
Congenital cataract, defined as any opacity of the 
lens present within the first year of life, is responsible for 
approximately one-tenth of childhood blindness worldwide 
[1]. Depending on regional socioeconomic development, 
prevalence varies from one to six cases per 10,000 live births 
in industrialized countries [2, 3] to five to 15 per 10,000 in 
the poorest areas of the world [1, 4]. In the poorest areas, the 
major reason for isolated congenital cataracts is virus infec-
tion, including rubella and influenza. In these cases, hygiene 
standards and vaccination must be improved to prevent 
congenital cataract [5]. Congenital cataract can occur in an 
isolated fashion or as one component of a syndrome affecting 
multiple tissues. Between 8.3% and 25% of congenital cata-
racts are believed to be inherited [6]. Although autosomal 
recessive and X-linked forms of inheritance exist, autosomal 
dominance is the major form of inheritance of congenital 
cataracts [7].

Up to now, at least 35 independent loci, including more 
than 20 genes on different chromosomes, have been associ-
ated with isolated autosomal dominant congenital cataract 
(ADCC) [8]. Of the cataract mutations reported to date, about 
half have mutations in the crystallin genes and a quarter in 

connexin genes, with the remainder divided among genes that 
encode heat shock transcription factor-4 (HSF4), aquaporin-0 
(AQP0, MIP), v-maf musculoaponeurotic fibrosarcoma onco-
gene homolog (MAF), paired-like homeodomain 3 (PITX3), 
beaded filament structural protein-2 (BFSP2), chromatin 
modifying protein (CHMP4B), lens intrinsic membrane 
protein 2 (LIM2), and other genes [9, 10]. The crystallin and 
connexin genes appear to be the most commonly associated 
with congenital cataract. Therefore, it is suitable to consider 
these genes the top candidates for developing congenital 
cataract screening strategies. In this study, we investigated 
a four-generation family with congenital nuclear and zonular 
pulverulent cataracts and detected a novel missense mutation 
in the connexin 50 gap junction protein, alpha 8 (GJA8) gene 
that cosegregated with the disease in the family.

METHODS

Family data and DNA specimens: The four generations of 
the family from south part of Zhejiang province with ADCC 
were recruited from the Eye Center of Affiliated Second 
Hospital, College of Medicine, Zhejiang University, Hang-
zhou, China in January 2012. In total, 12 individuals, age 
from six to fifty four years old, participated: six affected 
and six unaffected, six male and six female. Of the 12, six 
were spouses (Figure 1). Among the affected individuals,II:2 
and II:5 had undergone lens surgery, the other four had bad 
visual acuity. In addition, 100 munrelated control subjects 
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were recruited. Informed consent in accordance with the 
Zhejiang Institutional Review Board was obtained from all 
participants, and the study protocol adhered to the tenets of 
the Declaration of Helsinki. Detailed medical histories were 
obtained by interviewing all the 12 individuals in the ADCC 
family. All participants underwent ophthalmologic exami-
nations, including visual acuity and slit-lamp examination 
with dilated pupils. Phenotypes were documented with slit-
lamp photography (Figure 2). Blood samples were obtained 

by venipuncture and collected in Becton-Dickinson (BD, 
Franklin, NJ) Vacutainer tubes containing EDTA. Leuko-
cyte genomic DNA was extracted using the QIAmp Blood 
kit (Qiagen, Duesseldorf, Germany).

Mutation screening: We used the functional candidate gene 
analysis approach. Genomic DNA samples from affected 
and unaffected members of the family were screened for 
mutations in CRYAA, CRYAB, CRYBA3/1, CRYBB2, CRYGC, 

Figure 1. Pedigree of autosomal 
dominant congenital cataract 
(ADCC). The proband is marked 
with an arrow. Squares and circles 
indicate men and women, respec-
tively. Black and white symbols 
represent affected and unaffected 
individuals, respectively. The aster-
isks indicate family members who 
were enrolled in this study.

