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Endocytosis is a mechanism that internalizes and recycles plasma membrane

components and transmembrane receptors via vesicle formation, which is mediated

by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are

specialized, terminally differentiated epithelial cells in the kidney, located on the outermost

layer of the glomerulus. These cells play an important role in maintaining the integrity of

the glomerular filtration barrier in conjunction with the adjacent basement membrane and

endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery

appears to be necessary for maintaining podocyte function. De novo pathologic human

genetic mutations and loss-of-function studies of critical podocyte endocytosis genes

in genetically engineered mouse models suggest that this pathway contributes to

the pathophysiology of development and progression of proteinuria in chronic kidney

disease. Here, we review the mechanism of cellular endocytosis and its regulation in

podocyte injury in the context of glomerular diseases. A thorough understanding of

podocyte endocytosis may shed novel insights into its biological function in maintaining

a functioning filter and offer potential targeted therapeutic strategies for proteinuric

glomerular diseases.
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INTRODUCTION

The word “endocytosis” initially coined by Christian de Duve in 1963, describes the process of
internalization and retrieval of extracellular material including the cellular plasma membrane
components and transmembrane receptors via small vesicles. Internalized molecules from the
plasma membrane can be recycled back to the cell surface or be degraded in the cell. Endocytosis
orchestrates numerous cellular processes, which include membrane formation, cell signal
transduction, adhesion, motility, immune response, membrane turnover, lipid homeostasis, uptake
of nutrients, and development in response to the ambient environmental changes (1–3). Based
on vesicular membrane components and cargoes (4) identified by electron microscopy, endocytic
pathways can be broadly divided into clathrin-mediated endocytosis (5), and clathrin-independent
endocytosis, which is further subdivided into caveolae-dependent endocytosis (6), phagocytosis
(“cell eating”) (7, 8), macropinocytosis (“cell drinking”) (9), cholesterol-sensitive pathway (10, 11),
and clathrin-independent carrier/GPI-AP-enriched early endosomal compartment (CLIC/GEEC)
pathway endocytosis (12).

The kidney is composed of glomeruli, tubules, renal interstitium, and renal vasculature that
work in unison to remove waste from plasma. The glomerular filtration barrier (GFB) serves as a
semi-permeable membrane allowing for free filtration of small solutes while retaining larger solutes
such as albumin and immunoglobulin in circulation. The GFB is composed of three layers: the
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podocytes located at the outermost layer facing the Bowman’s
space, the fenestrated endothelial cells located at the innermost
layer facing the glomerular capillary lumen, and the glomerular
basement membrane located between them (13). Impaired
function or depletion of podocytes contributes to many forms
of proteinuric chronic kidney diseases (CKD). CKD currently
affects more than 800 million people worldwide and is expected
to becomemore prevalent in the decades to come (14). Moreover,
glomerular diseases account for approximately 83% of cases that
progress to end-stage kidney disease (ESKD) according to the
United States Renal Data system (https://adr.usrds.org/2020/).

Impaired endocytic pathways in the podocytes have been
implicated in the damage of the glomerular filtration barrier.
Burgeoning evidence strongly suggests that endocytic pathways
play a key role in maintaining proper kidney function. Genetic
missense mutations in GAPVD1 and ANKFY1 whose protein
products interact with the endosomal regulator RAB5 (2), and
missense mutations in TBC1D8B, whose protein product is the
Rab11b-guanosine triphosphatases (GTPase)-activating protein
(15) have been found causal in human steroid-resistant nephrotic
syndrome. This is complimented by the genetic mouse models
of disease where dysfunction in the endocytic process results
in severe proteinuria suggesting its importance (Table 1). In
this review, we will attempt to describe what is currently
known about the podocyte endocytic process highlighting the
potential mechanisms involved in maintaining a functioning
filtration barrier.

PRINCIPAL ROUTES OF ENDOCYTOSIS

Clathrin-Mediated Endocytosis Pathway
The hallmark of the clathrin-mediated endocytosis pathway
(CME) is the involvement of clathrin, a triskelion-shaped protein
that assembles in a lattice-like structure. Specific cargos in
the clathrin-coated pits are internalized by dynamin-dependent
vesicle fission, followed by the clathrin disassembly (28). CME
allows the target proteins to be transported to endosomes,
which are sorting stations directing endocytosed vesicles to
either recycling or degradation pathways. The CME process
progresses through a series of well-regulated steps resulting
in morphological alterations. First, phosphatidylinositol-4,5-
bisphosphate [PI (4,5] P2]-enriched regions in the plasma
membrane recruit the clathrin adaptor proteins such as AP2,
epsin, and dynamin. Second is the recruitment of proteins
with Bin-Amphiphysin-Rvs (BAR)-containing domain such as
endophilin, which can initiate the clathrin nucleation and
polymerization resulting in the growth of the clathrin-coated
pits (CCP), to approximately 60–120 nm in diameter (3, 29–
31). Lastly, the formation of clathrin-coated vesicles (CCVs)
is generated by the pinching off of CCP from the plasma
membrane through GTPase dynamin assembly, GTP hydrolysis,
dephosphorylation of [PI (4,5] P2] by synaptojanin. Lastly,
uncoating of clathrin and shedding of the CCPs occurs with
the help of auxillin/cyclin G-associated kinase (GAK) and hsc70
(32–34).

