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Abstract 

Extensive practice makes task performance more efficient and precise, leading to 

automaticity. However, theories of automaticity differ on which levels of task 

representations (e.g., low-level features, stimulus-response mappings, or high-level 

conjunctive memories of individual events) change with practice, despite predicting the 

same pattern of improvement (e.g., power law of practice). To resolve this controversy, 

we built on recent theoretical advances in understanding computations through neural 

population dynamics. Specifically, we hypothesized that practice optimizes the neural 

representational geometry of task representations to minimally separate the highest-

level task contingencies needed for successful performance. This involves efficiently 

reaching conjunctive neural states that integrate task-critical features nonlinearly while 

abstracting over non-critical dimensions. To test this hypothesis, human participants (n 

= 40) engaged in extensive practice of a simple, context-dependent action selection 

task over 3 days while recording EEG. During initial rapid improvement in task 

performance, representations of the highest-level, context-specific conjunctions of task- 

features were enhanced as a function of the number of successful episodes. Crucially, 

only enhancement of these conjunctive representations, and not lower-order 

representations, predicted the power-law improvement in performance. Simultaneously, 

over sessions, these conjunctive neural states became more stable earlier in time and 

more aligned, abstracting over redundant task features, which correlated with offline 

performance gain in reducing switch costs. Thus, practice optimizes the dynamic 
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representational geometry as task-tailored neural states that minimally tesselate the 

task space, taming their high-dimensionality.  
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Introduction  

Practice enhances performance on a wide range of tasks, from motor skills to 

more cognitively demanding, goal-directed behavior (A. Newell, 1993; Shiffrin & 

Schneider, 1977), like formulating geometry proofs (Neves and Anders, 1980) or even 

writing books (Ohlsson, 1992). Understanding how expertise in control-demanding tasks 

is achieved is crucial for explaining cognitive control processes, as it constrains how we 

perform goal-directed behavior following a controlled-to-automatic continuum. 

Performance improvements over the course of practice are widely assumed to 

reflect changes in the neural representations of a task and the computations that access 

and act on those representations. Specifically, improvement is often thought to result 

from strengthening associations among task-relevant information, while reducing the 

influence of task-irrelevant factors, thereby facilitating access and use of task-relevant 

response pathways (Cohen et al., 1990; Crossman, 1959; Mackay, 1982; Shiffrin & 

Schneider, 1977; Verguts & Notebaert, 2009). For example, the dominance of word 

reading, as seen in the Stroop effect, is commonly attributed to strengthened 

associations between written color words and their spoken labels, developed through 

extensive practice reading. In this way, reading becomes automatic when seeing a 

written word, allowing for highly efficient and accurate execution, even in the absence of 

attentional and control demands (Cohen et al., 1990; Moors & De Houwer, 2006; 

Stroop, 1935). 

However, though many theories assume changes in task representations 

underlie practice, how and which representations change remains controversial. One 

reason for this fundamental gap in our understanding is that all tasks involve latent 
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representations at multiple intermediate stages of computation, any or all of which could 

be the target of optimization (Du et al., 2022; Wood & Rünger, 2016; Zheng et al., 

2024). Furthermore, the true objective functions of tasks are hard to infer even when the 

task structure is assumed to be fixed (Saxe et al., 2022). Accordingly, influential 

psychological theories of automaticity and skill learning, which comparably explain how 

cognitive control systems learn to reduce control and attentional demands while making 

performance more efficient and accurate, nevertheless differ substantively in terms of 

the level of task representations they assume change to improve performance.  

For example, explanations for the power function-like improvement (i.e., rapid 

improvement in the early stage of learning with diminishing benefits over practice) in 

task performance have been one of the fundamental targets of theories of automaticity 

and skill learning (Gordon D. Logan, 1988; Allen Newell, 1990). Indeed, such a pattern 

of learning is so universally observed among tasks, that it is among the few 

contemporary laws cited in psychology (Gordon D. Logan, 1988; Teigen, 2002). Yet, 

theories accounting for this phenomenon differ in the levels of representation they 

assume change with practice. 

Newell & Rosenbloom’s (1981) influential chunking theory proposed that practice 

yields chunking of task features at both intermediate and high-levels of complexity and 

specificity, which collectively leads to heightened efficiency. Thus, power law-like gains 

in performance follow from the early benefits of learning the simpler intermediate 

chunks that generalize to multiple task events, versus the complex chunks that are less 

frequently relevant. Other theories, similarly localize learning at an intermediate 
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compositional level, and most commonly, in terms of context-independent stimulus-

response (S-R) bindings (Schneider, 1985; Cohen, Dunbar, and McClelland, 1986).  

In contrast, Logan’s (1988) instance theory of automaticity assumes 

improvement reflects a shift of behavioral control from a slow but flexible algorithmic 

process to a one-step direct retrieval of specific, high-level task-event instances that 

combine all task features, including the context. Practice adds instances to memory, 

which facilitates this retrieval process. In time, retrieval predominates, but with 

diminishing returns on faster performance. Thus, unlike the above cases, learning 

occurs only at the highest level (i.e., memory of individual events) and not at 

intermediate levels.  

Thus, even for the most widely observed learning effects, multiple theories 

explain the same pattern of learning outcomes using different psychological constructs. 

Hence, a theoretically important question concerns the locus of representational change 

during practice that leads to behavioral improvement. What task representations are 

targeted by practice?  

One approach to addressing this question is characterizing how practice 

optimizes the representational geometry of neural task representations and how these 

changes translate to improved performance (Johnston & Fusi, 2023; Li et al., 2024; 

Pang et al., 2023; Saxe et al., 2022). Theoretically, a geometric view of task 

representations could unify selective enhancement, reduction (or abstraction), 

optimization, and the underlying mechanisms of information coding and neural changes 

within a coherent framework (Badre et al., 2021; Duncker & Sahani, 2021; Farrell et al., 

2022; Fusi et al., 2016; Kriegeskorte & Kievit, 2013; Musslick et al., 2020; Saxe et al., 
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2022). This perspective has the potential to bridge constructs in psychological theories 

(e.g., chunks and instances) to their neural computations. Yet, empirical evidence on 

characterizing how practice reshapes neural task representations over learning 

trajectories is still scarce (Mill & Cole, 2023; Wojcik et al., 2023).  

Accumulating evidence suggests that the specificity and generalizability of task 

representations adapt to the task demands by shaping their geometry and 

dimensionality (Badre et al., 2021; Fusi et al., 2016; Jazayeri & Ostojic, 2021; Li et al., 

2024), which are both important outcomes of practice. In general, high-dimensional task 

representations are associated with increased separability of task features and more 

efficient and accurate task performance. This is typically achieved by mixing separate 

coding axes for the combinations of task features in a structured manner (Bhandari et 

al., 2024; Fine et al., 2022; Ito et al., 2022; Kikumoto et al., in Press; Kikumoto & Mayr, 

2020; Ritz & Shenhav, 2024; C. Tang et al., 2020; Weber et al., 2023), such as in a 

nonlinear conjunction of all task-relevant features (stimuli, responses, and contexts), 

that define a task event, or in a random and task-agnostic manner (Rigotti et al., 2013, 

2010; E. Tang et al., 2019). In contrast, low-dimensional task representations typically 

benefit generalization or re-use of neural solutions. This is because task representations 

are abstracted over task-irrelevant features to generate compositional manifolds 

(Bernardi et al., 2020; Courellis et al., 2023; Driscoll et al., 2024; Flesch et al., 2022; 

Goudar et al., 2023; Hazy et al., 2007; Johnston & Fusi, 2023; Tafazoli et al., 2024; 

Vaidya & Badre, 2022) or compressed representations (Hummos et al., 2022; Muhle-

Karbe et al., 2023). 
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What is unknown is how task representations evolve to these task-tailored neural 

states over the course of learning, particularly in tasks where nonlinear integrations of 

contexts with response pathways are required for successful performance (but see 

(Courellis et al., 2023; Mill & Cole, 2023; Wojcik et al., 2023). On one view, new tasks 

are initially computed compositionally, and over time, specific combinations are learned 

as context-specific, high-dimensional representations. To some extent, this change 

mirrors predictions by some theories of automaticity described above, in that progress 

to highly skilled behavior increasingly relies on a library of specific representations (e.g., 

chunks or instances). Conversely, however, early in task learning, expressive high-

dimensional representations might make multiple readouts available for optimization 

(Farrell et al., 2023; Flesch et al., 2021). Over the course of practice, irrelevant 

subspaces could be compressed or aligned to avoid interference or redundancy (Cohen 

et al., 1990). This results in a transition toward a compositional and low dimensional 

geometry. As a third alternative, behavioral improvement may occur strictly at the 

handling of sensory and/or motor information or maintenance of contexts (Anderson, 

1982; Cole et al., 2018; Meyer & Kieras, 1997; E. H. Schumacher, 2001).  