Figure 2. Slit-lamp photograph 
of the family members who had 
congenital nuclear and zonular 
pulverulent cataracts with Y-sutural 
opacities. The affected member 
IV:2 (C, D) had more severe nuclear 
opacities than her mother III:1 (A, 
B).
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CRYGD, connexin 46, and connexin 50 genes using direct 
sequencing. The coding regions of the candidate genes were 
amplified with PCR using previously published primer 
sequences (Table 1) [11-15]. The cycling conditions for PCR 
were 95 °C preactivation for 5 min, 10 cycles of touchdown 
PCR with 0.5 °C down per cycle from 60 °C to 55 °C, followed 
by 30 cycles with denaturation at 95 °C for 25 s, annealing 
at 55 °C for 25 s, and extension at 72 °C for 40 s. PCR prod-
ucts were isolated by electrophoresis on 3% agarose gels and 
sequenced using the BigDye Terminator Cycle sequencing 
kit V 3. 1 (ABI Applied Biosystems; Sangon Co, Shanghai, 
China) on an ABI PRISM 3730 Sequence Analyzer (ABI), 
according to the manufacturer’s instructions. Sequencing 
results were analyzed using Chromas 1.62 and compared 
with sequences from the NCBI GenBank (CRYAA: 21q22.3; 
NM_000394, CRYAB: 11q22; NG_009824;CRYBA3/1: 17q11-
q12; NM_005208, CRYBB2: 22q11. 2; NM_005208, CRYGC: 
2q33-q35; NM_020989, CRYGD: 2q33-q35; NM_006891.3, 
connexin 46: 13q11-q13; NM_021954, and connexin 
50:1q21-q25).

Bioinformatics analysis: Computational algorithms are effec-
tive in predicting whether a specific amino acid substitution 
of a protein sequence is deleterious or neutral to the func-
tion of the protein. Among various methods, Polymorphism 
Phenotyping (PolyPhen), Grantham score difference (Align-
GVGD), and Sorting Intolerant from Tolerant (SIFT) amino 
acid substitutions are most commonly used.

PolyPhen takes into account the evolutionary conser-
vation of the amino acid subjected to the mutation and the 
physicochemical characteristics of the wild-type and mutated 
amino acid residue [16]. Grantham Variation (GV) measures 
the degree of biochemical variation among amino acids 
found at a given position in the multiple sequence alignment. 
Grantham Deviation (GD) reflects the biochemical distance 
of the mutant amino acid from the observed amino acid at 
a particular position (given by GV). Align-GVGD can be 
used to predict the transactivation activity of each missense 
substitution [17]. SIFT uses sequence homology to predict 
whether an amino acid change will affect protein function 
and potentially contribute to a disease. SIFT, which assigns 
scores from 0 to 1, predicts substitutions with scores less than 
0.05 as deleterious, whereas those greater than or equal to 
0.05 are considered tolerated [18].

RESULTS

Clinical evaluation: We identified a four-generation Chinese 
family with a clear diagnosis of ADCC (Figure 1). All 
affected patients had bilateral nuclear and zonular pulveru-
lent cataracts with Y-sutural opacities, but the degree of lens 

opacity varied slightly. The affected member IV:2 (Figure 
2C,D), a six-year-old girl, had more severe nuclear opacities 
than her mother, the proband III:1 (Figure 2A,B). The visual 
acuity of the affected individuals ranged from 0.6 to 0.1; most 
affected individuals observed visual impairment in their 20s, 
and then their visual acuity decreased gradually. The affected 
member IV:2 had the worst visual acuity in childhood, and 
was diagnosed before the age of three, so she underwent 
cataract surgery in July 2012. There was no family history of 
other ocular or systemic abnormalities.

Mutation screening: Through bidirectional sequencing of 
the coding regions of the candidate genes, we identified a 
heterozygous change, G>C, at position 139(c. 139G>C) of 
the connexin 50 (GJA8) gene, leading to the replacement of 
a wild-type aspartic acid with a histidine at the 47th amino 
acid position (p. D47H; Figure 3). No amino acid substitution 
or mutation was found in the other candidate genes. Using 
the sequencing method, this D47H substitution cosegregated 
with all six affected individuals, whereas it was not present in 
the unaffected family members or in 100 unrelated Chinese 
controls without cataracts.

Bioinformatics analysis: Computational protein analysis of 
D47H Cx50 revealed the following results: PolyPhen analysis 
produced a score of 1.000, which is predicted to be “prob-
ably damaging.” Align-GVGD showed a score of GV0.00, 
GD81.24, which belongs to class C65 and means “most likely 
to interfere with function.” Finally, the SIFT method revealed 
a score of 0.02, meaning the substitution is intolerant. As the 
isolated predictive value of these programs can be increased 
by their combination [19], these results indicated the D47H 
substitution was likely deleterious and possibly contributed 
to the disease.

DISCUSSION

In this study, we identified a novel mutation within the 
connexin 50 gene (GJA8) in a four-generation Chinese 
pedigree with autosomal dominant cataract. The lens is an 
avascular organ that transmits and focuses light images on 
the retina. The lens has developed an extensive cell–cell 
communication system using connexins to maintain transpar-
ency [20]. Intercellular gap junction communication, which is 
essential for this system and integral to the internal microcir-
culation of the lens, provides pathways for metabolites, ions 
and signaling molecules, and other molecules smaller than 
1 kDa [21, 22].