Clathrin-Independent Endocytosis
Pathway
In order to adapt to the requirements of different cell types, the
endocytic machinery in mammals is highly complex. CME alone
is likely inadequate to meet this demand (35). Many mechanisms
of clathrin-independent endocytosis (CIE) that play a critical
role in cell trafficking have been identified and characterized,
especially with the development of electron microscopy (4).
Eleven types of CIE modes were discovered and identified,
including macropinocytosis, phagocytosis, caveolae-dependent
endocytosis, arf6-dependent endocytosis, flotillin-dependent
endocytosis, CLIC/GEEC-mediated pathway endocytosis, fast
endophilin-mediated endocytosis (FEME), ultrafast endocytosis
(UFE), activity-dependent bulk endocytosis (ADBE), IL-2Rβ

pathway endocytosis, and massive endocytosis (4, 35, 36).
Interestingly, CME and these 11 types of CIE are endocytic
pathways that are cholesterol-dependent. Moreover, CME and
6 types of CIE including phagocytosis, caveolae-dependent
endocytosis, FEME, ADBE, UFE, IL-2Rβ pathway endocytosis,
are dynamin-dependent (35).

Caveolae-dependent endocytosis is one of the most well-
described CIE pathways in cells including podocytes. Caveolae
are named for their resemblance to caves or flask-shaped
cholesterol-enriched smooth membrane invaginations that are
50–80 nm in diameter (37). The integral membrane protein,
caveolin-1, and other adaptor proteins of the cavin family are
required for this process, in which phosphorylation of caveolin-
1 initiates the initial budding formation and internalization
before dynamin and actin machinery-dependent fission (4, 38).
Caveolae-dependent endocytic processes have been identified in
the endothelial cells, epithelial cells, fibroblasts, adipocytes, and
human podocytes (35, 39, 40), and are found to participate in
the trafficking of sphingolipids or proteins through lipid rafts.
Downregulation of Wilms tumor 1(WT1), a podocyte-specific
transcription factor, mediates activation of Wnt/β-catenin
signaling by recruiting LRP6 (LDL Receptor Related Protein
6) to the caveolin-dependent endocytic pathway, resulting in
the downregulation of nephrin and induction of apoptosis (41).
Flotillin-dependent endocytosis is associated with lipid rafts to
select lipid cargo mediated by flotillin through mechanisms
that are not well understood (42, 43). In addition, the role of
dynamin in flotillin-dependent endocytosis also remains unclear.
However, studies suggest that this pathway may serve as adaptors
in other forms of CIE rather than as an individual endocytic
process (35, 44). In the CLIC-GEEC endocytosis pathway,
proteins such as GPI-anchored aminopeptidases (GPI-APs) are
internalized in tubulovesicular structures called GPI-AP enriched
early endosomal compartments (GEEC) (12, 45). The trafficking
of many internalized membrane and fluid-phase contents is
endocytosed through CLIC-GEEC endocytic pathway, which is
a dynamin-independent (12, 35, 46). Although CLIC -GEEC
pathway does not require dynamin for endocytosis, dynamin
is associated with the post-internalization of GEEC (12). Many
cytokine receptors are internalized by the IL-2Rβ endocytic
pathway, which requires activation of the small GTPases RhoA
and Rac1, as well as actin polymerization, which finally forms
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TABLE 1 | Loss of function of endocytosis-associated proteins in podocytes resulting in proteinuria.

Protein Characterization References

Class II phosphoinositide 3-kinase

C2α (PI3KC2α)

PI3KC2α-deficient mice cause modest proteinuria, glomerulosclerosis, foot

process effacement, loss of podocytes, and kidney failure

(16)

Class III phosphatidylinositol 3-kinase

vacuolar protein sorting 34 (Vps34)

Podocyte-specific loss of Vps34 leads to early proteinuria,

glomerulosclerosis, foot process effacement, and kidney failure

(17–19)

Dynamin 1 and Dynamin2 Loss of dynamin1 and dynamin2 in mice podocyte cause progressive

proteinuria, glomerulosclerosis, foot process effacement, and kidney failure

(20)

Synaptojanin1 Loss of synpatojanin1 in mice results in severe proteinuria, foot process

effacement

(20)

Endophilin1, 2 and 3 Loss of endophilin 1, 2, and 3 in mice results in severe proteinuria, foot

process effacement

(20)

CD2-associated protein (CD2AP) Loss of CD2AO exhibits proteinuria, glomerulosclerosis, foot process

effacement, and kidney failure

(21)

Cyclin G-associated kinase (GAK) Podocyte-specific loss of Gak causes progressive proteinuria,

glomerulosclerosis, and kidney failure

(22)

CIN85 CIN85 exon2 deletion ameliorates proteinuria and glomerular matrix

accumulation in streptozocin-induced type 1 diabetic mice; Overexpression

of CIN85 in zebrafish causes severe edema, proteinuria, and effacement of

foot process

(23)

