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Microbial single-cell omics: the crux of the matter
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Abstract
Single-cell genomics and transcriptomics can provide reliable context for assembled genome fragments and gene expression
activity on the level of individual prokaryotic genomes. These methods are rapidly emerging as an essential complement to
cultivation-based, metagenomics, metatranscriptomics, and microbial community-focused research approaches by allowing
direct access to information from individual microorganisms, even from deep-branching phylogenetic groups that currently lack
cultured representatives. Their integration and binning with environmental ‘omics data already provides unprecedented insights
into microbial diversity andmetabolic potential, enabling us to provide information on individual organisms and the structure and
dynamics of natural microbial populations in complex environments. This review highlights the pitfalls and recent advances in
the field of single-cell omics and its importance in microbiological and biotechnological studies.

Key points
• Single-cell omics expands the tree of life through the discovery of novel organisms, genes, and metabolic pathways.
• Disadvantages of metagenome-assembled genomes are overcome by single-cell omics.
• Functional analysis of single cells explores the heterogeneity of gene expression.
• Technical challenges still limit this field, thus prompting new method developments.
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Introduction

Microbial dark matter (MDM)

Prokaryotic microorganisms harbor an enormous potential for
biotechnological applications, such as novel natural product
discovery, bioenergy production, and bioremediation of harm-
ful anthropogenic-introduced substances (Singh et al. 2014;
Katz and Baltz 2016; Kumar and Kumar 2017; Mullis et al.
2019; Stincone and Brandelli 2020). However, despite their
global quantity and importance, it is estimated that over 99%
of all microbial species remain uncultured or even completely

uncharacterized (Wu et al. 2009; McDonald et al. 2012; Hug
et al. 2016; Lloyd et al. 2018). These microorganisms are
referred to as microbial dark matter (MDM). Very often, at-
tempts to grow microbes under laboratory conditions fail, or
they grow too slowly to obtain sufficient biomass for analysis.
Although new cultivation methods have been recently devel-
oped (Nichols et al. 2010; Sherpa et al. 2015; Wiegand et al.
2020), genome sequences for the vast majority of prokaryotes
have been inaccessible, obscuring our knowledge of microbial
diversity, metabolism, (eco)physiology, inter-organism inter-
actions, and adaptive evolution.

Cultivation-independent approaches for exploring
MDM

The development of shotgun sequencing of DNA extracted
from environmental samples—so-called metagenomics—has
provided extensive gene content information from natural mi-
crobial communities (Temperton and Giovannoni 2012;
Hedlund et al. 2014; Anantharaman et al. 2016; Vollmers
et al. 2017a; Quince et al. 2017). Unfortunately, assembling
individual discrete genomes from metagenomics data (so-
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called MAGs, metagenome-assembled genomes) is often dif-
ficult and rather costly, especially for high diversity samples
or low abundant organisms (Gilbert and Dupont 2011;
Narasingarao et al. 2012; Iverson et al. 2012). Binning algo-
rithms, which group contigs and assign them to operational
taxonomic units (OTUs), have massively improved over the
past years, but MAGs are still likely consensus genomes
derived from multiple cells that are equally abundant and
share high-homologous regions (Venter et al. 2004; Rusch
et al. 2010; Iverson et al. 2012). Large structural variants
(SVs) such as genome rearrangements, gene insertions, dupli-
cations, or losses which can vary in highly homologous cells
due to mutations, horizontal gene transfer (HGT), and recom-
bination cannot be analyzed and mobile genomic elements
such as plasmids or transposable elements cannot be accurate-
ly binned (Fraser et al. 2007; Vergin et al. 2007; Martinez-
Garcia et al. 2012b; Shapiro et al. 2012; Dam et al. 2020). In
recent years, long-read sequencing technologies such as
Pacific Biosciences’ (PacBio) single-molecule real-time
( SMRT ) s e q u e n c i n g a n d Ox f o r d N a n o p o r e
Technologies’ (ONT) nanopore sequencing have im-
proved the detection and study of large SVs that lead
to heterozygosity on the strain level (Amarasinghe et al.
2020; Ho et al. 2020). However, these technologies are
sometimes still limited in use due to the lack of effi-
cient extraction of high-molecular-weight nucleic acids
and required library input amounts, as well as higher
error rates (Frank et al. 2016; Amarasinghe et al. 2020).