Thus, there is a significant empirical gap in our understanding of how the 

representational geometry of task representations change in human brains throughout 

practice in ways that yield behavioral improvements. This issue remains unresolved 

because various theoretical constructs can equally well account for the same learning 

effects on behavior without clarifying underlying neural task representations. The 

current study addresses this gap in knowledge by directly relating changes in the 

geometry and dynamics of task representations to improvement in performance over 
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three days of context-dependent action selection. Participants performed tasks requiring 

the nonlinear integration of rule context to select appropriate S-R (stimulus-response) 

mappings, shared across contexts (Mayr & Bryck, 2005). This setup allowed us to 

explore the learning of many task representations of varying complexity, including S-R 

mappings that are context-independent or context-specific (i.e., task-event file; Frings et 

al., 2020; Hommel, 2004; Eric H. Schumacher & Hazeltine, 2016; Verguts & Notebaert, 

2009). Further, we mapped multiple task cues to the same rule context, which allowed 

us to test how such redundant task features become accommodated over practice.  

We hypothesized that expertise in goal-directed actions arises from the 

optimization of the representational geometry in a task-tailored manner. Specifically, 

neural states maximally separating required context-specific task contingencies should 

be enhanced because they provide an efficient readout to solve the targeted task. Such 

neural states are equivalent to encoding context-specific conjunctions—nonlinear 

integration of task features such as the context and stimulus-response mapping to 

define a task event. In other words, practice should enhance stable readout of context-

specific conjunctive neural states to improve task performance. Further, we 

hypothesized that these separable, conjunctive subspaces are gradually tailored to align 

unnecessary dimensions to abstract task features that are not critical to solving the task 

at hand, because such solutions are minimally high-dimensionality.  

Consistent with these hypotheses, we found that practice optimizes the 

representational geometry of task representations selectively. Specifically, context-

specific, high-level conjunctive representations were present early in practice and 

became stronger as a function of power-law, selectively accounting for rapid 
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performance improvements, which was not the case for other, lower-levels of 

representation. Across days, these conjunctions recruited more separable yet stable 

dynamics at earlier points relative to the start of the trial. At the same time, these 

dynamics were reshaped to become more abstract across redundant task features, 

reducing the unnecessary dimensions of tasks. Overall, these findings suggest that 

practice optimizes encoding and/or retrieval of task-tailored, context-specific 

conjunctions. These conjunctions minimally orthogonalize contingencies to solve the 

task and slowly become abstract over redundant task features, serving as the locus of 

practice leading to expertise.  

 

Materials and Methods 

Participants 

Forty participants (20 females; mean age: 23 years) were recruited and gave 

informed consent using procedures approved by the Human Subjects Committee at the 

RIKEN. All participants had normal or corrected-to-normal vision and had no history of 

neurological or psychiatric disorders. After preprocessing the EEG data, one participant 

was removed and was not analyzed further due to excessive artifacts (i.e., more than 

25% of trials; see EEG recordings and preprocessing for details). Two participants did 

not complete the last session but their data for earlier sessions were retained for the 

analysis. 

 

Behavioral Procedure 
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The task closely followed the procedure in Kikumoto and Mayr (2020). 

Specifically, participants performed a cued rule-based action selection task (Figure 1A), 

which required participants to behave according to 16 unique rule-stimulus-response (S-

R) conjunctions (Figure 1B).  On a trial-by-trial basis, a randomly selected action rule 

(i.e., vertical, horizontal, clockwise, and counter-clockwise rule) specified four different 

S-R mappings, based on a simple spatial transformation over four possible stimuli (a dot 

at top-left, top-right, bottom-left, and bottom-right of the white frame). The spatial 

transformation indicated the target button-press response from four options that were 

arranged in 2 x 2 square matrix (4, 5, 1, and 2 on the number pad) that mirrored the 

stimulus display. Thus, for instance, the “vertical” rule mapped the top-left circle to the 

bottom-left response. Two different synonymous cue words were randomly used to 

specify action rules. Further, though the sets of four rule-stimulus-response 

conjunctions were unique for a given rule, individual S-R mappings could be shared 

across different rules. For example, just as with the vertical rule, the counter-clockwise 

rule would also map a circle in the top-left to the bottom-left response, but this rule 

would require a different S-R mapping than the vertical rule for a circle in the upper left 

or bottom right. Following the logic of Mayr and Bryck (2005), this design feature 

allowed us to distinguish the effects of practice on context-integrated conjunctive 

representations versus shared, compositional stimulus-response rules. 

Participants were tested in three sessions across three consecutive days. Each 

session consisted of 202 experimental blocks, where the first two blocks did not provide 

performance-based incentives but were identical to other blocks. On the first day, 

participants practiced 5 blocks without EEG measurement. Participants were instructed 
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to complete as many correct trials as possible that commenced within each 18-s block 

(trials that began within the 18-s window were allowed to finish). Participants were given 

a performance-based incentive for trials with RTs faster than the 75th percentile of 

correct responses in the preceding blocks when 1) the overall accuracy was above 90% 

and 2) there were more than 7 completed trials in a given block.   

 

EEG recordings and preprocessing 

The continuous EEG was recorded using a Brain Products actiCHamp recording 

system (Brain Products GmbH). Recordings were obtained from a broad set of scalp 

sites (Fp1, Fp2, F7, F3, F4, F8, FC5, FC1, FC2, FC6, T7, C3, C4, T8, CP5, CP1, CP2, 

CP6, P7, P3, P4, P8, PO9, PO10, O1, O2, Fz, FCz, Cz, Pz, and Oz), from the left and 

right mastoids, and from electrodes lateral to the external canthi and below the left eye. 

The electrodes (TP9 and TP10) were placed on the mastoids beneath the cap as 

reference sites. Using additional passive electrodes, electrooculogram (EOG) was 

recorded from laterally placed electrodes to detect horizontal eye movements with the 

separate ground electrode placed on the left side of the forehead. The EEG was filtered 

online with .1 Hz high-pass and 1000 Hz low-pass filters and digitized at 1000 Hz. The 

left mastoid was used as a reference for all recording sites, and data were re-referenced 

off-line to the average of left and right mastoids.  

The scalp EEG and EOG were amplified with an SA Instrumentation amplifier 

with a bandpass of .01–45 Hz, and signals were downsampled at 250 Hz using EEGLab 

(CITE). EEG data were first segmented into 22 s intervals to include all trials within a 

block. After time-frequency decomposition was performed, these epochs were further 
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segmented into smaller epochs for each trial. For stimulus-aligned epochs, we used the 

time interval of -200 ms to 800 ms relative to the onset of stimuli. For response-aligned 

epochs, we used the time interval of -800 ms to 200 ms relative to the onset of 

responses. The trial-to-trial epochs including blinks (>250 μv, window size = 200 ms, 

window step = 50 ms), large eye movements (>1°, window size = 200 ms, window step 

= 10 ms), blocking of signals (range = -.01 to .01 μv, window size = 200 ms) were 

excluded from subsequent analyses. Any epochs that showed EEG activity greater than 

5 s.d. were excluded.  