Protein kinase C alpha (PKCα) and

beta (PKCβ)

PKCα inhibitor stabilizes nephrin expression and ameliorates the proteinuria

in streptozocin-induced type 1 diabetic mice Genetic loss of PKCα and

PKCβ reduce the proteinuria in streptozocin-induced type 1 diabetic mice

Dual PKCα and PKCβ inhibitor ameliorate the proteinuria in the

streptozocin-induced type 1 diabetic mice and db/db type 2 diabetic mice

(24, 25)

Exoc5 (a central exocyst component) Podocyte-specific loss of Exoc5 mice exhibit the massive proteinuria,

mislocalization and/or loss of Neph1, Nephrin, foot process effacement and

die within 4 weeks of age

(26)

Epsin Loss of epsin1, epsin2, and epsin 3 results in progressive proteinuria,

glomerulosclerosis, and kidney failure

(27)

vesicles 50-100 nm in diameter (47, 48). The small GTPase ADP-
ribosylation factor 6 (Arf6) is localized at the interface of the
plasma membrane and endosomal structure (49), Arf6-GTP
activates the phosphatidylinositol-4 phosphate 5-kinase, which
is involved in cytoskeleton rearrangement and initiating cargo
internalization including the IL-2 receptor α-subunit, and β1-
integrin (50–52).

Phagocytosis engulfs particles larger than 500 nm into
membrane-containing vesicles 0.5–3µm in diameter called
phagosomes. Phagocytosis is best characterized by its role in
defending against microbial pathogens (35, 53). Pinocytosis
uptake the contents dissolved in the fluid phase. Pinocytosis has
two forms known as micropinocytosis and macropinocytosis
which is based on the sizes of generated endocytosed vesicles.
Pinocytosis is essential for the cellular absorption of water,
nutrients, and ions in the fluid phase (35, 54). FEME is a
non-constitutive mode of CIE that is triggered following
stimulation of G-protein-coupled receptors and cytokine
receptors through ligand binding. This process is mediated by
pre-existing membrane clusters of endophilin resulting in rapid
internalization (5–10 s). FEME is regulated by phosphoinositides
and kinases such as Src, LRRK2, Cdk5, and GSK3β, and is
dynamin-dependent (35, 55). The fundamental importance of
these pathways remains elusive as genetic knockout models
deleting important CIE pathways have not been shown to result
in severe proteinuria.

ENDOCYTOSIS IN PODOCYTE
HOMEOSTASIS AND DISEASE

Role of Phosphatidylinositol
4,5-Bisphosphate in Podocyte Endocytosis
Phosphoinositides are membrane lipids generated by
phosphorylation on the inositol domain. Phosphatidylinositol
4,5-bisphosphate (PI(4, 5)P2) is the most abundant
phosphoinositide species enriched at inner leaflets of the
cell membrane which is mainly produced by type I and type II
phosphatidylinositol-phosphate kinases (PIPKs) (56). PI(4, 5)P2
can also be generated by dephosphorylation of PI(3, 4, 5)P3
mediated by the phosphatase and tensin homolog (PTEN) (3, 57).
PI(4, 5)P2 plays an essential role in the regulation of CME (58).
PI(4, 5)P2 promotes the initial step in the CME process by its
interaction with clathrin, clathrin adaptors, and its effectors (3).
Besides the critical role of PIPKs in the production of P(4, 5) P2, it
also regulates poly-phosphoinositide phosphatase, synaptojanin
1, which is responsible for dephosphorylation and hydrolysis of
PI(4, 5)P2 (49, 59). Global loss of synaptojanin1 enhances PI(4,
5)P2 levels and results in an accumulation of clathrin-coated
vesicles (60, 61). These global knockout mice die early likely
due to the inability of the pups to feed properly. Besides its
neurologic importance, we have demonstrated that loss of
synaptojanin1 results in proteinuria and extensive podocyte
foot process effacement (20). Moreover, the importance of
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phosphoinositides in podocyte biology has been shown through
the genetic loss of class II phosphoinositide 3-kinase C2α
(PI3KC2α), an enzyme that generates PI(3)P and PI(3, 4)P2.
These mutant mice develop proteinuria and kidney failure,
along with altered expression of nephrin and synaptopodin
in podocytes (16). Deletion of a key endosomal trafficking
regulator, the class III phosphatidylinositol (PtdIns) 3-kinase
vacuolar protein sorting 34 (Vps34), specifically in podocytes
results in aberrant endosomal membrane morphology, early
proteinuria, glomerulosclerosis, and foot process effacement
(17–19). Vacuolation phenotype is observed when the Vps34
downstream effector PIKfyve is absent. This phenotype is
rescued in Vps34-deficient podocytes in the presence of both
Vps34 and PIKfyve (19).

