please refer to the individual
publications.

3 Results

We demonstrate our method on a scRNA-seq dataset of blood pro-
genitors and blood cells from mouse embryos Scialdone et al. (2016;
see Fig. 2a). In the original publication, these data were used to re-
construct a trajectory representing primitive erythropoiesis, along
which blood marker expression increases and other markers (such
as endothelial cells) decrease. There, an ad hoc method was devised
to find important genes in the 2D diffusion map embedding of the
data. Here, we show how our method can be used ‘out of the box’
to rank genes based on their local and global relevance.

First, we ranked all highly variable genes according to their glo-
bal gene relevance (see Fig. 2b). As expected, the high-ranking genes
are mostly associated with blood development, including the hemo-
globin genes Hba-a1, Hba-x, Hbb-bh1 and the erythrocyte mem-
brane genes Gypa and Cited4 Yahata et al. (2002). The genes Cyr61
and Hapln1 are involved in extracellular matrix and important for
development of the cardiovascular system Latinki�c et al. (2001).
The top of the list has a good overlap with the ad hoc method in
Scialdone et al. (2016): 4 genes are shared between the top 10 of
both lists, and we find a Rank-Biased Overlap of RBOp ¼ 0.48,
where we used p¼0.9, which assigns �86% of the weight to the
first 10 genes Webber et al. (2010).

Second, we created a gene relevance map (Fig. 2c). Five out of
the six locally most relevant genes (see Fig. 2c) are among the ten
most globally relevant ones. Interestingly, Alox5ap is included only

(a)

(d)

(b) (c)

Fig. 2. Gene relevance automatically detects drivers of embryonic blood develop-

ment. (a) Diffusion map of 271 single hematopoietic progenitor cells from mostly

Day 7.5 and 7.75 mouse embryos, profiled in Scialdone et al. (2016). (b) Global

gene relevance identifies Hbb-bh1 and Hba-x as genes that change most dramatical-

ly during hematopoietic development. (c) A gene relevance map identifies the contri-

bution of relevant genes in specific regions of the process and the corresponding

code to create it. The genes corresponding to each color are shown in panel (b).

(d) A local gene relevance plot details the areas where the contribution of genes is

highest. Alox5ap shows a high local relevance in the top region of the diffusion map

and has been implicated with early blood development Ibarra-Soria et al. (2018)
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in the gene relevance map, because its contribution is confined to a
small region of the diffusion space (bottom right panel in Fig. 2d)
and hard to detect at the level of gene expression (see
Supplementary Fig. S1). This gene was not discovered by the ad hoc
method of Scialdone et al. (2016), but it has been recently found to
be important in early blood development Ibarra-Soria et al. (2018).
Locally and globally relevant genes can also be inferred in other
embeddings such as t-SNE van der Maaten and Hinton (2008) and
UMAP Becht et al. (2018), with a stable recovery of the most rele-
vant genes between comparable embeddings (see Supplementary
Fig. S2).

Applied to other scRNA-seq datasets, we showcase versatility
and ease of application of our method. In droplet-sequenced data of
human endocrine cells Veres et al. (2019), gene relevance maps de-
tect genes driving the separation of sub-regions of the embedding
(see Supplementary Fig. S3a), in accordance to the markers identi-
fied in the original paper. In human brain organoid cells Gray Camp
et al. (2015), we detect relevant genes different from the markers
specified in the article because of a low-density region between mes-
enchymal cells and neurons/neural progenitors (see Supplemetnary
Fig. S3b). The genes therefore seem to be selected for driving the dif-
ference between progenitors and neurons: TXNRD1 plays a vital
role for neuron progenitor cells Soerensen et al. (2008), the seleno-
protein SELT protects neurons against oxidative stress in mouse
models Boukhzar et al. (2016), and CRABP1 modulates the neuron-
al cell cycle in mice Lin et al. (2017).

Finally, we applied gene relevance to mouse embryonic stem cells
grown in three different pluripotency retaining media Kolodziejczyk
et al. (2015). As expected for cells in a relatively homogenous pluri-
potent steady state, the relevant genes for diffusion map embedding
of all three media were enriched for housekeeping, metabolic and
proliferation pathways (see Supplementary Fig. S5).

4 Discussion

We presented a method that is able to reliably detect relevant genes
from low-dimensional embeddings of scRNA-seq data. More specif-
ically, our method computes both a local and a global gene rele-
vance score: local gene relevance identifies the main drivers of the
cell-to-cell variability in defined sub-regions of the embedding, while
global gene relevance identifies those of the whole embedding. In
addition to a gene ranking based on global relevance, the method
also provides graphic tools to visualize the local gene relevance (see
Fig. 1e) and the changes in gene expression levels within the embed-
ding (see Fig. 1c and Supplementary Fig. S1). It can be used for any
single-cell dataset and any dimensionality reduction technique.

We applied our method to three datasets, including one from
mouse embryonic blood progenitors, where we show that it per-
forms comparably to a technique custom-made for the dataset.
Interestingly, our method identifies Alox5ap (Fig. 2), a gene that
was recently shown to be important for blood development in a later
publication Ibarra-Soria et al. (2018). In two other examples, we
used human cells, endocrine Veres et al. (2019) and from brain orga-
noids Gray Camp et al. (2015), showing that the method works ro-
bustly in varied conditions.

When compared with the classical method of looking at PCA
loadings, gene relevance provides a generalization not tied to this di-
mension reduction method, as it is also suited for non-linear dimen-
sion reduction methods. It can therefore be used to explore the
differences in the embeddings obtained by different dimension re-
duction methods (see Supplementary Fig. S2). Applied to a PCA
embedding, gene relevance recovers a similar list of genes to those
with the highest PC loadings (see Supplementary Fig. S8). Other
methods to identify important genes specifically from scRNA-seq
data exist, but most of them aim to find marker genes that can best
distinguish different cell types Delaney et al. (2019). Conversely, the
method we presented is unsupervised and does not rely on cell type
annotation.

Recently, two computational methods have been developed to
identify variable genes in spatial RNA-seq datasets, trendsceek and
SpatialDE Edsgärd et al. (2018) and Svensson et al. (2018).

Although these methods were designed to find patterns in spatial
transcriptomic datasets, they can also be used to identify relevant
genes in low-dimensional embeddings of scRNA-seq datasets [see
Supplementary Fig. S6 in Edsgärd et al. (2018)]. We compared our
approach to trendsceek and found similar genes (see Supplementary
Fig. S6) in a considerably shorter running time: our method took
6.5 s, whereas trendsceek needed 1080 s (run times measured on a
single 2.0 GHz CPU core). SpatialDE returned a perfect score for
too many genes, making gene ranking impossible. This is probably
related to both methods being optimized toward identifying spatial
patterns. Moreover, neither method allows estimation of local gene
relevance.

To summarize, our gene relevance method is a fast and versatile
exploratory tool that can help identify the biological processes and
reveal the presence and driving genes of potentially rare cell sub-
populations. It is available online, easily applicable and faster than
model fitting approaches. Although we focused our discussion on
scRNA-seq datasets, our method can be applied to virtually any
kind of dataset where low-dimensional embeddings are obtained,
including, for instance, single-cell epigenomic Shema et al. (2019)
and mass cytometry data Spitzer and Nolan (2016).

Gene relevance has been developed as part of the Bioconductor
package destiny: bioconductor.org/packages/destiny. API documen-
tation for analysis and plotting and are available at is at https://thei
slab.github.io/destiny/

The datasets analyzed within this publication are available from
their original publications as described in Supplementary Table S1
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