 

Time-Frequency Analysis 

Temporal-spectral profiles of single-trial EEG data were computed via complex 

wavelet analysis (Cohen, 2014) by applying time-frequency analysis to preprocessed 

EEG data epoched for the entire block (>22 seconds to exclude the edge artifacts). The 

power spectrum was convolved with a series of complex Morlet wavelets), where t is 

time, f is frequency increased from 2 to 40 Hz in 35 logarithmically spaced steps, and σ 

defines the width of each frequency band, set according to n/2pft, where n increased 

from 3 to 10. We used logarithmic scaling to keep the width across frequency band 

approximately equal, and the incremental number of wavelet cycles was used to 

balance temporal and frequency precision as a function of frequency of the wavelet. 

After convolution was performed in the frequency domain, we took an inverse of the 

Fourier transform, resulting in complex signals in the time-domain. A frequency band-

specific estimate at each time point was defined as the squared magnitude of the 

convolved signal for instantaneous power.  
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Representational Similarity Analysis 

We performed a time-resolved multivariate pattern classification analysis to 

decode action-relevant information following our previously reported method with a few 

modifications (Kikumoto & Mayr, 2020).  As the first step, at every sample in trial-to-trial 

epochs, separate linear decoders were trained to classify all possible action 

constellations (Figure 1C) for each S-R mapping. Specifically, we performed a 

penalized linear discriminant analysis using the caret package in R (Hastie et al., 1995; 

Kuhn, 2013). This step produced a graded profile of classification probabilities for each 

action constellation, reflecting the similarity of underlying multivariate neural patterns 

between actions. 

Decoders were trained with the instantaneous power of rhythmic EEG activity, 

which was averaged within the predefined ranges of frequency values (2-3 Hz for the 

delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the 

beta-band, 31-35 Hz for the gamma-band), corresponding to 155 features (5 frequency-

bands X 31 electrodes) to learn.  

Prior to the training of decoders, trials with incorrect responses were excluded. 

Within individuals and frequency-bands, the data points were z-transformed across 

electrodes to remove effects that scaled all electrodes uniformly. We used a k-fold 

repeated, cross-validation procedure to evaluate the decoding results (Mosteller & 

Tukey, 1968) by randomly partitioning single-trial EEG data into five independent folds 

with an equal number of observations of each action constellation. After all folds served 

as the test sets, each cross-validation cycle was repeated ten times, in which each step 
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generated a new set of randomized folds. The number of observations in each target 

class (e.g., action constellation) was equated by randomly dropping excess trials for 

certain conditions. Resulting classification probabilities were averaged across all cross-

validated results with the best-tuned hyperparameter to regularize the coefficients for 

the linear discriminant analysis.  

We next performed representational similarity analysis (RSA) on the graded 

classification probabilities to assess the underlying similarity structure of task variables. 

The specific set of four rules ensured that each S-R mapping occurred in two different 

rules (e.g., a top-left circle leads to a bottom-left response in both the vertical and the 

clockwise rule), allowing us to decode context-specific SR conjunctions and rule-

independent SR conjunctions separately (Figure 1B; Kikumoto & Mayr, 2022). Thus, 

each RSA model matrix represents the distinct similarity structure arising from different 

hypothetical, underlying representations (e.g., rules, stimuli, responses, SR 

conjunctions, and context-specific SR conjunctions; Figure 1C).  

To obtain time-resolved estimates of each RSA model, we regressed the vector 

of logit-transformed classification probabilities onto RSA model vectors for independent 

decoding results. Importantly, to estimate the unique variance explained by competing 

models, we regressed all model vectors simultaneously. To fully counterbalance 

conditions and orthogonalize regressors, models were fitted within sub-group of action 

contexts (i.e., G1 and G2; Figure 1B), following the procedure in Kikumoto & Mayr, 

2022. Further, individual time samples are concatenated within 12 ms non-overlatpping 

time windows to include subject-specific regressors of z-scored, average RTs, and error 

rates in each action context to reduce potential biases in decoding. These coefficients, 
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expressed in their corresponding t-values, reflect the quality of action representations at 

the level of single trials, which was later related to variability in behavior and 

dimensionality measures. We excluded t-values that exceeded 5 SDs from the mean of 

each sample point. This procedure excluded less than 1% of all samples. These 

analysis steps were repeated separately using stimulus-aligned (Figure 3 and 4) and 

response-aligned EEG signals (Supplementary Figure 1). 

 

Multilevel Modeling  

We used multilevel models to further assess the decoded representations (Figure 

3B; Table 1) and relate them to trial-to-trial variability in behavior. When dependent 

variables are sorted by the instances of specific action contexts or rule-stimulus-

response conjunctions (e.g., to analyze the effects of learning on day 1), we used 

models with three levels of random effects: trials, different action contexts (i.e., 

individual context-specific SR mappings), and participants. When the effects of 

accumulated instances are irrelevant (i.e., the session effects), we dropped the random 

effects at the level of different action contexts. When RTs were used as the dependent 

variable, they were log-transformed. To assess the variability of RTs, the standard 

deviations within individual blocks (Figure 1A) or within bins of instances (Figure 1C) 

were used as dependent variables. For all models, random intercepts and slopes were 

included as random effects unless specified otherwise.  

The RSA scores of action features were averaged over time intervals selected a 

priori based on previous studies: pre-cue period (-300 to 0ms from the onset of 
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stimulus), early response selection period (0 to 300 ms relative to the onset of stimulus), 

and late response selection period (-300 to 0 ms relative to the execution of responses). 

For the time-resolved regression (Figure 3B), we used non-parametric 

permutation tests to evaluate the decoding results in the time domain (Maris & 

Oostenveld, 2007). First, we performed a series of regression analyses over time and 

detected samples that exceeded the threshold for cluster identification (cluster-forming 

threshold, p  < .05). Then, empirical cluster-level statistics were obtained by taking the 

sum of t-values in each identified cluster with consecutive time points. Finally, 

nonparametric statistical tests were performed by computing a cluster-level p-value 

(cluster-significance threshold, p < .05, two-tailed) from the distributions of cluster-level 

statistics, which were obtained by Monte Carlo iterations of regression analysis with 

shuffled condition labels.  

 

Temporal Generalization analysis 

To assess the temporal stability of task representations, we used the temporal 

generalization analysis (Dehaene & King, 2016). First, we trained a set of decoders to 

classify action contexts, following the identical procedure as the time-resolved RSA 

analysis, using EEG patterns at the specific time point. These time-specific decoders 

were applied to the held out data obtained at identical (matched) or different 

(generalized) time intervals. This generates a series of decoding results in a two-

dimensional matrix form where the on-diagonal entries correspond to the results in 

matched time points whereas the off-diagonal entries are the results of generalization of 

linear hyperplanes over other time. Assessing the pattern of temporal generalization 
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over the course of learning reveals how the nature of underlying neural computation 

such as the temporal stability of linear readouts of task critical information changes. The 

resulting decoding results, corresponding to every pairings of training and testing non-

overlapping time-intervals (window size = 8 ms), were submitted to the regression-

based RSA procedure to decode rules, stimulus, response, SR conjunctions and 

context-specific conjunctions simultaneously. The results of stimulus-aligned and 

response-aligned data were generated in a similar manner as in the RSA steps. 

 

Dimensionality analysis via Binary Classification Method 

To assess the representational dimensionality (i.e., shattering dimension) of task 

representations, we used a binary (pairwise) classification method (Rigotti et al., 2013; 

Bernardi et al., 2018), which evaluates the dimensionality by counting how many 

different input conditions (i.e., unique action contexts; Figure 1B) could be reliably 

separated or shattered into binary groupings by linear readouts (nc/Tc). We adapted the 

original binary classification method introduced in Rigotti et al. (2013) to EEG data that 

contain a non-trivial level of noise by adding constraints on how we select 

implementable binary classifications (Kikumoto et al., 2023). 