Analyzing the RNA of a microbial community—so-called
metatranscriptomics—can provide information of the actual
gene expression, function, and metabolic activity given
enough sequencing depth and repetition of sequenced sam-
ples. It even allows the determination of relative expression
levels between active genes, making it a useful complement to
metagenomics for studying ecological and metabolic interac-
tions within microbial communities (Shi et al. 2011; Mason
et al. 2012). However, even isogenic microbial populations
show substantial cell-to-cell heterogeneities in transcriptional
activity (Roberfroid et al. 2016; González-Cabaleiro et al.
2017). Since genomic heterogeneity is a common characteris-
tic of microorganisms to adapt to environments with constant
and rap id changes , s t anda rd me tagenomic and
metatranscriptomic analyses alone are not always well suited
to obtain genomes of different species and deliver unequivocal
information about the organization and activity of discovered
genes within genomes, making it difficult to predict functional
genes, metabolic pathways, and potential benefits of microbial
species. This holds especially true for microorganisms with
low abundance in a habitat since the quality of genome
reconstruction is largely dependent on sequence cover-
age for assembly as well as coverage covariance-based
binning (Albertsen et al. 2013; Vollmers et al. 2017b;
Dam et al. 2020).

Omics on the single-cell level

Single-cell genomics (SCG) has emerged as a powerful tech-
nique to overcome disadvantages of genome reconstruction
from metagenomes, by enabling genome analysis of an indi-
vidual prokaryotic cell, referred to as single amplified ge-
nomes (SAGs) (Woyke et al. 2010; Stepanauskas 2012;
Blainey 2013; Kaster et al. 2014; Woyke et al. 2017; Sewell
et al. 2017; Piel and Cahn 2019). It allows for the physical
separation of single cells directly from environmental sam-
ples, followed by sequencing and assembly of their individual
genomes and consists of a series of integrated processes
(Fig. 1). Since its first application on microorganisms in
2005 (Raghunathan et al. 2005), SCG has become a powerful
tool for studying uncultivable organisms and delineating com-
plex populations. An increasing number of SAGs are avail-
able from public databases such as the National Center for
Biotechnology Information (NCBI) GenBank (Sayers et al.
2020), and/or the Joint Genome Institute Genomes OnLine
Database (GOLD) (Mukherjee et al. 2019), which includes
all data from Integrated Microbial Genomes (IMG). As of
July 2020, over 9000 SAG sequencing projects have been
deposited in GOLD (Mukherjee et al. 2019), of which many
are classified as uncultured and potentially novel taxonomic
groups (Swan et al. 2011; McLean et al. 2013; Hedlund et al.
2014; Becraft et al. 2016; León-Zayas et al. 2017; Landry
et al. 2017) (Fig. 2). Recently, a new reference database con-
taining over 12,000 SAGs from the euphotic ocean was pub-
lished (Pachiadaki et al. 2019), greatly expanding our knowl-
edge on the diversity and complexity of marine microorgan-
isms. SAGs of some species are however still difficult to ob-
tain, for example, minority members in a microbial commu-
nity or anaerobic organisms. This could be due to the difficul-
ty in labeling them (Müller and Nebe-Von-Caron 2010) and/
or the increased chance that they will lyse when exposed to
oxygen, risking the DNA to be damaged during lysis steps
prior to the downstream applications of SCG. In addition,
the success of genome recovery from single cells, in general,
varies widely from 0% to a finished genome.

