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Purpose: This paper aimed to establish and verify a radiomics model based on magnetic
resonance imaging (MRI) for predicting the progression-free survival of nasopharyngeal
carcinoma (NPC) after induction chemotherapy (IC).

Materials and Methods: This cohort consists of 288 patients with clinical pathologically
confirmed NPC, which was collected from January 2015 to December 2018. All NPC
patients were randomly divided into two cohorts: training (n=202) and validation (n=86).
Radiomics features from the MRI images of NPC patients were extracted and selected
before IC. The patients were classified into high- and low-risk groups according to the
median of Radscores. The significant imaging features and clinical variables in the univariate
analysis were constructed for progression-free survival (PFS) using the multivariate Cox
regression model. A survival analysis was performed using Kaplan–Meier with log-rank test
and then each model’s stratification ability was evaluated.

Results: Epstein–Barr virus (EBV) DNA before treatment was an independent predictor
for PFS (p < 0.05). Based on the pyradiomic platform, we extracted 1,316 texture
parameters in total. Finally, 16 texture features were used to build the model. The clinical
radiomics-based model had good prediction capability for PFS, with a C-index of 0.827.
The survival curve revealed that the PFS of the high-risk group was poorer than that of the
low-risk group.

Conclusion: This research presents a nomogram that merges the radiomics signature
and the clinical feature of the plasma EBV DNA load, which may improve the ability of
preoperative prediction of progression-free survival and facilitate individualization of
treatment in NPC patients before IC.

Keywords: nasopharyngeal carcinoma, radiomics, magnetic resonance imaging, induction chemotherapy,
survival models
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a malignant tumor related
to Epstein–Barr virus (EBV) infection that arises from the
mucosal epithelium of the nasopharynx, and it has a
predilection for the lateral and posterior apical walls of the
nasopharyngeal cavity (1, 2). It has distinct geographical
distribution characteristics, especially in East Asia and
Southeast Asia (3, 4). According to the global tumor
epidemiology statistics of the International Agency for
Research on Cancer, in 2020, it was estimated that there would
be 133,000 new cases of nasopharyngeal cancer and 80,000
deaths worldwide, about half of them from China, especially in
the Guangdong and Guangxi provinces.

Currently, concurrent chemoradiotherapy (CCRT) is the
standard-of-care treatment for patients with locally advanced
NPC, as chemotherapy sensitizes tumor cells to the toxic effect of
radiotherapy. Combination induction or neoadjuvant
chemotherapy and chemoradiotherapy has been investigated in
these patients (5, 6). Recently, a number of clinical trials have
shown that IC + CCRT regimen shows significantly better
survival benefit compared with CCRT alone (7–10). Thus, the
clinical treatment decisions of the NCCN Guidelines (2020.V2)
have also been changed; IC + CCRT regimen was recommended
as category 2A.

However, physicians need to identify patients who are at high
risk of early progression and tailor the treatment strategies. At
present, clinical therapeutic regimens for NPC patients are
mainly based on the tumor node metastasis (TNM) staging
system, which is related to the anatomy-only basis. However,
this staging system is far from sufficient to predict the survival
benefit of therapeutic strategies and cannot reflect the likelihood
of cancer invasion and metastasis. Furthermore, patients with the
same TNM stages, who usually received the same therapeutic
regimens, will have different outcomes. Recognizing early those
patients who can benefit from intensified induction
chemotherapy (IC) would allow the modification of treatment
regimens in time (11–16), which is important for maximizing
efficacy, minimizing therapeutic toxicities, and serving the
purpose of precision oncology. We urgently need a better
approach to identify NPC patients who are best suitable for
additional IC (17).

Radiomics, which is being evaluated as a popular data-mining
method, extracts features from medical imaging in a high-
throughput and automated way to reflect its subtle
heterogeneous phenotypes for various cancers (18). Recently,
radiomics has been applied to patients with head and neck
cancer, and it is reported to improve prognostic performance
versus the TNM staging system (19, 20). Recent studies showed
that the texture parameter of pretreatment magnetic resonance
imaging (MRI) or MRI-based radiomics nomogram could
predict progression-free survival (PFS) in endemic NPC (21).
Peng et al. established a PET/CT radiomics model to divide NPC
patients into a low-risk group and a high-risk group, and there
were significant differences in the 5-year disease-free interval
(DFI) between the groups. All the characteristics were
significantly correlated with the DFI rate, which was better
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than the plasma EBV DNA-based model for risk stratification
and selection-guided induction chemotherapy (IC) regimen (22).
Zhao et al. confirmed that MRI texture features also have good
performance in evaluating the efficacy of IC. Risk stratification of
patients with the help of radiomics models before treatment and
accurate assessment of efficacy after treatment are helpful to
formulate and adjust individualized treatment strategies to avoid
unnecessary adverse reactions and medical expenses (23).