Specifically, we trained separate decoders for all possible 65536 (i.e., 216 - 2, 

excluding two cases where all labels being identical) sets of arbitrary binary separations 

defined by 16 unique input conditions (Figure 1B). Resulting decoding accuracies were 

counted as reliable linear separations when the following two conditions were satisfied: 

1) the decoding accuracies exceeded the arbitrary chosen cutoff threshold of decoding 

accuracy of .51 where the chance level is .50 and 2) above-threshold decoding 
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accuracies were observed in each of the unique input conditions exclusively. This 

second criterion was applied to increase the sensitivity to detect changes in 

dimensionality scores driven by the non-linear mixing of information even when the 

cutoff threshold accuracy is significantly lowered to the chance level. Note that the effect 

of different cutoff method was tested previously ((Kikumoto et al., 2023), which did not 

affect differences in dimensionality across compared conditions in empirical data.  

As a result, we obtained the proportion of reliable binary separations out of all 

possible binary groupings (nc/Tc  = count of implementable binary classifications, which 

approximates the dimensionality of neural responses to the input space (dimension  = 

log2(nc/Tc)). When comparing across days, the aforementioned exclusive cutoff was 

applied separately. The other settings of decoding analyses such as the steps of cross-

validation and the exclusion criteria of trials were identical to the RSA analysis except 

for that EEG signals were averaged over 50 ms non-overlapping consecutive time 

windows to reduce the number of interactions. 

 

Results 

Practice effects on behavior  

Within the first session, the average response time (RT), error rates, and 

variability of RT (i.e., standard deviations of RT in each experimental block) decreased 

over experimental blocks and approached an asymptote, following a power-like 

function. These changes were reliably explained by both linear and quadratic effects 

(Figure 2A; Mean RT: t(1,38) = -5.57, beta = -.41, 95 % CI [-.56  -.28] for linear effect, 

and t(1,38) = 7.02, beta = .32, 95 % CI [.23  .40] for quadratic effect; Error rate: t(1,38) = 
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-1.16, beta = -.31, 95 % CI [-.79  .20] for linear effect, and t(1,38) = 4.80, beta = .91, 

95 % CI [.54  1.28] for quadratic effect; Variability of RT: t(1,38) = -3.64, beta = -.93.16, 

95 % CI [-1.43  -.43] for linear effect, and t(1,38) = 5.63, beta = .84, 95 % CI [.54  1.13] 

for quadratic effect).  

To investigate learning trajectories within each action context, we sorted trials 

into 40 bins by counting cumulative encounters (i.e., instances) of correctly executed 

responses in action contexts corresponding to the occurrence of a specific rule-

stimulus-response conjunction. Both RT and the variability of RT decreased as the 

number of experienced instances of specific conjunctions increased (Figure 2C; Mean 

RT t(1,38) = -4.21, beta = -.21, 95 % CI [-.30  -.11] for linear effect, and t(1,38) = 6.62, 

beta = .17, 95 % CI [.12  .22] for quadratic effect; Variability of RT: t(1,38) = -1.92, beta 

= -.26.16, 95 % CI [-.53  .01] for linear effect, and t(1,38) = 4.62, beta = .31, 95 % CI 

[.18  .44] for quadratic effect). These results indicate that task performance is rapidly 

optimized within the first session among independent action contexts in accord with the 

expected power-law pattern. 

Comparing the first, second, and third days, both the average RT and variability 

of RT substantially decreased whereas error rates remained near floor (Figure 2A; 

Mean RT: t(1,38) = -6.40, beta = -.15, 95 % CI [-.20  -.10] for linear effect, Error rate: 

t(1,38) = 7.28, beta = -.24, 95 % CI [-.30  -.17] for quadratic effect; t(1,38) = -1.84, beta 

= -.02, 95 % CI [-.05  .01] for linear effect, Variability of RT: and t(1,38) = -.72, beta = 

-.01, 95 % CI [-.05 .02] for quadratic effect for error rates; t(1,38) = -6.40, beta = -.15, 

95 % CI [-.20  -.10] for linear effect and t(1,38) = -7.28, beta = -.24, 95 % CI [-.30  -.17] 

for quadratic effect). The linear improvements in RTs were observed in all steps of 
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vincentized RT distributions (Figure 2B). Though, within the later sessions, performance 

became significantly worse as the experimental session progressed (t(1,38)  > 4.43), 

possibly due to fatigue. Nevertheless, these results indicate that after initial rapid 

improvement, task performance gradually improved over sessions. Because such 

learning effects are apparent at the beginning of later sessions, this improvement was 

due to task offline gains between sessions.  

Next, we assessed the patterns of repetition priming costs in switching rule, 

stimulus, and response feature dimensions across trials. A lack of repetition benefits 

under switching of any task features (i.e., partial overlap of task features) across trials 

has been considered evidence of task feature binding (i.e., event-files: (Frings et al., 

2020; Hommel, 2004; Mayr & Bryck, 2005; Rangel et al., 2023) and has been linked to 

the formation of conjunctions integrating goals or contexts (Kikumoto & Mayr, 2020). 

Consistent with these studies, we found that switching in any task feature dimension 

incurred substantial costs on behavior compared to trials when the rule, stimulus and 

response repeats completely, (Supplementary Figure 1; Mean RT: t(1,38) = 15.16, beta 

= .39, 95 % CI [.33  .44] and Error: t(1,38) = 13.43, beta = .87, 95 % CI [.7  1.0]). These 

effects persisted across sessions without substantial changes, Mean RT: t(1,38) = -

1.64, beta = .04, 95 % CI [-.09  .06] for linear effect; t(1,38) = 1.48, beta = .03, 95 % CI 

[-.01  .06] for quadratic effect, and Error: t(1,38) = -1.99, beta = .87, 95 % CI [.7  1.0] for 

linear effect; t(1,38) = 1.40, beta = .13, 95 % CI [-.05  .30] for quadratic effect. A direct 

comparison of complete repetition trials and all-switching trials also did not significantly 

change across days (t(1,38) < 1.50).  
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However, although the overall benefits of stimulus-response (S-R) repetitions 

compared to switching did not change significantly across days (t(1,38) < .16), the cost 

on RT of switching rules in S-R repetitions trials was significantly reduced across days, 

Mean RT: t(1,38) = -4.12, beta = -.03, 95 % CI [-.05  -.01] for linear effect; t(1,38) = 2.71, 

beta = .03, 95 % CI [.01  .04] for quadratic effect, and Error: t(1,38) = .97, beta = .07, 

95 % CI [-.06  .20] for linear effect; t(1,38) = -.64, beta = -.05, 95 % CI [-.02  .08] for 

quadratic effect. These results suggest that learning across days reduced the costs of 

switching action rules most substantially.   

 Finally, we tested how trial-to-trial changes in action-relevant, but redundant 

features, affected performance. Specifically, two different cues signaled the same task 

rule. Thus, while using the cue to identify the task was important, differentiating between 

these cues was not critical to solving the task. Nevertheless, consistent with past 

observations of cue encoding effects (Logan and Arrington), when the task cue changed 

from one trial to the next, but all other task features (i.e., the rule, stimulus, and 

response) remained identical, costs in RTs, errors, and variability of RTs were evident 

(Figure 1C; Mean RT: t(1,38) = 11.18, beta = .67, 95 % CI [.55  .79]; Error: t(1,38) = 

7.15, beta = .77, 95 % CI [.56  .99]; Variability of RT, t(1,38) = 11.18, beta = .67, 95 % 

CI [.56  .79]). Such cue-dependent switch costs were significantly reduced across days 

for the mean RTs and variability of RTs (Mean RT: t(1,38) = -3.43, beta = -.36, 95 % CI 

[-.57  -.15] for linear effect, and t(1,38) = .71, beta = .07, 95 % CI [-.13  .29] for quadratic 

effect; Error: t(1,38) = -1.47, beta = -.28, 95 % CI [-.65  .09] for linear effect, and t(1,38) 

= 1.81, beta = .34, 95 % CI [-.03  .70] for quadratic effect; Variability of RT: t(1,38) = -

3.48, beta = -.36, 95 % CI [-.57  -.15] for linear effect, and t(1,38) = .71, beta = .07, 95 % 
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CI [-.13  .28] for quadratic effect). Thus, aligned with the improvement across days in 

general task performance and switching of action rules, action selection became more 

resilient to differences in task features that are redundant to the objective of the task.   