Technical problems, recent advances,
and future challenges

In general, the workflow involves (a) sampling and preserva-
tion, (b) non-specific staining of microbial populations, (c)
cell sorting, (d) cell lysis, (e, f) whole genome amplification
(WGA), (g) screening for SAGs of interest, and (h, i) sequenc-
ing and analysis (Fig. 1). For cell isolation, several methods
can be used such as microfluidics, micromanipulation, and—
conventionally—fluorescence-activated cell sorting (FACS).
Microfluidic- and optofluidic-based systems (Marcy et al.
2007b; Marcy et al. 2007a; Blainey et al. 2011; Landry et al.
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2013; Gole et al. 2013; Xu et al. 2016; Riba et al. 2016; Lan
et al. 2017), as well as micromanipulation (Woyke et al. 2010;
Grindberg et al. 2011), have the advantage of sorting cells
based on their morphology and less physical stress applied
to the cell. Most setups even allow for cell separation, lysis,
and amplification performed in one closed system at nanoliter
or even picoliter volumes (Marcy et al. 2007b; Marcy et al.
2007a; Blainey et al. 2011; Landry et al. 2013; Xu et al. 2016);
however, some limitations remain in cell throughput and the
successful recovery of non-contaminated amplified products.
FACS has become the most commonly used method for sep-
aration due to its high speed and flexibility with the use of
different fluorescence signals (Stepanauskas and Sieracki
2007; Rinke et al. 2014; Woyke et al. 2017). The main

limitations of this technology include potential contamination
due to the open-plate workflow, the inability to microscopi-
cally examine cells, the strong physical stress applied to cells,
and further miniaturization of downstream reaction volumes
(Blainey 2013; Woyke et al. 2017).

Cell lysis efficiency plays an important role in the success
rate of SCG owing to the challenging natural diversity of
microbial cell walls. Environmental sample preservation has
a significant impact on lysis, and conditions have to be opti-
mized for each organism of interest (Stepanauskas 2012;
Rinke et al. 2014). Cell lysis methods need to accomplish
releasing DNA and RNA from the cell while maintaining its
integrity (Clingenpeel et al. 2014a) and must not interfere with
downstream reactions. Alkaline lysis is the most widely used

Fig. 1 Overview of a single-cell omics pipeline including respective
challenges and advancements. a Unless analyzed immediately, environ-
mental samples require deep-freezing in the presence of a cryoprotectant
that preserves the integrity of the cell and its nucleic acids. b Cells are
stained with a fluorescent dye, such as DAPI or SYBR®Green; however,
they can also be specifically labeled. c Physical isolation of a single cell is
typically performed by fluorescence-activated cell sorting (FACS) into
multi-well plates. d After separation, the single cells are lysed to release
their DNA and RNA. Today, most cell lysis in SC omics relies on an
alkaline solution. e For single-cell transcriptomics (SCT), RNAmust first
be converted to double-stranded cDNA via reverse transcription prior to
amplification. f Since a typical prokaryotic cell only contains a few fg

grams of DNA and RNA, whole genome or transcriptome amplification
(WGA/WTA) is needed by a factor of about 106. Multiple displacement
amplification (MDA) is the most widely used reaction. g PCR is used to
screen for specific loci after amplification, usually with broad eubacterial
and archaeal 16S rRNA primers, followed by Sanger sequencing. hAfter
DNA or RNA library preparation, next-generation sequencing technolo-
gies like Illumina, Oxford Nanopore, or PacBio are available for genome/
transcriptome sequencing. i After quality assessment, trimming, and/or
normalization of the sequencing reads, bioinformatics tools can conduct
the assembly, ORF calling, and annotation of the genes, as well as path-
way reconstruction and gene comparisons. Created with BioRender
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method; however, more efficient lysis of cells from complex
communities can be accomplished by using a combination of
different lysis methods (i.e., physical-like freeze-thaw cycles,
chemical, or enzymatic) (Hall et al. 2013; He et al. 2016;
Stepanauskas et al. 2017).