Herein, our study aimed to establish a radiomics-based model
based on MRI for predicting the PFS of NPC after IC. We
hypothesized that this model could stratify the NPC patients into
high-risk and low-risk groups before IC. It will help physicians
tailor the treatment strategies and choose the most
appropriate treatment.
MATERIALS AND METHODS

Patients
This retrospective research was approved by the Institutional
Review Board of our institution, and informed consent was
waived from all patients. In total, 288 patients with clinical
pathological ly confirmed NPC without evidence of
locoregional recurrence or distant metastases at diagnosis were
randomly recruited into 2 cohorts in a 7:3 ratio: training (n =
202; mean age, 44.69 ± 11.02 years) and validation (n = 86; mean
age, 43.93 ± 11.03 years), which were collected from January
2015 to December 2018 in Guangxi Medical University Cancer
Hospital. The following inclusion criteria were met: (1)
pathologically diagnosed NPC; (2) images of contrast-
enhanced MRI before treatment; and (3) treatment modalities,
including upfront IC, and subsequent radiotherapy or CCRT.
The exclusion criteria were as follows:(1) patients without
contrast-enhanced MRI before induction chemotherapy, or the
data of the Digital Imaging and Communications in Medicine
(DICOM) were corrupted and images had unclear lesion
boundaries or artifacts; (2) patients with incomplete clinical
data; and (3) patients with distant metastasis before treatment.

MRI Scan
All patients underwent 3.0T MRI (Discovery MR750; GE
Healthcare, Little Chalfont, UK) scans before treatment using a
standard head–neck combined coil. The scanned region
extended from the upper edge of the suprasellar cistern to the
inferior edge of the sternal end of the clavicle. T1-weighted turbo
spin-echo (TSE) sagittal, axial, and coronal sequences were as
follows: repetition time (TR)=957 ms; echo time (TE)=19 ms;
field of view (FOV)=240×240 mm; slice thickness=5.0 mm; slice
gap=1.0 mm; frequency matrix=256×256; T2-weighted fat-
suppressed axial sequences were as follows: TR=6,760 ms;
TE=91 ms; FOV= 240×240 mm; slice thickness=5.0 mm; slice
gap=1.0 mm; frequency matrix=384×384, following an
intravenous bolus of 0.2 ml/kg Gadopentetate Dimeglumine
(Magnevist, Schering, Berlin, Germany). The T1-weighted fat-
suppressed sagittal, axial, and coronal sequences were performed
using the same parameters as those of the T1-weighted before
the injection.
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Radiomics Workflow
The radiomics workflow consists of five steps is shown in
Supplementary Figure 1, including acquisition of image, image
segmentation, extracted features, feature selection, and modeling.
FOLLOW-UP AND CLINICAL ENDPOINT

Patients were reexamined every three months for the first post-
treatment year, then every sixmonths next year, and yearly thereafter
by CT or MRI examinations routinely, while nasopharyngoscopy
examinations were performed when necessary. PFS was used as the
survival endpoint, which reflected the efficacy and required a
relatively short follow-up. PFS was calculated from the date of the
initial treatment to the date of first relapse (local or distant
metastases), death, or the last follow-up (censored).

Image Acquisition, Image Segmentation,
and Feature Extraction
We obtained MRI images (axial CE-T1-weighted and axial fat-
saturated T2-weighted imaging series) from the Picture archive
communication systems (PACS) for extracting radiomics
features. MRI images were exported to the ITK-Snap software
(open-source software; www.itk-snap.org) for manual three-
dimensional segmentation. All manual segmentations of the
tumor were conducted by two senior radiologists (who had 15
and 20 years of experience in NPC imaging, respectively); the
intraclass correlation coefficient (ICC) was calculated to assess
interobserver agreement, with ICC > 0.75 regarded as “excellent”
(ICC was 0.912). The region of interest (ROI) was drawn
manually to include the entire tumor and was delineated on
each layer of both the axial T2-w images and CET1-w images.
Subsequently, numerous texture parameters were extracted
based on the pyradiomic platform (version 2.1.2; https://
pyradiomics.readthedocs.io/en/latest/index.html).