Besides CME, studies have indicated that PI(4, 5)P2 may also
play important roles in the regulation of CIE. Dynamin and
cortactin, a PI(4, 5)P2 -binding protein, have been shown to
play important roles in caveolin-dependent endocytosis through
actin-modulation and plasma membrane-remodeling (62, 63).
PI(4, 5) P2 is a downstream effector of GTPase ARF6, which
plays an important role in the ARF6-dependent endocytosis
pathway (64). Additionally, PI(4, 5)P2 plays an essential role in
macropinocytosis and phagocytosis that are regulated by GTPase
Rac1 (64). Yet the role of PI(4, 5)P2 in CIE has not been
well documented in podocytes and serves as an area open for
further studies.

Role of Actin Cytoskeleton in Podocyte
Endocytosis
The actin cytoskeleton in podocytes provides architectural and
functional support that is critical for the maintenance of a
normal GFB (13). The disruption of the actin cytoskeleton is
often associated with podocyte damage, manifesting as massive
proteinuria, which is a hallmark of many glomerular diseases
and is associated with increased progression to CKD (65).
Genetic mutations in actin cytoskeleton-interacting proteins
have been shown to cause proteinuric CKD. Mutations such as
MYO9A (a Rho-GTPase activating protein myosin) (66),MYO1E
(nonmuscle class I myosin, myosin 1E) (67), INF2 (a member
of the formin family of actin-regulating proteins INF2) (68),
DAMM2 (a member of the formin family of actin-regulating
proteins DAAM2) (69), ACTN4 (alpha-actinin 4) (70), CD2AP
(CD2-associated protein) (71), and ANLN (filamentous actin [F-
actin] binding protein) (72) have been identified in patients with
nephrotic syndrome and histological evidence of focal segmental
glomerulosclerosis (FSGS). Recent evidence suggests that the
actin cytoskeleton is critical for CME in cells including the
podocytes and have been implicated also in CIE (35, 49).

Membrane invagination during CME is mediated by actin
polymerized around the endocytic coat in mammalian cells
that are dependent on the N-WASP-activated Arp 2/3 complex,
an important cortical actin nucleator (73, 74). Ultrastructural
examination by electron microscopy has demonstrated that the
actin filaments localize to the endocytic pit at the early stages
of CME while localizing between the endocytic pit and adjacent
plasma membrane at the later stages. The actin cytoskeleton

network around the invaginated vesicles appears to play a role in
force generation by constricting and elongating the endocytic pit,
thereby driving it to detach from the plasma membrane (75). The
podocyte actin cytoskeleton is highly dynamic and regulated by
small GTPases, but the large GTPase dynamin also plays a critical
role through binding to and regulating filamentous actin, which
is an essential component of themaintenance of normal podocyte
foot process architecture.

The importance of dynamin has been demonstrated where
cathepsin-mediated dynamin proteolysis results in podocyte
defects due to abnormal actin structure (76). Our studies
showed that loss of both Dnm1 and Dnm2 specifically in
mouse podocytes (Dnm-DKO) exhibited massive proteinuria,
progressive glomerulosclerosis, and kidney failure (20).
Dynamin-deficient podocytes showed an accumulation of
arrested endocytic pits, which contain Arp2/3, indicating a
connection between the endocytosis machinery and the actin
cytoskeleton (20). Podocyte-specific loss of Dnm1 and Dnm2
resulted in massive tubulation of plasma membrane endocytic
clathrin-coated pits with significant accumulation of Arp2/3 and
F-actin in Dnm-DKO fibroblasts (77) (Figure 1). Furthermore,
Khalil et al demonstrated that there was increased glomerular
Dnm1 and Dnm2 expression in Dahl rats prior to the onset
of proteinuria. These findings were recapitulated in increased
dynamin expression in patient kidney biopsies from various
proteinuric CKD including minimal change disease, FSGS,
IgA nephropathy, lupus nephritis, and diabetic kidney disease.
Hence, there appears to be a minimum level of dynamin
that is required for the maintenance of the GFB, and increased
expression of dynaminsmay serve as a compensatorymechanism
in response to pathological conditions (78, 79).

Dynamin has also been shown to interact with the Arp2/3 (80,
81) and directly with actin (82) promoting dynamin to assemble
in higher-order structures. This has led to exciting possibilities
of promoting actin-dependent dynamin oligomerization by use
of the small molecule Bis-T-23 to improve proteinuria and the
progression of CKD in various rodent injury and genetic models
(83). Mechanistically, Bis T-23 appears to promote actin stress
fiber formation and focal adhesion maturation (84).

Dynamin1 has also been shown to colocalize withmicrotubule
bundles in mouse podocytes, and loss of dynamin1 impairs
microtubule formation and stabilization. Furthermore,
dynamin1 and dynamin2 double knockout primary mouse
podocytes showed rare microtubule-rich protrusions (85).