In general, WGA via multiple displacement amplification
(MDA) to obtain a sufficient quantity of genomic DNA for
sequencing remains the major limitation of the SCG pipeline.
In addition to the high costs, this method often results in

incomplete and uneven genome amplification and is biased
against high GC regions of the genome (Lasken and
Stockwell 2007; Lasken 2009; Sabina and Leamon 2015).
Therefore, the average completeness of genomes obtained
by SCG is often lower than that of MAGs from the same
sample (Blainey et al. 2011; Bowers et al. 2017; Landry
et al. 2017; Alneberg et al. 2018; Dam et al. 2020). One of
the main sequencing limitations is due to MDA artifacts such
as chimeras, uncontrolled bias, and non-specific products

Fig. 2 Cladogram of prokaryotes (Bacteria and Archaea) showing the
relative proportions of isolate genomes, single-amplified genomes
(SAGs), and metagenome-assembled genomes (MAGs) that make up
the total number of genomes in each phylum. The taxonomy is based
on National Center for Biotechnology Information (NCBI) (Sayers
et al. 2020). Total genome numbers for each phylum are shown at the
top of each bar. Data extracted from the Genomes OnLine Database
(GOLD) in July 2020 (Mukherjee et al. 2019). Cladogram created with

Interactive Tree of Life (iTOL) version 5 (Letunic and Bork 2019). -
proteo -proteobacteria. Asgard Lokiarchaeota-Thorarchaeota-
Odinarchaeota-Heimdallarchaeota. DPANN Diapherotrites-
Parvarchaeota-Aenigmarchaeota-Nanoarchaeota-Nanohaloarchaeota.
TACK Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota.
FCB Fibrobacteres-Chlorobi-Bacteroidetes. PVC Planctomycetes-
Verrucomicrobia-Chlamydiae. CPR Candidate Phyla Radiation
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(Lasken and Stockwell 2007; Sabina and Leamon 2015).
Amplification bias is thought to occur predominantly by ran-
dom mechanisms, as sequences that are over-represented in
one MDA reaction can be under-represented in another.
However, there are some reproducible differences in the aver-
age level of representation of different sequences, and certain
sequences are not amplified at all for unknown reasons (Dean
et al. 2001; Lasken and Stockwell 2007; Lasken 2009).
Several approaches can be taken to lessen the amplification
bias of the MDA reaction such as reducing the reaction vol-
ume to improve the specificity of the reaction (Marcy et al.
2007a; Landry et al. 2013; Leung et al. 2016; Yu et al. 2017;
Lan et al. 2017), post-amplification endonuclease treatment to
reduce chimeric sequences (Zhang et al. 2006), and post-
amplification normalization by nuclease degradation of
dsDNA to reduce most abundant sequences (Rodrigue et al.
2009). To overcome the problem of amplification bias against
high GC content, a more thermotolerant phi29 DNA polymer-
ase was recently described, resulting in higher quality draft
genomes of single sorted cells (Stepanauskas et al. 2017).
The hybrid amplification method called multiple annealing
and looping-based amplification cycles (MALBAC) can also
amplify high GC regions and showed amplification of more
than 90% of the genome of single human cells; however, the
method is very costly and not that suitable for high-throughput
applications for prokaryotes. Many amplification methods
have been compared in the past, but the general consensus is
that the amplification method of choice is dependent on the
questions being asked as the methods each have their distinct
advantages and disadvantages (De Bourcy et al. 2014; Huang
et al. 2015; Estévez-Gómez et al. 2018).

Low throughput for low abundant cells:
phylogeny-driven targeted labeling

Due to the amplification bias, statistically less than 30% of the
16S rRNA gene gets amplified (Swan et al. 2011). This makes
screening challenging, especially for rare organisms of the
population or cells that are hard to lyse. Like metagenomics,
SCG is therefore often not a cost-efficient approach to unravel
microbial community members which are not abundant, espe-
cially in complex environments. Given the limitations of
cultivation-dependent and cultivation-independent tech-
niques, minority members of microbial communities are
therefore often overlooked and understudied. Nevertheless,
they may still play important roles in many biogeochemical
processes (e.g., due to high enzyme affinities to certain sub-
strates) or might have biotechnological relevance (Frias-
Lopez et al. 2008; Shi et al. 2011; Pratscher et al. 2018).
Generating samples enriched for the specific microorganism
of interest will increase the likelihood of actually sorting those
cells and obtaining positive amplifications, which will ulti-
mately reduce experimental costs.