Feature Selection, Model Construction,
and Validation
Feature selection and model construction of NPC patients were
performed in the training set, while the validation set was used for
model validation. The least absolute shrinkage and selection operator
(LASSO) method was utilized to select the optimal features and
avoid overfitting. The coefficients of the less contributive variables
were compressed to zero by penalty terms, and the remaining
features of nonzero coefficients related to survival were evaluated
with the univariate Cox analyses. The Radscore for each NPC patient
was obtained by summing the weighted significant features together
(Radscore = coefficient 1× feature 1 + coefficient 2× feature 2…)
through a linear combination (24). Every patient was classified into a
high- or low-risk group subsequently based on the median of the
Radscore. The clinical model and radiomic model were established
using the Cox proportional hazards model. We combined the
radiomics with pretreatment clinical characteristics to construct a
radiomics–clinical model with multivariate Cox analyses. Survival
analysis was performed using Kaplan–Meier with log-rank test and
then each model’s stratification ability was evaluated. To assess the
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model predictive ability, the concordance index (C-index) was
calculated. The prognostic nomogram of PFS was constructed
based on the highest C-index model to display individual
contributions. The actual scores correspond to the above point
coordinate. Calibration curves were plotted to show how closely
the model’s prediction agree with the actual result.

Statistical Analysis
The nominal variable was compared with chi-square test or
Fisher’s exact test, while the ordinal variable was evaluated by
Kruskal-Wallis H-test. An abnormally distributed continuous
variable was evaluated using Mann-Whitney test. All statistical
analyses for this study were carried out with R (version 3.5.1)
and Python (version 3.5.6). The detailed R packages are given
in Supplementary Methods 1. A two-tailed p-value < 0.05
indicated statistical significance. We used C-index, AUC, ACC,
Sensitivity, and Specificity to quantify the discrimination
ability. DeLong test was used to compare the AUCs. Decision
curve analysis was conducted to estimate the models’ clinical
usefulness. Significant clinical variables were selected by the
univariate Cox regression analysis, and then we built a clinical
radiomics model with multivariate Cox regression analysis.
RESULTS

General Demographic and Clinical
Characteristics
A total of 288 patients were enrolled in our study. The clinical
characteristics of the patients are listed in Table 1. The difference
in terms of the baseline clinical characteristics (age, gender, TNM
stage, or EBV DNA) was not statistically significant between the
training and validation cohorts (p>0.05). Among the 288
enrolled patients, 98% received radiotherapy.

Clinical Characteristics
EBV DNA before treatment was an independent predictor for PFS
(p<0.05). The C-index based on the clinical nomogram was 0.716
(95% CI, 0.573–0.860) in the training cohort and 0.603 (95% CI,
0.370–0.836) in the validation cohort. In the training cohort, the
AUC, ACC, Sensitivity, and Specificity were 0.583, 55.40%, 43.30%,
and 73.20%, respectively, and in the validation cohort, they were
0.655, 67.4%, 51.4%, and 79.6%, respectively (Table 3).

Performance of Model in Predicting PFS
A total of 1,316 radiomic features were extracted from VOI on axial
T2-w and CET1-w images, respectively. The final 16 remaining
features were used to build the model (Figure 1A). We calculated
the Radscore reflecting the risk of PFS of each patient using the
formula above. The optimal cutoff value is the median Radscore
(-0.229), which was used to divide the patients into high- and low-
risk groups. At last, 16 radiomic features were selected to build the
nomogram (Table 2). The C-Index, AUC, ACC, Sensitivity, and
Specificity of the radiomics model (only based on the imaging
features) in the training cohort were 0.818, 0.734, 69.30%, 63.30%,
and 78.00%, respectively, and in the validation cohort, they were
June 2022 | Volume 12 | Article 792535
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0.746, 0.606, 64.00%, 51.40%, and 73.50%, respectively (Table 3).
The predictive value of PFS was increased in the clinical radiomics
model [incorporating both clinical variables and imaging features,
in both the training cohort (p = 0.039, Delong test) and the
Frontiers in Oncology | www.frontiersin.org 4
validation cohort (p = 0.015, Delong test)]. The C-index, AUC,
ACC, Sensitivity, and Specificity of the clinical radiomics model
(only based on the imaging features) in the training cohort were
0.827, 0.777, 74.80%, 82.50%, and 63.40%, respectively, and in the
validation cohort, they were 0.751, 0.695, 69.80%, 62.20%, and
75.50%, respectively (Table 3).