Non-muscle myosins have been suggested to play a key role
in CME. Myosin II is required for clathrin-coated pit curvature
progression and normal symmetry (86). Myosin 1E (Myo1E)
is an actin-based motor protein, that interacts with dynamin
and synaptojanin1 (87) and uses energy from the hydrolysis
of adenosine triphosphate (ATP). Myo1E is recruited at late
stages of clathrin-coated pits coincident with actin assembly and
is required for N-WASP recruitment (75, 88, 89). Depletion
of Myo1E inhibits transferrin endocytosis and extends the
lifetimes of clathrin and dynamin on the invaginated vesicles
(86, 88). Overexpression of Myo1E in the mouse podocytes
promotes the expression of F-actin and increases albumin
endocytosis mediated by dynamin (90). Mutations in MYO1E
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FIGURE 1 | Regulation of actin at clathrin coated pits.

(A159P and Y695X) were reported causing autosomal recessive
steroid-resistant FSGS further illustrating the importance of this
gene (67).

The non-catalytic region of the tyrosine kinase (Nck)
family of adaptors including Nck1 and Nck2, plays key roles
in the remodeling of the cytoskeleton (91). Phosphorylation
on the tyrosine residues of nephrin promotes the nephrin-
Nck (Nck1/Nck2) complex formation which binds via the
SH3 domain of Nck and results in actin assembly (92).
Nck also interacts with GTPase dynamin, lipid phosphatase
synaptojanin1, and actin-polymerizing protein N-WASP to
regulate the actin assembly and endocytosis (91, 93, 94).

CD2-associated protein (CD2AP) is a cortactin-binding
scaffold protein that controls actin dynamics and participates
in membrane trafficking during endocytosis by interacting with
dynamin, synaptojanin1, endophilin, and nephrin (49, 95).
CD2AP has three Src homology 3 (SH3) domains and a coiled-
coil domain contributing to its functions on actin dynamics
and endocytosis by interactions with other proteins containing

proline-rich domains (96). Interestingly, mice lacking Cd2ap
develop nephrotic syndrome and die at 6–7 weeks of age due
to kidney failure (21). Furthermore, it has been observed that
human mutations in CD2AP are associated with FSGS (95, 97).

More recently, cyclin G-associated kinase (GAK), a
ubiquitously expressed kinase that is associated with the
uncoating of the clathrin-coated vesicles has been shown to
be indispensable in podocytes (98, 99). Podocyte-specific Gak
mice developed progressive proteinuria, glomerulosclerosis,
and kidney failure, due to cytoplasmic calcium dysregulation,
aberrant calpain-1/-2 activation, and actin rearrangement (22).

Although the role of the actin cytoskeleton in podocytes
has not been fully understood, the actin filament accumulating
around the endocytic pits provides the constriction force
required for pulling the invaginated vesicles inwards (92, 100).
Its importance in counteracting the membrane tension caused by
the significant stretch and shear strain due to the cell adhesion
to the glomerular basement membrane has been solidified. Thus,
the intimate link between actin and endocytosis in podocytes
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plays a critical role in maintaining a normally functioning
filtration barrier.

Regulation of Slit Diaphragm in Podocyte
Endocytosis
The highly specialized intracellular junctions called slit
diaphragm are formed by the interdigitating foot processes
of podocytes. The slit diaphragm is an essential part of the
glomerular size-selective filtration barrier (13). Podocyte
differentiation requires recruitment of the slit diaphragm–
specific, neuronal junction proteins to membrane domains, in
which endocytic trafficking plays an important role. Hence, the
endocytic process regulating a subset of slit diaphragm proteins
appears critical to maintaining the integrity of the GFB (87, 101).

Podocin, encoded by the NPHS2, is a membrane-attached
protein that is required in maintaining the integrity of
the podocyte slit diaphragm (102). In both the puromycin
aminonucleoside nephrosis (PAN) and poor-prognosis human
IgA nephropathy, endocytic dependent translocation of
podocin to the cytoplasm has been demonstrated using
immunofluorescence. Furthermore, podocin co-localizing with
Rab5 (a key factor in regulating early endocytosis) during
podocin internalization has been observed. This suggests
podocin trafficking may play a critical role following podocyte
injury and contributes to the disruption of the integrity of
the GFB (103). The protein sorting nexin 9 (SNX9) interacts
with podocin via its C-terminal BAR domain, and SNX9
expression has been shown to colocalize with podocin following
adriamycin-induced podocyte injury in vitro and in vivo. Its
expression is also upregulated in kidney samples of patients with
severe glomerular injury. In addition, SNX9 binds directly to
dynamin and stimulates dynamin assembly and GTPase activity.
Hence, SNX9 may also play a prominent role in promoting
podocin endocytosis by regulating dynamin (104).