Recently, Dam et al. (2020) implemented a fluorescent in
situ hybridization (FISH) labeling, coupled with targeted cell
sorting to obtain genomes of low abundant community mem-
bers of the phylum Chloroflexi using a modified protocol
(Podar et al. 2007; Yilmaz et al. 2010; Haroon et al. 2013).
Usually, fluorescent labeling of bacterial cells requires fixa-
tives such as paraformaldehyde to increase the fluorescent
signal by allowing stronger permeabilization of the cell mem-
brane and penetration of the probe. However, since the pro-
cess weakens the cell wall, it can lead to the lysis of the labeled
cells during the sorting process. Furthermore, paraformalde-
hyde compromises the downstream applications for SCG,
namely, the amplification of the genomic DNA via MDA
(Clingenpeel et al. 2014b; Doud and Woyke 2017). Dam
et al. (2020) demonstrated that an in-solution, fixation-free
FISH protocol allowed phylogenetic labeling of targeted cells
to remain intact during the sorting process and that their fluo-
rescent signals were sufficiently high for multiple sorts. This
was achieved by longer hybridization times and higher probe
concentrations to overcome the problem of low cell mem-
brane permeability when no additional fixatives and lysing
agents could be used.

Furthermore, catalyzed reporter deposition (CARD)-FISH
(Pernthaler et al. 2002) could overcome weak FISH signals,
which occur if the cells are in a low activity state, as is the case
for most samples from oligotrophic environments. In some
cases, the enrichment of low abundant bacterial cells after
CARD-FISH and FACS doubled in comparison to the origi-
nal sample (Wallner et al. 1997; Sekar et al. 2004). Through
the use of CARD-FISH and laser microdissection, researchers
were able to confirm the previously unknown identity of a
bacterium that produces the cytotoxin calyculin, by using the
biosynthetic gene cluster as the probe (Wakimoto et al. 2014).
However, like with traditional FISH, the paraformaldehyde
used is not compatible with whole genome amplification,
which is why multiple cells were needed to avoid the ampli-
fication step. To combat this issue but still maintain compara-
ble signal intensities, a modified hybridization chain reaction
(HCR)-FISH protocol which does not require paraformalde-
hyde as a fixative was recently used and combinedwith FACS
and MDA to successfully enrich bacteria from an environ-
mental sample (Yamaguchi et al. 2015b; Yamaguchi et al.
2015a; Grieb et al. 2020).

Another labeling tool for gene-specific targeting is recog-
nition of individual genes (RING)-FISH which can be com-
bined with targeted cell sorting (Pratscher et al. 2009). This
technique was used to target a previously unculturable meth-
ane oxidizer in soils—USCα—(Kolb et al. 2005), where the
specific methane monooxygenase enzyme (pMMO) was
known, but the 16S rRNA gene sequence was not.
Application of a fluorescently labeled suicide substrate for
pMMO was used to specifically sort the labeled cells via
FACS and obtain the 16S rRNA sequence. For the first time,
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16S rRNA FISH allowed then a direct link to the high-affinity
activity of methane oxidation by USCα cells in situ. Analysis
of the global biogeography of this group by 16S rRNA then
further revealed its presence in previously unrecognized hab-
itats, such as subterranean and volcanic biofilm environments,
indicating a potential role of these environments in the biolog-
ical sink for atmospheric methane.