Validation of the Radiomic Nomogram
In the training cohort, the concordance index, Sensitivity, and
Specificity were 0.827 (95%CI: 0.757–0.898), 82.5%, and 63.4%,
respectively, and in the validation cohort, they were 0.751 (95%
CI: 0.641–0.861), 62.2%, and 75.5%, respectively. Figures 1B, C
show the 1-, 3-, and 5-year survival calibration curves of the
nomogram in training and validation cohorts, respectively. And
there was good calibration in the two cohorts. Low-risk groups
with higher radiomics signature had significantly better PFS than
high-risk groups in both the training cohort and the validation
cohort (p < 0.05; Figure 2).
DISCUSSION

Functional and anatomical MRI has been widely used to identify the
therapeutic response in NPC (25). One study performed by Zhang
TABLE 1 | Characteristics of the patients in the training and validation cohorts.

Variable Training (N = 202) Validation (N = 86) p-value

EBV.DNA0 128 (63.37%) 57 (66.28%) 0.637
EBV.DNA1 74 (36.63%) 29 (33.72%)
Male 152 (75.25%) 68 (79.07%) 0.485
Female 50 (24.75%) 18 (20.93%)
Family history 35 (17.33%) 17 (19.77%) 0.962
No family history 167 (82.67%) 69 (80.23%)
Smoking 70 (34.65%) 31 (36.05%) 0.61
No smoking 132 (74.25%) 46 (63.95%)
T_stage1 4 (1.98%) 2 (2.33%) 0.641
T_stage2 59 (29.21%) 24 (27.91%)
T_stage3 53 (26.24%) 28 (32.56%)
T_stage4 86 (42.57%) 32 (37.21%)
N_stage0 4 (1.98%) 0 (0.00%) 0.199
N_stage1 53 (26.24%) 31 (36.05%)
N_stage2 81 (40.10%) 33 (38.37%)
N_stage3 64 (31.68%) 22 (25.58%)
Clin_stage3 66 (32.68%) 36 (41.86%) 0.137
Clin_stage4 136 (67.33%) 50 (58.14%)
WHO2 18 (8.91%) 9 (10.47%) 0.53
WHO3 182 (90.10%) 77 (89.53%)
WHO4 2 (0.99%) 0 (0.00%)
Height 1.65 (1.58, 1.70) 1.66 (1.60, 1.70) 0.684
Weight 59.00 (52.00, 67.03) 60.00 (54.00, 67.00) 0.709
Dosage 72.32 (71.66, 72.60) 72.32 (70.40, 72.60) 0.576
Radiotherapy course 32.00 (32.00, 33.00) 32.00 (32.00, 33.00) 0.726
Leukocyte 7.09 (5.88, 8.48) 6.95 (5.81, 8.24) 0.793
Hemoglobin 137.00 (125.95, 148.00) 140.00 (126.90, 149.15) 0.467
Platelets 275.50 (232.00, 325.05) 291.00 (237.90, 332.00) 0.361
Neutrophil 4.50 (3.40, 5.46) 4.23 (3.29, 5.28) 0.549
Lymphocytes 1.72 (1.36, 2.23) 1.81 (1.48, 2.31) 0.211
Albumin 39.80 (37.60, 41.70) 39.55 (37.50, 41.91) 0.808
LDH 173.50 (151.95, 203.15) 183.50 (152.95, 210.10) 0.229
Age 44.69 ± 11.02 43.93 ± 11.03 0.592
PFS (months) 25.58 43.24 0.000
June 2022 | Volume 12 | Article
TABLE 2 | Radiomic feature selection result.

MRI series Selected features (CET1-w + T2-w)

CET1-w T1c_wavelet.HHL_glszm_SmallAreaLowGrayLevelEmphasis
CET1-w T1c_logarithm_firstorder_Skewness
CET1-w T1c_wavelet.HHL_glrlm_ShortRunLowGrayLevelEmphasis
CET1-w T1c_wavelet.HLL_glcm_Correlation
CET1-w T1c_wavelet.LLL_glcm_MCC
CET1-w T1c_wavelet.HHL_firstorder_Median
CET1-w T1c_wavelet.LHH_gldm_DependenceVariance
CET1-w T1c_wavelet.LHL_gldm_SmallDependenceLowGrayLevelEmphasis
CET1-w T1c_wavelet.LHH_glcm_InverseVariance
T2-w T2_logarithm_glcm_ClusterProminence
T2-w T2_wavelet.HLH_firstorder_Median
T2-w T2_wavelet.HLH_firstorder_Mean
T2-w T2_wavelet.HHH_glcm_InverseVariance
T2-w T2_exponential_glszm_GrayLevelVariance
T2-w T2_wavelet.LLH_firstorder_Median
T2-w T2_original_shape_MajorAxisLength
– EBV.DNA
CET1-w, contrast-enhanced T1-weighted; T2-w, T2- weighted.
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TABLE 3 | Performance of different model.