Nephrin, encoded by NPHS1, is a podocyte-specific protein
and a core component of the slit diaphragm. Proper expression
of nephrin on the cell surface is critical in ensuring the
integrity of the GFB. Downregulation or mislocalization of
nephrin has been indicated in the pathogenesis of proteinuric
kidney disease. Human mutations have been found to result
in Autosomal Recessive Congenital Nephrotic Syndrome of
the Finnish type (105, 106). It has been demonstrated that
the long isoform of CIN85 (RukL) interacts with nephrin and
mediates its endocytosis in podocytes; the paralog CD2AP can
also stabilize the slit diaphragm by binding to nephrin (107).
CIN85/RukL can regulate ubiquitination and several types of
degradative endosomal sorting. Loss of CIN85/RukL preserves
the nephrin surface expression on the podocyte slit diaphragm
and reduces podocyte loss and proteinuria in the streptozotocin-
induced type 1 diabetic mice. On the contrary, overexpression
of CIN85/RukL in zebrafish results in severe edema and
proteinuria (23). Protein kinase C (PKC) and casein kinase 2
substrate in neurons 2 (PACSIN2), also known as syndapin
II, is a member of the Bin-Amphiphysin-Rvs (BAR) family
that contains an evolutionary membrane binding and sculpting
domain. PACSIN2 can accelerate endocytosis and intracellular

trafficking of nephrin via the involvement of rabenosyn-5, which
is involved in early endosome maturation and endosomal sorting
(108). PKCα, one of the PKC isoforms, has been implicated
in the endocytic process. Elevated PKCα levels in podocytes
result in enhanced endocytosis of nephrin and instability of
the slit diaphragm, which may play an important role in the
development of albuminuria in the diabetic mice model (109).
Treatment with PKCα inhibitors preserved podocyte nephrin
retention and reduced proteinuria in type 1 diabetic mice
(24). Thus, PKCα and PKCβ inhibitors may play a salutary
role in alleviating the preexisting albuminuria in both types I
and type II diabetic mice (25). The phosphotyrosine adaptor
protein ShcA promotes nephrin endocytosis by increasing
the tyrosine phosphorylation of nephrin resulting in aberrant
nephrin turnover and distribution within the slit diaphragm
(110). Podocyte ShcA expression was found to increase when
co-stained with nephrin in IgA nephropathy, minimal change
disease, and FSGS kidney biopsy specimens (108).

Human missense mutations of GAPVD1 were identified in
patients with early-onset steroid-resistant nephrotic syndrome
using the whole-exome sequence. Mutated GAPVD1 reduced
nephrin binding and clathrin uncoating via RAB5 regulation,
resulting in impaired endocytosis and nephrin mistrafficking
which was confirmed by the silencing Gapvd1 in drosophila (2).
The deletions of exocyst 4 (EXOC4), one of the highly conserved
octameric proteins of the exocyst trafficking complex which
mediates the targeting and docking of endocytosed vesicles, was
also identified in patients with nephrotic syndrome. Podocyte-
specific loss of Exoc5 (a central exocyst component interacting
with Exoc4) in mice showed massive proteinuria, severe
glomerulosclerosis, and fibrosis. In addition, mislocalization
and/or loss of nephrin and neph1 expression were observed and
this was implicated as a major contributor to this phenotype.
This suggests the presence of an important mechanism that
regulates the trafficking of nephrin and neph1 can help maintain
an intact filtration barrier (26). Moreover, IQ domain GTPase-
activating protein 1 (IQGAP1), a scaffold protein containing
multiple protein-binding domains that act as a polymerization
platform for a variety of proteins and signaling kinases, mediates
nephrin endocytosis and has been shown to play a functional role
in diabetic kidney disease (111).

Using site-directed mutagenesis, various biochemical
methods, single-plane illumination microscopy, and a human
nephrin-expressing zebrafish model, canonical YXXØ-type
motif, Y1139RSL, was demonstrated as an endocytic motif
for clathrin-mediated nephrin endocytosis. Y1139RSL motif–
mediated endocytosis facilitates nephrin delivery leading to foot
process organization and a functional slit diaphragm in a human
nephrin-expressing zebrafish model (112). Phosphorylation
(activation) and dephosphorylation (deactivation) of nephrin
have been identified as an essential posttranslational event
that maintains proper podocyte structure and function.
Nephrin tyrosine residue phosphorylation by Src family
kinases Fyn and Yes, promotes Nck adaptor protein binding
mediating actin polymerization and facilitating the endocytic
process (92, 113, 114). Nck’s SH3 domains also play a role
in coupling dynamin to nephrin, as it allows dynamin to
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FIGURE 2 | Regulation of slit diaphragm proteins through podocyte endocytosis.

bind through its proline-rich domain. Increased nephrin
tyrosine phosphorylation upon podocyte injury correlates with
a decreased membrane surface nephrin. Interestingly, mice
lacking-Nck binding sites on nephrin are resistant to podocyte
injury, which suggests that nephrin-Nck interaction regulates the
nephrin endocytosis at the slit diaphragm (92). Nephrin has also
been shown to undergo caveolin-dependent endocytosis (20)
and CIE (raft-mediated endocytosis) (115). It is postulated that
dephosphorylated nephrin appears to be involved in caveolin-
dependent endocytosis, while phosphorylated nephrin seems to
participate in the raft-mediated endocytosis (115).