Cherry-picking: function-driven single-cell genomics

Recently, different techniques for functional-driven SCG have
been used to select and characterize single cells based on a
specific functional trait prior to and in conjunction with WGS
(Woyke and Jarett 2015; Lee et al. 2015; Doud and Woyke
2017; Couradeau et al. 2019; Hatzenpichler et al. 2020). Some
of these methods have provided important ecological and bio-
technological findings, which help to expand our knowledge
on previously unknown gene functions (Woyke et al. 2018).

Raman micro-spectroscopy in combination with cell
sorting, called Raman activated cell ejection (RACE), has
been used to provide phenotypical and biochemical informa-
tion of single cells without damaging the cells (Huang et al.
2004; Huang et al. 2010; Li et al. 2012). Song et al. (2017b)
reported the first use of RACE coupled with SCG to detect
novel carotenoid and isoprenoid synthesizing bacteria from
the Red Sea as a label-free approach (Song et al. 2017b).
They later showed that stable isotope labeling with D2O in
combinat ion with RACE and WGA could detect
antimicrobial-resistant bacteria in the Thames River (Song
et al. 2017a).

Substrate analog probing (SAP) uses synthetic molecules
that are similar to naturally occurring molecules to study sub-
strate uptake in organisms. This method has been combined
with FACS and SCG by the use of fluorescently labeled sub-
strates to uncover the significance of polysaccharide degrada-
tion by Verrucomicrobia (Martinez-Garcia et al. 2012a) and a
novel cellulose-degrading bacterium from the candidate phy-
lum Goldbacteria with less than 1% abundance in the sample
(Doud et al. 2019). However, the greater use of this method is
mainly limited by the uncertainty in how/if the fluorescent tag
interferes with enzyme-substrate binding (Hatzenpichler et al.
2020). Bio-orthogonal non-canonical amino acid tagging
(BONCAT) is one approach that has been used to overcome
this limitation because detecting the uptake of these molecules
is independent of the labeling approach. In general, this meth-
od uses synthetic amino acids that are taken up by bacterial
cells so that they are incorporated into newly synthesized pro-
teins which then become fluorescent due to azide-alkyne click
chemistry (Mahdavi et al. 2014; Hatzenpichler et al. 2014).
BONCAT has been previously used to identify pathogenic
bacteria and their secreted proteins (Mahdavi et al. 2014;
Sherratt et al. 2017). Recently, this targeting method was also
shown to be compatible with FACS and MDA which enabled

the authors to sort methane-oxidizing archaea-bacterial con-
sortia from deep sea sediments and identify in situ activity and
novel interactions between these organisms (Hatzenpichler
et al. 2016). However, the current limitations, such as signal
strength, substrate analog specificity, and quantification of
activity rates, restrict the widespread use of these methods
and need to be further improved for high-throughput applica-
tions (Doud and Woyke 2017; Hatzenpichler et al. 2020).

Viral-host interactions in single-cells

Studying viral-host interactions via metagenomics has proven
to be difficult due to the naturally high diversity in most en-
vironments. Studies comparing MAGs and SAGs from the
same samples find that the MAGs do not contain a significant
portion of genes, indicative of prophage infection found with-
in the SAGs, even within largely incomplete SAGSs (Labonté
et al. 2015; Dam et al. 2020). SCG has therefore revolution-
ized the study of viruses in many environments, as well as
their interactions within individual prokaryotic cells. In the
marine subsurface, where cell abundance and cell activity is
low, a particular Firmicute, Desulforudis, interestingly un-
dergoes frequent HGT and viral infections (Labonté et al.
2015). Also, up to 32% of genes that were recovered from
SAGs, were not present in the metagenome of the same sam-
ple. Munson-Mcgee et al. (2018) studied viral-host interac-
tions within a hot spring environment and found that 60% of
SAGs contained at least one virus, showcasing the broad host
range of viruses (Munson-Mcgee et al. 2018). The authors
also estimated that for low-level completed SAGs, only a
300 bp viral sequence minimum is needed to detect a virus-
host interaction. By directly sequencing single viral genomes
(vSAGs) from the Mediterranean Sea and the Atlantic Ocean,
highly abundant and ecologically significant viruses could be
discovered, which had been previously missed through
metagenomics (Martinez-Hernandez et al. 2017). When the
vSAGs were compared to public metagenome datasets, they
found that their vSAGs best represent the diversity of viruses
in global oceans. Notably, a large portion of viral diversity has
still gone undiscovered in the human virome. De La Cruz
Peña et al. (2018) found that most publicly available viral
isolates did not match vSAGs in the oral virome. The authors
also found that the viral community was highly variable and
interpersonal between patients because none of the vSAGs
obtained in this study were found in all viromes.