Metrics Clinical data-based model Radiomics based model Radiomics and clinical-radiomics based model

Training cohort Validation cohort Training cohort Validation cohort Training cohort Validation cohort

C-Index 0.716 0.603 0.818 0.746 0.827 0.751
AUC 0.583 0.655 0.734 0.606 0.777 0.695
ACC 55.40% 67.40% 69.30% 64.00% 74.80% 69.80%
Sensitivity 43.30% 51.40% 63.30% 51.40% 82.50% 62.20%
Specificity 73.20% 79.60% 78.00% 73.50% 63.40% 75.50%
Frontiers in Onc
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AUC, area under the ROC curve; ACC, accuracy.
A

B C

FIGURE 1 | (A) A radiomic nomogram integrating the radiomic signature and EBV DNA. (B) The calibration curves in the training cohort. (C) The calibration curves
in the validation cohort.
lume 12 | Article 792535
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et al. showed that the pretreatment ADC value was related to the
neoadjuvant chemotherapy response for NPC patients (26), but its
effectiveness is questioned. It has been indicated that MRI-based
texture analysis demonstrated a good potential to predict the
response to chemoradiotherapy of NPC patients (27). There is
currently a lack of effective biomarkers for NPC response to IC. Our
findings are concordant with those from a previous study that
suggested that pretreatment MRI radiomics features could predict
early response to IC in endemic NPC patients, but there was no
additional validation cohort (28). In our research, we built a clinical
radiomics nomogram to predict the response to IC pretreatment in
NPC and classified these patients into high- and low-risk groups
according to the median of the Radscores; the low-risk group had a
significantly better PFS. It will help physicians tailor the treatment
strategies and choose the most appropriate treatment. The
radiomics signatures from the combination of T2-w and CET1-w
images showed favorable predictive efficiency. The combined
models established by the addition of MRI radiomics performed
significantly better than that based on clinical data alone. One recent
study showed a significant improvement in PFS prediction of NPC
after incorporating the radiomics signature with the TNM system
versus the TNM stage alone (15).

We chose two MRI sequences (T2-w and CET1-w) to extract
image radiomics features, and 1,316 radiomics features were extracted
for each NPC patient in total. Finally, the model was constructed
based on 16 features consisting of 9 from enhanced T1-C and 7 from
T2-w images. Our results demonstrated that features extracted from
multivariate sequences performed significantly better than a single
sequence. Image information from different sequences could more
meaningfully reflect tumor heterogeneity and radiomics diversity.

To predict the prognosis of NPC, a number of studies on
multivariate analysis of clinical factors were performed (29).
Clinical factors include gender, age, TNM stage, lactate
dehydrogenase (LDH), C-reactive protein, and plasma EBV-
DNA levels. Some studies suggest that the pretreatment EBV
DNA level could be used as an important biomarker for
Frontiers in Oncology | www.frontiersin.org 6
predicting the survival of NPC patients (30–32). It is similar to
our findings: the pretreatment EBV DNA level was significantly
associated with PFS. However, no significant association was
observed between PFS with age or T-stage.

Many studies have demonstrated that radiomics features are
related to tumor pathophysiologic features (33, 34). “Radio-
genomics” is another emerging predicted tool (35) that combines
radiomics with genomics data. Therefore, radio-genomics will be an
attractive future direction in the prediction of NPC prognosis.

Our study had several limitations due to its retrospective nature.
Firstly, because of the strict inclusion criteria, the sample size may
not have been large enough to influence our results and final
conclusion. Secondly, it was a single-center study, which may also
limit the general applicability of our study results. We next aim to
conduct multicenter prospective studies. Lastly, as a pathologic
review of NPC patients would not be available, tumor response
for IC assessed by MRI imaging based on anatomy might not be
accurate. Furthermore, other MRI sequences, such as DWI, have
been utilized to predict treatment response for breast cancer, and
the potential value needs to be further explored in NPC (36).

In conclusion, our study developed a multiparametric MRI-
based radiomics model to predict the NPC patient response to IC
prior to treatment. It is helpful to choose NPC patients who will
benefit from IC and then personalize their treatment (37).
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