Podocytes exhibit apicobasal polarity, which maintains the
fundamental function of podocyte biology. The apical polarity
determinants of the partitioning defective-3 (PAR-3) and atypical

protein kinase C (aPKC) are in the form PAR/aPKC complex
(Par3/Par6/aPKC), and this complex regulates tight junction
formation and slit diaphragm assembly. The RNAi-mediated
knockdown of PAR-complex proteins in Drosophila nephrocytes,
a model of vertebrate podocytes, causes a severe endocytic
defect due to impaired localization of aPKC at the plasma
membrane. This results in impaired slit diaphragm localization.
In contrast, the knockdown of Scribble, one of the lateral
polarity regulators of nephrocytes, also leads to a severe
reduction in endocytosis. These results suggest that apical
polarity determinants are important for endocytosis and slit
diaphragm homeostasis. Basolateral polarity regulators are also
critical for mammalian nephrin homolog Sns localization in
Drosophila (116). Basolateral polarity proteins- Discs large,
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FIGURE 3 | Regulation of angiotensin II receptor through podocyte endocytosis.

Scribble, Lethal giant larvae, and Par-1 are important for normal
endocytic trafficking of slit diaphragm proteins including zonula
occludens-1 (ZO-1), which was confirmed by colocalization
with early endosome Rab5, recycling endosome Rab7, and
late endosome Rab11, respectively. The critical importance
of ZO-1 in podocyte biology was recently shown when
mice with podocyte-specific Zo-1 knockout mice exhibited
extensive proteinuria and kidney failure along with disruption
of the slit diaphragm (117). ZO-1 is mislocalized from the
plasma membrane to the cytosol following lipopolysaccharide
or protamine sulfate-induced podocyte injury (118). Loss of

basolateral polarity proteins led to slit diaphragm protein
mislocalization into the cytoplasmic vesicles of nephrocytes. This
suggests that the basolateral polarity is critical for slit diaphragm
recycling (119).

Surface expression and turnover of podocin and nephrin
appear to be intimately connected. A missense mutation
in podocin cause retention of both podocin and nephrin
in the cytoplasm (120, 121). Factors influencing nephrin
and podocin turnover may destabilize the slit diaphragm
resulting in subsequent disruption of the glomerular filtration
barrier (Figure 2). However, precisely how disruption of
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endocytic trafficking cause defects in the slit diaphragm requires
further investigation.

Regulation of Filtered Proteins in Podocyte
Endocytosis
Albuminuria is a hallmark of proteinuric chronic kidney
disease and is usually caused by dysfunction of glomerular
filtration barrier integrity. Interestingly, albumin endocytosis
is enhanced in the podocytes from minimal change disease
patients. Accumulation of blue-labeled albumin endocytic
vesicles was observed in the podocytes in a rat model of
puromycin aminonucleoside-induced nephrotic syndrome (122).
Furthermore, overexpression of Myo1e may also enhance
dynamin-mediated albumin endocytosis in mouse podocytes
(90). Ang II enhances the migration of albumin-containing
vesicles from the glomerular capillary to the apical aspect of the
podocyte, which is eventually released into the urinary space.
This increase in endocytosis and transcytosis of plasma albumin
by podocytes, which is regulated by Ang II, may potentially play
a critical role in the formation of proteinuria (123). The caveolae-
dependent albumin endocytosis has been demonstrated in
cultured immortalized human podocytes (39). Filtered albumin
enters into the podocyte through Fc-receptors, and reaches
the early endosome where albumin is sorted for lysosomal
degradation or exocytosed outside of the podocytes (124).

Lipid endocytosis in podocytes has also been implicated to
reduce cellular integrity and worsens proteinuria and kidney
damage, such as in obesity-related glomerulopathy. Enhanced
lipid endocytosis by podocytes from patients with obesity-
related glomerulopathy was observed and was associated with
decreased expression of phosphatase and tensin homolog
(PTEN). Silencing of PTEN promoted low-density lipoprotein
endocytosis in mouse podocytes, while PTEN overexpression
inhibited the endocytosis of podocyte lipoproteins. PTEN
directly dephosphorylates and activates the actin-depolymerizing
factor cofilin-1, leading to depolymerization of F-actin, which
is necessary for endocytosis. Inhibition of PTEN resulted in
the phosphorylation and inactivation of cofilin-1, leading to F-
actin formation that enhanced the endocytosis of lipoproteins
in podocytes (125). Moreover, free fatty acid (FFA) associated
with albumin has been shown to stimulate micropinocytosis
through FFA receptors during Adriamycin-induced podocyte
injury worsening albuminuria (126).

Mutations in CLCN5, encoding the chloride channel
Cl−/H+ exchanger ClC-5, have been identified in FSGS
patients with Dent disease using exome sequencing. CLCN5
has been shown also to be expressed in cultured human
podocytes. Knockdown of CLCN5 in human podocytes
resulted in defective transferrin endocytosis, which
suggests that CLCN5 plays a critical role in podocyte
function by participating in endocytosis, although the
role of targeted cargoes needs to be further investigated
podocytes (127).

The apolipoprotein L1 (APOL1) gene (APOL1) variants such
as its G1 and G2 alleles are associated with increased risk for
nephropathy progression in African Americans including FSGS

and human immunodeficiency virus-associated nephropathy
(HIVAN). Exogenous recombinant APOL1 can be taken up by
human podocytes in vitro via clathrin-dependent endocytosis,
contributing to the accumulation of APOL1 in podocytes
and may be partially involved in the APOL1-associated renal
toxicity, particularly with the G1 and G2 disease variants
(128). However, cytotoxicity and effective endocytosis through a
clathrin-dependent pathway were not observed inHEK293T cells
(129). This discrepancy may be related to the use of different cells
or different experimental conditions. Thus, the role of APOL1
endocytosis in podocytes and APOL1-associated renal toxicity is
worthy of further studies.