 

Task representations at an early stage of learning (day 1) 

 As session one (Day 1) showed strong power law-like improvement within the 

session, we first focused on analysis within this session. Over the course of action 

selection, we characterized how task representations of task rules, stimuli, responses, 

stimulus-response (SR) conjunctions, and context-specific SR conjunctions (i.e., Rule 

SR conjunction) change along with the improvement of task performance via single-trial 

RSA (Figure 1C).  

Temporal trajectories of task representations closely followed the pattern 

observed previously (Kikumoto & Mayr, 2020; Figure 3A). During the cue-to-stimulus 

interval, cued rules were encoded. Then, during action selection after the stimulus 

onset, context-specific conjunctive subspaces emerged that are dissociable from other 

lower-dimensional task representations. All of these events preceded response 

execution (Supplementary Figure 2), replicating the previous studies (Kikumoto & Mayr, 

2020; Kikumoto, Bhandari, Shibata & Badre, in press). 

 Next, we directly tested how accumulated instances of specific action contexts 

changed the strength of encoded task representations. We found that as the function of 

the logarithmic increase of the number of instances or episodes of successful context-

specific actions, the strength of context-specific SR conjunctions increased at the early 

stage of action selection (i.e., 200 - 300 ms after the onset of stimulus; Figure 3B). This 
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effect on context-specific conjunctions remained significant after controlling for trial-to-

trial RT as a nuisance predictor, t(1,38) = 2.38, beta = .02, 95 % CI [.01  .05].  A similar 

effect of the number of instances was observed for encoding stimulus and response 

representations in the late response selection period (Figure 3B); however, such effects 

were not observed for SR conjunctions.  

We further found that enhancement of context-specific conjunctions had a 

significant effect on how rapidly performance improvement progressed on Day 1. 

Specifically, stronger context-specific conjunctions were associated with fewer 

instances-to-asymptote in mean RT, t(1,38) = 2.19, beta = .01, 95 % CI [.01  .07] for the 

interaction effect, though not in the variability of RT, t(1,38) = .65, beta = <.01, 95 % CI 

[-.02  .03]. No such relationship was significant for other task representations. Thus, 

these results indicate that encoding context-specific conjunctions is enhanced by 

accumulated experiences in specific action contexts on Day 1, and this accumulation is 

directly related to classical power-law improvements in performance within the early 

session.  

 

Changes in task representations across days 

 Next, we considered how representations changed over the course of sessions 

(Days 1, 2, and 3). Across days, we observed that task representations at specific 

stages of action selection were selectively enhanced (Figure 3A). During the cue-

stimulus interval, the strength of rule representations remained the same across days, 

t(1,38) = .18, beta < .01, 95 % CI [-.01  .01] for linear effect and t(1,38) = -1.54, beta = 

-.01, 95 % CI [-.01  .01] for quadratic effect. In contrast, during an early stage of 
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response selection (0 to 300 ms after the stimulus onset), rule SR conjunctions were 

significantly enhanced, along with stimulus and response representations (Table 1). 

Importantly, these changes over days were absent for rule representations, and the 

strength of stimulus-response (S-R) conjunctions significantly decreased across days 

within this period (Figure 3A). However, this decrease in SR conjunctions was driven by 

shorter durations of activation from the stimulus onset, and the strength remained 

similar at the time responses were executed (Supplementary Figure 2). In fact, their 

strength increased briefly after response execution. These results indicate that each 

task representation is optimized at variable rates of change while participants gain 

expertise.  

Although most task representations, in particular context-specific SR 

conjunctions, were consistently negatively correlated with trial-to-trial RTs across all 

sessions (Supplementary Figure 3), we did not observe significant interactions between 

behavioral changes across sessions and the strength of moment-by-moment RSA 

scores, (Rule SR conjunction: t(1,38) = -.84, beta = -.01, 95 % CI [.04  .02] for linear 

effect; t(1,38) = -.84, beta = -.01, 95 % CI [.04  .02] for quadratic effect; SR conjunction: 

t(1,38) = -.89, beta = -.06, 95 % CI [-.05  .02] for linear effect; t(1,38) = -1.22, beta = 

-.02, 95 % CI [-.05  .01] for quadratic effect). Further exploratory analyses also 

confirmed that the effects are absent even when focused only on the early phase of 

each session where the influence of fatigue-like patterns in later sessions is minimal 

(Table 2). Thus, unlike the within-session changes in performance at was tied to the 

accumulation of instances, we did not find evidence that offline gains are due to factors 

affecting decodability of task representations.  
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Changes in representational dimensionality across days 

 Further, we assessed how practice changes the overall representational 

dimensionality of the task input space (i.e., unique action contexts) across days and 

how their changes relate to the quality of individual task representations. We previously 

observed that the higher dimensional formats are associated with faster and accurate 

responses, which peaked around 100 ms before response execution (Kikumoto et al., 

2023). Across days, a similar temporal trajectories were replicated; however, the 

dimensionality only marginally increased at the peak across sessions (Figure 4A; t(1,38) 

= 1.45, beta = .18, 95 % CI [-.06  .41] for the linear effect; t(1,38) =-.08, beta = .01, 95 % 

CI [-.25  .28] for the quadratic effect). This increase correlated with encoding of stronger 

context-specific conjunctions (Figure 4B). Because both 1) increase of signal to noise 

ratio in encoding of context-specific conjunctions and 2) addition of diverse mixing of 

task features (i.e., heterogenous mixing) expand the representational dimensionality, 

these results suggest that practice did not diversity the mixing of task features rather 

enhanced context-specific conjunctions (but see Changes in task-redundant 

dimensions). 

 

Changes in representational dynamics across days 

 We previously observed that reaching stable neural dynamics in conjunctive 

subspaces is an important precondition for efficient context-dependent action selection 

(Kikumoto, Bhandari, Shibata & Badre, in press). If practice leads to better access to 

task memories providing direct solutions, the neural dynamics leading to orthogonal 

subspaces of goal states of the task (i.e., context-specific conjunctions) should be 
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reshaped to be more efficient to provide stable readout for outputs. Specifically, the 

stable subspaces should be established earlier during action selection, and the 

subsequent readout should be resilient to task features that are not informative to define 

required goal states.  

 Consistent with this hypothesis, we found that the temporal stability of context-

specific conjunctions increased across days (Figure 5). From Day 1 to Day 2, the 

stability generally increased during early response selection (0 ms to 300 ms after the 

stimulus onset). From Day 2 to Day 3, the forward generalization (i.e., the upper-left 

portion of the generalization matrix) is further enhanced, suggesting that the neural 

patterns during action selection become more stable at an earlier timing relative to the 

onset of stimulus (Table 3).  

More stable conjunctive subspaces were correlated with faster trial-to-trial RTs, 

t(1,38) = -2.85, beta = -.02, 95 % CI [-.28  -.01], controlling for the effect of time-resolved 

strength of conjunctions, t(1,38) = -3.40, beta = -.02, 95 % CI [-.36  -.01] or other task 

representations, replicating prior observations (Kikumoto, Bhandari, Shibata & Badre, in 

press). Further, the stable component showed a marginally significant interaction 

correlating with changes in RT across sessions, t(1,38) = -1.82, beta = -.02, 95 % CI 

[-.38  .01], such that more evidence of stable dynamics predicting better improvement 

across days. In contrast, the dynamic component showed a marginally significant 

interaction in the opposite direction, t(1,38) = 2.05, beta = -.02, 95 % CI [.09  .04], 

meaning that more evidence of dynamic representations predicted less improvement 

across days, however this difference between the stable and dynamic component on 

RTs across sessions was not statistically significant, t(1,38) = 1.49, beta = .018, 95 % 
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CI [-.01  .04]. Thus, these results indicate that the neural dynamics that reach stable 

conjunctive subspaces are enhanced by extensive practice, which leads to better task 

performance.  