The next step: single-cell transcriptomics (SCT)

Although SCG has been successfully applied in microbial
ecology studies, it only provides information related to genetic
architecture and metabolic potential of a cell, but does not
reveal the actual gene expression and activity of a cell under
different environmental conditions. This, and the fact that the

8214 Appl Microbiol Biotechnol (2020) 104:8209–8220



transcriptomic profile of individual cells can vary even if they
are genetically homogenous underlines the necessity of study-
ing the transcriptomic profile at single-cell resolution (de
Jager and Siezen 2011; Kanter and Kalisky 2015). However,
compared to genomic analysis, transcriptomic analysis for mi-
croorganisms at the single-cell level is much more challeng-
ing. Single-cell transcriptomics (SCT) in eukaryotic organ-
isms has already been successfully applied (Kanter and
Kalisky 2015; Tsang et al. 2015; Fan et al. 2015). Cells are
first individually sorted and lysed; then, the RNA is converted
to cDNAwith oligo (dT) primers and amplified prior to library
preparation and sequencing. Whilst a single eukaryotic cell
contains up to 50 picograms (pg) of total RNA (Kang et al.
2011), the RNA concentration in prokaryotes is typically in
the low femtogram range (1–5 fg) (Kang et al. 2011; Wang
et al. 2015). Unfortunately, only a small fraction of total RNA
is mRNA, as rRNA and tRNA molecules usually represent
over 90% of the total RNA. Since most SCT methods target
polyadenylated transcripts, the lack of a polyA tail on most
mRNAs in prokaryotes means that the large fraction of rRNA
and tRNA cannot be depleted using the methods established
for eukaryotic transcriptomics. Furthermore, this structural
difference of the mRNA molecule and the fact that prokary-
otic mRNA can be polycistronic explains why not all methods
for eukaryotic SCT can be applied to microorganisms. In ad-
dition, mRNA molecules have low stability over time.
Nevertheless, in the recent past, several new approaches have
been developed for SCT studies in prokaryotic cells (Kang
et al. 2011; Kang et al. 2015; Wang et al. 2015; Liu et al.
2019). One method developed a rolling circle amplification
(RCA) protocol that used the phi29 polymerase and random
primers to amplify transcripts from single Burkholderia
thailandensis cells (Kang et al. 2011). Even though this meth-
od was only used with microarray analysis, the authors report
that including an rRNA depletion step would make this pro-
tocol compatible with next-generation sequencing (Kang et al.
2011; Kang et al. 2015). Another method combined SCT with
RNA-seq, where RNA-based, single primer isothermal ampli-
fication (Ribo-SPIA) was used to amplify transcripts from
Synechocystis sp. PCC 6803 (Wang et al. 2015). The authors
used this method to show cell heterogeneity under environ-
mental stress due to nitrogen starvation and successfully de-
tected up to 98% of all putative genes within the genome. The
most recently published method used RNA-seq in combina-
tion with whole transcriptome amplification (WTA) with the
REPLI-g WTA kit (Qiagen) to amplify total RNA from
Porphyromonas somerae (Liu et al. 2019). However, only
0.3% of rRNA transcripts were detected, which might have
been due to the slow growth rate of P. somerae.