Connexin proteins are membrane proteins containing 
four transmembrane domains (M1, M2, M3, and M4), two 
extracellular loops (E1 and E2), and three intracellular 
regions (the NH2-terminus, a cytoplasmic loop, and the 
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Table 1. Polymerase chain reaction primers and product sizes.

Name Primer sequence (5′-3′) Product size (bp) Reference
Cx50      [13]
Exon-2–1 F 5′ CAGATATTGACTCAGGGTTG 3′ 542  
Exon-2–1R 5′ GATGATGTGGCAGATGTAGG 3′    
Exon-2–2 F 5′ GGCAGCAAAGGCACTAAG 3′ 465  
Exon-2–2 R 5′ CTCCACCATCCCAACCTC 3′    
Exon-2–3 F 5′ ATCGTTTCCCACTATTTCC 3′ 492  
Exon-2–3 R 5′ GGCGTCACTTCATACGGTTA 3′    
Cx46      [13]
Exon-1–1 F 5′ CTCTTCTGGCTCTGGCTTCC 3′ 741  
Exon-1–1R 5′ CACCTCGAACAGCGTCTTGA 3′    
Exon-1–2 F 5′ CTTCCCCATCTCCCACATCC 3′ 749  
Exon-1–2 R 5′ GGTGGCCGTTGTAGAGCTTG 3′    
Exon-1–3 F 5′ TCCGCCAAGCTCTACAACG 3′ 535  
Exon-1–3 R 5′ GAAACCTGATCTCTCCTCCAT 3′    
CRYBA3/1      [14]
Exon-1 F 5′GGCAGAGGGAGAGCAGAGTG 3′ 207  
Exon-1 R 5′CACTAGGCAGGAGAACTGGG 3′    
Exon-2 F 5′AGTGAGCAGCAGAGCCAGAA 3′ 293  
Exon-2 R 5′GGTCAGTCACTGCCTTATGG 3′    
Exon-3 F 5′AAGCACAGAGTCAGACTGAAGT 3′ 269  
Exon-3 R 5′CCCCTGTCTGAAGGGACCTG 3′    
Exon-4 F 5′GTACAGCTCTACTGGGATTG 3′ 357  
Exon-4 R 5′ACTGATGATAAATAGCATGAACT 3′    
Exon-5 F 5′GAATGATAGCCATAGCACTAG 3′ 290  
Exon-5 R 5′TACCGATACGTATGAAATCTGA 3′    
Exon-6 F 5′CATCTCATACCATTGTGTTGAG 3′ 295  
Exon-6 R 5′GCAAGGTCTCATGCTTGAGG 3′    
CRYAA      [15]
Exon-1 F 5′CTTAATGCCTCCATTCTGCT 3′ 593  
Exon-1 R 5′TGGCTGGTGCCTTACAAA 3′    
Exon-2 F 5′ CACCTGACCATAGCCAAACAAC 3′ 512  
Exon-2 R 5′ TCTCCCAGGGTTGAAGGCA 3′    
Exon-3 F 5′ GGGGCATGAATCCATAAATC 3′ 487  
Exon-3 R 5′ GGAAGCAAAGGAAGACAGACAC 3′    
CRYAB      [15]
Exon-1 F 5′ AACCCCTGACATCACCATTC 3′ 469  
Exon-1 R 5′ GGAGGAAGGCACTAGCAACC 3′    
Exon-2 F 5′ TGCAGAATAAGACAGCACCTG 3′ 296  
Exon-2 R 5′ AATGTAGCCAGCCTCCAAAG 3′    
Exon-3 F 5′ TCTGCCTCTTTCCTCATT 3′ 473  
Exon-3 R 5′ CCTTGGAGCCCTCTAAAT 3′    
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COOH-terminus) [23]. Six connexin protein subunits oligo-
merize to form one hemichannel (also called connexon) that 
then are transported to the plasma membrane. The hemi-
channel consists of a positively charged cytoplasmic entrance, 
a pore funnel, a negatively charged transmembrane pathway, 
and an extracellular cavity [24]. A gap junction channel 

is formed by the docking of the extracellular loops of two 
hemichannnels from two adjacent cells [25]. Intercellular 
gap junction channels are formed by at least three different 
connexin protein subunits in the human lens, connexin 43 
(GJA1) [26], connexin 46 (GJA3) [27], and GJA8 [28]. Cx43 
is restrictively expressed in the lens epithelial cells, Cx46 is 
primarily expressed in lens fiber cells, and Cx50 is expressed 
in lens epithelial and fiber cells [29, 30]. Diverse gap junction 
channels formed by Cx46 and Cx50 subunits are important 
for the differentiation, elongation, and maturation of lens 
fiber cells [31]. Recent genetic studies showed that Cx46 is 
important for lens transparency while Cx50 is essential for 
lens growth and transparency [32].