 

Changes over task-redundant dimensions 

Finally, we tested whether optimal task representations are formed not only by 

separating context-specific conjunctive subspaces but also by compressing redundant 

dimensions within rule contexts. Specifically, we tested the degree of abstraction by 

characterizing alignment across task-redundant cues (Figure 1B).  

As noted above, switching task cues incurs significant costs, even when the rule 

context and stimulus-response mapping stays identical (Jost et al., 2013; Mayr, 2006; 

Meiran, 1996). These costs were reduced over practice (Figure 6B; see Practice 

effects on behavior). We further found that, across days, the context-specific 

conjunctions become more generalizable (i.e., abstract) across cues in both the 

dynamic and stable components of the dynamics (Figure 6B), t(1,38) = 2.56, beta = .23, 

95 % CI [.05  .41] for linear effect and t(1,38) = -2.46, beta = -.22, 95 % CI [-.41  -.05] for 

quadratic effect (see Table 3 for other task features), suggesting practice over days 

reorganized the dynamics to be similar across task cues.   

Further, these changes were behaviorally relevant. In participants showing more 

generalized patterns of context-specific conjunctions, the costs of RTs and the 

variability of RTs tended to be lower (Figure 6C; see Supplementary Figure 3 for other 

task features; RT cue-switch costs: t(1,38) = -4.26, beta = -.28, 95 % CI [-.41  -.15]; SD 

cue-switch costs: t(1,38) = -4.62, beta = -.30, 95 % CI [-.43  -.17]). Further, such 
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differences among individuals become progressively stronger across days (RT cue-

switch costs: t(1,38) = -2.87, beta = -.39, 95 % CI [-.66  -.12] for linear effect; t(1,38) = -

2.07, beta = -.26, 95 % CI [-.49  -.02] for quadratic effect; SD cue-switch costs: t(1,38) = 

-4.62, beta = -.30, 95 % CI [-.50  -.01] for linear effect; t(1,38) = -1.74, beta = -.20, 95 % 

CI [-.43  .26] for linear effect). Taken together, these results indicate that extensive 

practice reshaped the neural dynamics encoding context-specific conjunctions to be 

more stable and abstract, providing more efficient access to the subspace 

corresponding to the minimally sufficient task-tailored solutions. 
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Discussion 

What changes in neural task representations lead to performance gains over the 

course of extensive practice? We report two results that give novel insights into this 

question. First, we found that accumulated experience with specific task instances over 

the course of a session – defined in terms of a particular co-occurrence of stimulus, 

response, and rule context – led to the strengthening of high-level context-specific 

conjunctive representations. Over the course of practice, the dynamics encoding these 

representations became stabilized at progressively earlier points in time with respect to 

the beginning of trials, and they contributed to increased dimensionality of task 

representations. The strengthening of these conjunctive representations, and not other 

levels of representation, accounted for the power law-like improvement in performance 

during early phase of learning. Second, we observed that while conjunctions were 

strengthened, they were also shaped over days so that dynamics became generalizable 

(i.e., aligned) over redundant task cues. These changes were correlated with reductions 

in the costs of switching task cues. Taken together, our results indicate that practice 

optimizes stable encoding and retrieval of task-tailored context-specific conjunctive 

representations. We now consider each finding in turn. 

 On each trial of the task, participants encountered a specific combination of rule, 

stimulus, and response. As experience with these trial events accumulated over the 

course of a session, we observed that non-linear conjunctive representations of the 

combination of these features increased in strength with each encounter (Figure 3B). 

We also saw a similar increase in strength of the stimulus and response representations 

with experience, but critically not for S-R conjunctions. However, only the changes in 
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context-specific conjunctions accounted for the power law-like rapid improvement in 

performance in the first session.  

 Different theories of skill learning, habits, and automatic behavior have 

emphasized learning at different levels of task representation. A long tradition in the 

study of cognitive control, for instance, has emphasized the learning of context-

independent stimulus-to-response (S-R) mappings as the basis of automatic behavior 

(Miller & Cohen, 2001). Information about rules and contexts maintained in working 

memory can bias the activation of task-relevant S-R associations over competitors, 

which serves as the basis for controlled behavior. Similarly, several models of motor 

learning assume learning of S-R mappings is at the base of practice-based change to 

gain efficiency (Du et al., 2022; Hardwick et al., 2019; Wood & Rünger, 2016). 

Similarly, chunking theories of automaticity assume that the benefit of learning 

occurs first in more general and then more specific combinations or chunks (A. Newell, 

1993). This would predict that learning of context-independent S-R conjunctions 

(simpler chunks) would drive performance change early in the session, while learning of 

context-specific conjunctions (higher-order chunks) would affect improvement late. 

However, we did not see changes in the S-R conjunctions that related to performance 

gains at any stage. This was unlikely due to our task design. Rather, our task was 

designed so that particular S-R mappings were encountered across different contexts. 

Therefore, any S-R conjunctions were experienced twice as frequently as context-

specific conjunctions, offering ample opportunity for experience-based improvement. 

Nevertheless, we did not observe a systematic increase in the strength of these S-R 
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conjunctions over the course of practice, nor did their strength relate to behavioral 

change. 

 In this sense, the present observations align most closely with the assumptions 

of instance theory (Gordon D. Logan, 1988) that assigns learning to high-level, specific 

task events. According to this theory, a task can be performed initially by way of a slow 

but flexible algorithm that can assemble any task. However, each time a task is 

performed, a memory of the specific combination of task features during each 

processing event is obligatorily encoded as an instance in memory. On future attempts 

to perform the task, the slow algorithm races with the time it takes to retrieve an 

instance. As more instances accrue, random sampling of faster retrieval is more likely to 

occur, winning the race (G. D. Logan, 1992). However, given a distribution of retrieval 

times, retrieval events that are more extreme become rarer over time, resulting in a 

decelerating performance improvement toward an asymptote.  

In line with these ideas, our results relate practice-based improvement only to 

facilitated access to high-dimensional, context-specific conjunctions. Indeed, we 

observed changes in the neural subspaces that we have previously associated with 

facilitated context-dependent readout (Badre et al., 2021; Kikumoto & Mayr, 2020; 

Kikumoto, Mayr, et al., 2022; Kikumoto, Sameshima, et al., 2022; Rangel et al., 2023). 

Specifically, in prior work (Kikumoto et al., in Press), we used a response-deadline 

procedure to characterize the representational state that facilitated correctly responding 

in the virtually same task used here. Using this procedure, we found that fast and 

accurate task performance followed from the availability of conjunctive representations 
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that were encoded within a high-dimensional neural geometry and that had transitioned 

from a temporally dynamic to a stable state.  

In the present study, we found these same features improved with practice. 

Specifically, a stronger conjunctive representation was encoded within a higher 

dimensional geometry over sessions, and this representation progressively stabilized at 

earlier timepoints relative to the response. Thus, representational changes that facilitate 

access to the conjunctive representation to guide efficient performance are directly 

enhanced with repeated practice.  

Over the course of days, we also observed that the conjunctive representation 

changed to be generalizable over task features that are salient but redundant for 

defining response-relevant contingencies in the task. In particular, in this task, we 

included two cues for each rule. For example, the vertical rule was cued by both the 

words “vertical” and “updown”. Early in practice, relatively independent geometries 

encoded conjunctions for different rule cues, even though the rule context and S-R 

mapping (i.e., context-specific conjunction) were shared. Switching these redundant 

task cues incurred significant costs on behavior. However, over the course of practice, 

these distinct conjunctive subspaces came to align, forming one conjunctive rule 

subspace that abstracted over differences in the redundant rule cues. This abstraction 

predicted a gradual reduction of behavioral cost from switching the cue. 