Altered Cell Signaling Pathways Due to
Defective Podocyte Endocytosis
Under hyperglycemic conditions, enhanced recruitment of
membranous protein kinase C-α (PKC-α) facilitates epidermal
growth factor receptor (EGFR) ubiquitination and endocytosis,
resulting in podocyte extracellular signal-regulated kinase (ERK)
induced cellular damage in diabetic kidney disease models.
Inhibiting PKC-α or ubiquitin-activating enzyme activation
attenuates EGFR internalization and mitigates the high-glucose-
induced podocyte injury (130). Epsins, a family of membrane
proteins acting as endocytic adaptors, also play a critical role in
the CME and CIE. In mammals, there are three different epsins
namely, epsin1 (encoded by Epn1), espin2(encoded by Epn2),
and espin3(encoded by Epn3). Podocyte-specific loss of epsins
resulted in increased albuminuria and foot process effacement.
Primary podocytes isolated from these knockout mice exhibited
abnormalities in cell adhesion and spreading, which can likely be
attributed to reduced activation of cell division control protein 42
homolog (Cdc42) and serum response factor (SRF), resulting in
diminished β1 integrin expression in the podocyte (27).

Another facet of the importance of dynamin and the
endocytic process is through its role in the internalization of
membrane-bound receptors such as Angiotensin II receptor
type I (AT1R), which is internalized by CME. Podocyte-
specific deletion of the AT1aR (Angiotensin II receptor type
1a which is mainly expressed in mice kidney) in Dnm-DKO
mice demonstrated reduced albuminuria, improvement in both
glomerulosclerosis and kidney function, and attenuation of
membrane abnormalities. Furthermore, isolation of podocytes
from Dnm-DKO mice revealed abnormal membrane dynamics,
with increased Rac1 activation and lamellipodial extension,
which was attenuated in Dnm-DKO podocytes lacking AT1aR
(131). This suggests that loss of endocytic pathways may alter
the internalization of receptors such as AT1aR, leading to the
continued activation of this pathway contributing to worsened
proteinuria and podocyte damage (Figure 3).

Clathrin-dependent and -independent pathways also
contribute to β1 integrin endocytosis (132). Integrins are a
family of transmembrane receptors that integrate cell adhesion
to the extracellular matrix with a dynamic link of the cellular
cytoskeleton and are important for a plethora of physiological
and pathophysiological roles in podocytes. Podocyte-specific
loss of integrin α3 or β1 in mice causes massive proteinuria
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and foot process effacement (133, 134). Integrins are subject
to endocytosis and endosomal recycling back to the plasma
membrane to maintain their turnover allowing for adaptive
adhesive behavior responding to the microenvironment. PEA-
15 (Phosphoprotein Enriched in Astrocytes of 15 kDa) is a
member of the Death Effector Domain (DED) family, which
can regulate α5β1 integrin endocytosis by interacting with β1
integrin cytoplasmic domains as a key endosomal adaptor, hence
facilitating cell motility (135). Plasminogen activator inhibitor
type-1 (PAI-1) / urokinase plasminogen activator (uPA)
complex-mediated uPAR-dependent endocytosis of β1 integrin
can also cause podocyte injury and progressive podocytes loss
(136). The endocytic machinery for β1 integrin is potentially
through clathrin- and dynamin-independent endocytic route
(CLIC-GEEC) via swiprosin-1 (Swip1) and small GTPase Rab21
(137). These findings provide new insight into understanding
the endocytic role in cell signaling and how it plays an important
role in podocyte injury.

CONCLUDING REMARKS

It has been established that podocyte proteins are uniquely
organized to maintain the integrity of the GFB and its function.
and genetic mouse models have validated its importance
Table 1. However, the underlying mechanisms that participate
in trafficking these proteins to the appropriate location in
health and disease states need to be further studied in
order to unravel complex pathophysiological relationships.
Identifying these mechanisms will likely contribute to developing
potential novel therapeutical targets to abate proteinuric

CKD. Given the observations that neonatal Fc receptor
(FcRn) expression in human podocytes is increased with
proteinuric CKD, a nanoparticle-containing albumin and
glucocorticoid molecules can be taken up by FcRn receptor-
mediated endocytosis. This aims to decrease or avoid the
systemic side effects caused by the clinical glucocorticoids
administration (138). Moreover, with some of the most
abundant podocyte-specific cargoes identified through mass
spectrometry (139), future studies should enlighten critical
pathways regulated by podocytes. In conclusion, these current
cutting-edge findings on the relationship between endocytosis
and podocyte biology will help us to further understand the
precise mechanism of podocyte injury and provide impetus to
find novel and useful therapeutic approaches to target abnormal
endocytic machinery.
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