The coding region of GJA8 is contained within one exon, 
which encodes a polypeptide containing 432 amino acids. 
To date, more than 24 mutations in the connexin 50 gene in 
humans and mice have been reported to induce genetic cata-
racts, which were summarized by Wang et al. recently [33].

The observed 139G>C substitution replaces the nega-
tively charged aspartic acid with positively charged histidine 
at position 47 in association with the congenital cataract in 
the present study. Maeda’s structural studies of the connexin 
gap junction channel indicated that Asp 47 is located in the 
beginning of extracellular loop E1 of Cx50 (Figure 4). In 

Figure 3. Forward and reverse sequence analysis of the affected 
and unaffected individuals in a Chinese family with autosomal 
dominant congenital cataract (ADCC), showing a G139C mutation 
of the connexin 50 gene (black arrows).

Name Primer sequence (5′-3′) Product size (bp) Reference
CRYBB2      [12]
Exon-2 F 5′ TGCTCTCTTTCTTTGAGTAGACCTC 3′ 385  
Exon-2 R 5′CCCATTTTACAGAAGGGCAAC 3′    
Exon-3 F 5′ ACCCTTCAGCATCCTTTG G 3′ 314  
Exon-3 R 5′ GCAGACAGGAGCAAGGGTAG 3′    
Exon-4 F 5′ GCTTGGAGTGGAACTGACCTG 3′ 244  
Exon-4 R 5′ GGCAGAGAGAGAAAGTAGGATGATG 3′    
Exon-5 F 5′ GCCCCCTCACCCATACTC 3′ 242  
Exon-5 R 5′ CCCCAGAGTCTCAGTTTCCTG 3′    
Exon-6 F 5′ CCTAGTGGCTTATGGATGCTC 3′ 347  
Exon-6 R 5′ TCTTCACTTGGAGGTCTGGAG 3′    
CRYGC      [11]
Exon-1. 2 F 5′ TGCATAAAATCCCCTTACCGCTGA 3′ 522  
Exon-1. 2 R 5′ ACTCTGGCGGCATGATGGAAATC 3′    
Exon-3 F 5′AGACTCATTTGCTTTTTTCCATCCTTCTTTC 3′ 407  
Exon-3 R 5′GAAAGAATGACAGAAGTCAGCAATTGCC 3′    
CRYGD      [11]
Exon-1. 2 F 5′ CCTCGCCTTGTCCCGC 3′ 340  
Exon-1. 2 R 5′ TTAACTTTTGCTTGAAACCATCCA 3′    
Exon-3 F 5′ TGCTTTTCTTCTCTTTTTATTTCTGGGTCC 3′ 400  
Exon-3 R 5′AGTAAAGAAAGACACAAGCAAATCAGTGCC 3′    
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addition, pore structure analysis of the Cx26 gap junction 
channel showed that Asp 46 and Asp 50, highly conserved 
residues in the connexin family, face the pore interior and 
create a negatively charged transmembrane path approxi-
mately at the height of the extracellular membrane surface. 
Along with the pore funnel, these two regions possibly 
contribute to the charge selectivity and probably to the size 
restriction, considering the charge character and the pore 
diameter [24]. Until now, several amino acid substitutions 
at position 47 or nearby amino acids have been identified in 
the connexin 50 gene in association with congenital cataracts 
in mice and humans, including Cx50V44E [34], Cx50W45S 
[35], Cx50G46V [36], Cx50D47Y [37], Cx50D47N [33], 
Cx50E48K [38], mCX50D47A [39], and mCX50S50P [40].

Except for Cx50G46V, which enhances the hemichannel 
function and leads to cell death [36], most CX50 mutants 
exhibit impaired trafficking and/or lack of function. Research 
on Cx50E48K revealed that this mutation affects gap junc-
tions but not the hemichannel function of Cx50, in a dominant 
negative manner when paired with wild-type Cx50, but has 
no such effect on Cx46 [41].

Study of the nuclear opacity 2 mouse shows that muta-
tion D47A fails to form functional junctions and is unable 
to inhibit wild-type Cx46 or Cx50 junctional conductance 
when expressed in Xenopus oocyte pairs [39]. In the same 
way, the D47N [42] mutation in humans acted as a loss-of 

channel-function mutation without dominant negative inhibi-
tion of wild-type Cx50. Combining the Align-GVGD, Poly-
Phen, and SIFT results, we believe that the D47H mutation 
might also be explained by the loss-of-function mechanism, 
as the mutations D47A and D47N were. Further experiments 
on this cataract-related genetic defect will improve our 
understanding of the mechanism of cataract formation and 
illuminate the role of the connexin family in the lens.
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