Accordingly, in the current study, we show that high-dimensional representations 

that guide efficient responding are not always incidental bindings of all task-relevant 

features at a particular moment in time, but rather, come to represent neural states that 

are shaped based on abstract task demands. They incorporate only the task-relevant 
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features needed to minimally separate task contingencies to make a response, and 

slowly, form abstractions over unnecessary redundant elements. However, unlike the 

changes in the strength of context-specific conjunctive code, these changes to its 

representational geometry occurred over the course of sessions, rather than within a 

session. We return to this distinction below. 

It is notable that the abstract alignment of context-specific conjunctions is 

inconsistent with the strictest version of instance theory (Logan, 1988). In its original 

formulation, instances were akin to episodic memory-like bindings of all features of a 

task event (e.g., task cues or timing of trials). Nonetheless, there is neither a 

mechanism for transforming these instances based on redundant features of the input, 

nor a clear prediction for how the system determines the complexity of instances given 

the tasks. Similarly, this kind of abstraction is not a feature of chunking or other theories 

of automaticity. However, these theories mostly focused on improvement in power law 

which occurred only in session 1 in our study, and so in some sense did not need this 

kind of abstraction for their explanatory scope. Thus, this observation raises the 

question—why does this abstraction occur? 

There are several reasons abstraction of this kind would be advantageous. First, 

abstraction is a basis for generalization which can provide robustness against 

interference (e.g., input variability) and can allow reuse of representations for new task 

scenarios or transfer to new tasks. Second, coding extra dimensions may be costly in 

several ways, and so abstraction may be encouraged by some form of regularization 

(Wojcik et al., 2023). Finally, abstraction allows separate instances of action contexts to 

be treated as one, allowing them to benefit from repetition, which leads to performance 
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benefits. Indeed, our data provide evidence of this last advantage, showing that 

abstraction over the rule cue predicted reduced cue switch costs over sessions.  

Collectively, then, these results provide an answer to how task representational 

geometry changes with practice, and specifically to the question of whether 

dimensionality expands or reduces over the course of practice. Paradoxically, both 

kinds of change occur. There is progress toward higher-dimensional geometry driven by 

an enhanced access to task-tailored (i.e., structured not random), context-specific 

conjunctions. These changes reflect greater separation among conjunctive subspaces, 

i.e., higher dimensionality, as well as changes in features like temporal stability. 

However, there is also shaping away from diverse higher dimensional via heterogenous 

subspaces toward a more efficient and abstract (i.e. lower-dimensional) space of 

conjunctions within the structure and objective of task contingencies.  

Thus, rather than conceptualizing automaticity as progress toward higher or 

lower dimensional task representations. Our results suggest that practice optimizes 

access to a tailored task representation that incorporates combinations of all those 

features, and only those features, needed to specify a correct output to solve each 

instance of the task at hand. Thus, in time, this accessible, high-dimensional code 

features a library of specific task events that tessellate the full task space (as defined by 

the task’s objective function), but not necessarily the full input space.  

A key open question concerns what mechanisms of learning underlie the 

changes we observe and why. The pattern of optimization we observe here is in line 

with what would characterize representations found in neural network models trained to 

solve a context-dependent response selection task (Farrell et al., 2022). If learning 
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abstract dynamics reduces large costs in task performance (Figure 6), then gradient-

based optimization should discover such solution manifolds (Driscoll et al., 2024; 

Goudar et al., 2023; Sandbrink & Summerfield, 2024; Saxe et al., 2022). However, 

gradient-based methods (e.g., backpropagation) and their approximations may not 

accurately represent what occurs during extensive practice, nor are they necessarily 

desirable (Scott & Frank, 2021). Nevertheless, plausible biological mechanisms, such 

as three-factor plasticity combined with noise correlation (Frémaux et al., 2013; Nassar 

et al., 2021), are known to support comparable optimizations that promote robustness 

against interference and enhance generalization.  

Regardless of the types of algorithms, however, a further open issue is that 

optimization requires an objective function to be defined and maintained without 

interference from other objectives and shared within the system. While this is 

straightforward to implement in artificial agents within well-controlled learning contexts, 

it is not clear how such an objective of learning is implemented in a human, even when 

practicing one task (e.g., an instructed experimental task), alongside many other tasks 

and objectives in various contexts (e.g., doing homework). Thus, our data establish that 

extensive practice may be understood as a process of optimizing access to task-tailored 

conjunctive codes across conditions of a task, but it is not clear how practice yields this 

change. 

While our data cannot establish the mechanisms of learning, our results do offer 

potential clues as a basis for future research. In particular, we observed a key 

distinction in the time course of practice-based change between access to the 

conjunction versus shaping of the conjunction. Again, changes in the strength and 
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accessibility of the conjunctive representation only explained the within-session power 

law-like improvement in performance. We did not see a relationship between these 

changes and the offline gains in performance observed for each session. Conversely, 

abstraction of the conjunctive subspace over the redundant task cues input unfolded 

over multiple sessions that were separated by long rest periods including a night of 

sleep. That suggests that reshaping of the dynamic geometry of task representations 

occurs at multiple temporal and representational scales (Kikumoto & Mayr, 2018) and 

might utilize different mechanisms. 

While abrupt, non-linear learning (e.g., after rest) is ubiquitously observed in 

visual perceptual learning and motor learning tasks (Censor et al., 2012; Tamaki et al., 

2020; Walker et al., 2002), we did not predict this difference in time course, and so it will 

be important to replicate this observation. Nevertheless, this difference might point at an 

important difference in learning. For example, changes in separation and stability that 

facilitate access to conjunctive representations might be driven by performance-

dependent mechanisms like Hebbian plasticity in cortical synapses or episodic encoding 

mechanisms through the hippocampus that occur within the session (Mill & Cole, 2023). 

In contrast, the changes leading to the abstraction over irrelevant features might require 

latent consolidation mechanisms, such as those associated with the formation of 

abstract schemas in memory (Behrens et al., 2018; Preston & Eichenbaum, 2013; 

Rasch & Born, 2013), statistical regularizations of the learned weights (Löwe et al., 

2024), or replay (Preston & Eichenbaum, 2013) and synaptic downscaling (Norimoto et 

al., 2018) that are often regulated by over night of sleep.  Future work manipulating the 
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conditions of practice or overnight consolidation might provide insights into these 

mechanisms of change. 

 There are limitations in the present study that put our results in context. A first 

consideration is the generalizability of the present conclusions. We tested only one task, 

and as such, we leave open the possibility that other tasks would lead to different 

outcomes. It will be important to replicate the present results in other tasks and 

paradigms, particularly in settings that are more complex, temporally extended, 

demanding of working memory, and/or ecologically valid. Nevertheless, the present task 

is designed to test how different responses are selected to the same stimulus 

dependent on a contextual rule. That context-sensitivity sets this task apart from the S-

R learning tasks commonly used in the motor learning literature (Hardwick et al., 2019). 

And, this basic context-dependent rule structure is representative of most, if not all, 

tasks requiring cognitive control at their most reduced level.  

Further, while the task lends itself to focusing on context-dependent 

conjunctions, we also included the opportunity to learn more low-dimensional 

intermediate representations, like the common S-R mappings, that were shared over 

more trials and so could have facilitated behavior under some models of practice-

related improvement. But, again, although S-R conjunctions were correlated with trial-

to-trial performance, they were not consistently associated with practice-related change. 

Thus, we believe the current observations will generalize to many other tasks and 

reflect general properties of practice-related change in goal-directed behavior requiring 

context-sensitivity. 
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While we view our observations to be generalizable to other cases of practice of 

a stable, context-dependent rule structure, we have not tested all aspects of practice 

and skill learning, and so we have not identified the only drivers of practice-related 

change in performance. For example, changes in task rules and strategies (e.g., 

discovering that going over the bar backward improves the high jump) will result in 

abrupt shifts in task performance (Schuck et al., 2015; Taylor & Ivry, 2012). Such 

changes can be discovered through experience, and our results do not address such 

effects. Rather, we view these observations as relating to refinement and optimization 

given a particular stable strategy, objective and structure of the task, thereby expressing 

how target representational states change to facilitate their access and match to task 

contingencies over the course of practice.  