In general, these studies already provide the basic frame-
work for SCT; however, they have so far only been carried out
on model organisms, and many technical challenges still re-
main such as the inefficient transcriptome coverage, biased

amplification, and throughput (Picelli 2017; Chen et al.
2017; Zhang et al. 2018). Direct-RNA methods that do not
require pre-amplification, e.g., Oxford Nanopore sequencing
systems, would be ideal to cut out amplification bias (Garalde
et al. 2018). This method however still requires at least 100
nanograms (ng) of RNA and is based on polyadenylated
mRNA transcripts. Nevertheless, it is possible that future im-
provements will decrease the input amount of RNA needed,
making the technique more applicable for single-cell analysis.

Back to multiple cells?

Until improved technologies become available, completing the
assembly of the microbial genomes and transcriptomes for most
species likely requires a combination of approaches such as re-
construction from multiple homologous cells if available or ad-
ditional metagenomic data. Metagenomic reads and contigs can
be used to recover missing genomic regions and greatly improve
the SAG assemblies (Dodsworth et al. 2013; Nurk et al. 2013;
Becraft et al. 2016; Xu and Zhao 2018). Likewise, metagenomic
bins can also be improved by SAG datasets (Pachiadaki et al.
2019). Another approach is the so-called mini-metagenomic ap-
proach, where a few cells (50–1000) are sorted into one well (Yu
et al. 2017; Schulz et al. 2018; Alteio et al. 2020; Geesink et al.
2020; Grieb et al. 2020). Sorting multiple cells of the same type
by targeted labeling might circumvent the necessity of additional
amplification of DNA/RNA, therefore allowing single genomes/
transcriptomes to be bioinformatically binned from those mini-
metagenomes. This not only reduces the cost but also lessens the
chance for contamination and increases genome coverage (Podar
et al. 2007; Yu et al. 2017; Grieb et al. 2020) and might be a
sufficient solution for some biological questions.

Outlook

The integration and binning of SCG with environmental
omics data can already provide unprecedented insights into
microbial diversity, metabolic features, and processes. SCG
and SCT have tremendous potential to bring more clarity to
the contested discussion about the nature of prokaryotic spe-
cies and their metabolic potentials which will enable us to
provide information on individual organisms and the structure
and dynamics of natural microbial populations in all kinds of
environments. SC omics holds great promise in microbial mi-
croevolution studies, industrial bioprospecting, and selection
of suitable heterologous expression systems, with potential for
novel and environmentally responsible energy solutions, bio-
remediation of toxins, and natural products. It can also help to
identify evolutionary histories, inter-organismal interactions,
and quantitative information on genomic variability in natural
microbial populations. High-quality results currently require
state-of-the-art instrumentation such as cell sorters, robotic
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liquid handlers, DNA sequencers, and a cleanroom. The
amount of data to obtain new biological insights requires
high-performance information technology with computer
clusters for conducting assemblies and analyses of the se-
quences. Undoubtedly, the future for SC omics is exception-
ally bright, but significant technical and conceptual challenges
still have to be resolved. In order to expand the range of mi-
croorganisms amenable to SC omics, improvements of the
methods are necessary. The rapidly growing number of appli-
cations that use limited quantities of DNA in genomic detec-
tion and analysis highlights the continued need for innovation
in the field of DNA amplification and library preparation, e.g.,
nanoscale library preparation via microfluidics (Kim et al.
2017). This may also result in the omission of the amplifica-
tion step, or at least its minimization, resulting in less biased
sequencing results. In addition, further automation and mini-
aturization of sequencing processes along with the develop-
ment of new labeling methods are required for emerging re-
search needs. This will help create a more phylogenetically
balanced representation of genomes in databases, which will
ultimately help to improve models for computational gene
annotation and taxonomic assignment (Woyke et al. 2009;
de Jager and Siezen 2011; Wang and Navin 2015). It will also
help with the cultivation of microorganisms of interest
through facilitating a more informed development of culturing
methods by revealing the nutritional needs and metabolic ca-
pabilities of the organism (Pratscher et al. 2018).
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