In summary, we observe that experience with a task enhances access to context-

integrated conjunctive representations that correspond to specific combinations of rule, 

stimulus, and response during each task event within a task space, as defined by a 

task’s objective function. This facilitated access accounted for the power law-like 

improvements observed within a session of practice. Over the course of multiple 

sessions, this target conjunctive representation was shaped to be encoded in temporally 

stable dynamics and abstract neural subspaces. These results provide a new window 

on the targets of practice-related change that leads to performance improvement on a 

task. 
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Figures 
 

 
 

Figure 1. Task design and the procedure of decoding analysis. 
Both the task design and decoding analysis procedure is identical to Exp.2 in Kikumoto & Mayr 
(2020). (A) Sequence of trial events in the rule-selection task. (B) Spatial translation of different 
rules (rows) mapping different stimuli (columns) to responses (arrows), yielding 16 independent 
conjunctions. Two action contexts highlighted pink, for example, share the S-R mapping. (C) 
Schematic of the time-resolved representational similarity analysis (RSA). For each sample time 
(t), a scalp-distributed pattern of EEG was used to decode the specific rule/stimulus/response 
configuration of a required action. The decoder produced sets of classification probabilities for 
each of the possible action contexts. The profile of classification probabilities reflects the 
similarity structure of the underlying representations, where action contexts with shared features 
are more likely to be confused. For each trial and timepoint, the classification probabilities were 
regressed onto model vectors as predictors that reflect the different, possible representations. In 
each model matrix, the shading of squares indicates the theoretically predicted classification 
probabilities (darker shading means higher probabilities) in all possible pairs of action contexts. 
The coefficients associated with each predictor reflect the unique variance explained by each of 
the constituent features and two different types of conjunctions: stimulus-response (SR) 
conjunction and rule-specific SR (Rule SR) conjunction. To fully counterbalance the conditions, 
action contexts were grouped into two (G1 and G2), and then the RSA procedure was applied. 
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Figure 2. Practice effects on task performance. 
(A) The average response times (RTs), the variability (standard deviations or SDs) of RTs, and 
the probability of errors within each block. (B) Changes in RTs across days over the cumulative 
density of RT distributions on each day. (C) Changes in RTs and SDs on day 1 sorted by the 
binned instances of specific action contexts (Figure 1B). Each bin contains on average 40 trials. 
Red lines show the best-fitted power functions with the same exponent. 
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Figure 3.  Stimulus-aligned time-course of decoding of task representations. 
(A) Average, single-trial RSA coefficients (t-values) associated with each of the basis set task 
features (rule, stimulus, and response) and two conjunctions (SR conjunction and rule-specific 
SR conjunction) that are aligned to the onset of the stimulus. Lines within each panel show the 
average RSA scores in each day. Shaded regions specify within-subject standard errors. (B) 
Modulation of RSA scores by the accumulated experiences of action context instances. (A-B) 
The black bars at the bottom of each panel denote the significant clusters using a non-
parametric permutation test (cluster-forming threshold, p  < .05, cluster-significance threshold, p 
< .01, two-tailed). Gray dotted lines show the mean RTs for each day. 
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Figure 4.  Task representational dimensionality. 
(A) Average, dimension score during action selection. The dimensionality is estimated as the 
proportion of implementable binary separation, nc/Tc, out of all possible arbitrary binary pairs. 
The left and right panel correspond to the results using signals aligned to the onset of stimulus 
or responses respectively. Shaded regions specify within-subject standard errors. (B) Changes 
in the representational dimensionality as a function of RSA scores of each of the basis set task 
features (rule, stimulus, and response) and their conjunctions (SR conjunctions and rule SR 
conjunction). The dimension scores (nc/Tc) are calculated separately in decile bins of RSA 
scores of each feature within subjects, which correspond to individual points in each panel. The 
two t-values within each panel are the statistic of a linear effect of an increase of RSA scores 
(top) and how it changes across days (bottom). 
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Figure 5.  Representational dynamics in the subspace of conjunctive control 
representations. 
Temporal generalization matrix of linear hyperplanes that separate rule-specific conjunctions. 
The X-axis denotes time points where signals were sampled to train decoders then submitted to 
single-trial RSA. The Y-axis denotes time points where the test sets were derived. The regions 
surrounded by a gray/white contour denote the significant clusters using a nonparametric 
permutation test (cluster-forming threshold, p  < .05, cluster-significance threshold, p < .01, two-
tailed). The top panels show changes across days and the bottom panels show the differences 
between consecutive days. 
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Figure 6. Cue-switching costs and cross-cue generalization. 
(A) Costs of switching cues in trials with the repetitions of task rules, stimulus, and response. (B) 
The changes in average RSA scores of rule-specific conjunctions that generalize over cues 
across days. The temporal generalization RSA is performed in a cue-specific manner, and then 
the results are averaged over 0-300ms time periods. (C) Correlations between behavioral costs 
of switching cues (i.e., the average and variability of RTs) and the cross-cue generalization 
decoding of rule-specific conjunctive subspaces. 
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Tables 

 
 

Table 1. MLM testing the effects of sessions (days) on task representations during early 
response selection (0-300 ms from the stimulus onset). 

 

 
 

  

Effects beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value
Session (linear) <.01 (-.01 .01) .54 .03 (.01 .06) 2.70 .02 (.01 .04) 3.29 -.02 (-.03 -.-01) -2.12 .02 (.01 .04) 2.34

Session (quadratic) <.01 (-.01 .01) -.71 <-.01 (-.02 .02) -.08 -.01 (-.02 .01) -1.37 -.01 (-.01 .01) -.43 -.01 (-.01 .01) -.81

Rule-specific ConjunctionRule Stimulus Response S-R Conjunction
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Table 2. MLM testing the effects of task representations (0-300 ms from stimulus onsets) on RTs 
across sessions, focusing on early phase (first 75 blocks). 
 

 

Effects beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value
Main effect .01 (-.01 .02) .93 -.02 (-.03 -.01) -2.21 -.02 (-.04 -.01) -2.58 -.03 (-.05 -.01) -2.72 -.02 (-.04 -.01) -3.21

Session (linear) -.03 (-.06 .01) -1.98 -.01 (-.04 .03) -.28 -.01 (-.04 .20) -0.63 -.01 (-.05 .01) -.89 -.01 (-.04 .02) -.84
Session (quadratic) .01 (-.02 .05) .94 -.03 (-.06 -.01) -2.23 -.05 (-.05 .01) .55 -.02 (-.05 .11) -1.22 -.02 (-.05 .01) -1.74

Rule Stimulus Response S-R Conjunction Rule-specific Conjunction
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Table 3. MLM testing the effects of sessions (days) on cross-cue generalization (0-300 ms from 
the stimulus onset). 

 

 
 

  

Effects beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value beta  (CI) t- value
Session (linear).04 (-.14 .22) .48 .16 (.05 .28) 2.91 .44 (.26 .63) 4.75 -.42 (-.62 -.21) -4.1 .23 (.05 .04) 2.56

Session (quadratic).13 (-.05 .32) .12 -.02 (-.14 .08) -.01 -.16 (-.34 .03) -1.65 -.01 (-.01 .01) -1.23 -.23 (-.41 -.05) -2.46

Rule Stimulus Response S-R Conjunction Rule-specific Conjunction
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Supplementary Figures 

 

 
Figure S1. Partial overlap costs across sessions. 
Average RTs, variability of RT, and errors as a function of changes in rule, stimulus, and 
response features. 
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Figure S2. Response-aligned time-course of decoding of task representations. 
Average, single-trial RSA coefficients (t-values) associated with each of the basis set task 
features (rule, stimulus, and response) and two conjunctions (SR conjunction and rule-specific 
SR conjunction) that are aligned to the onset of the response execution. 
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Figure S3. Time-resolved regression of RTs by decoded task representations. 
The correlation between single-trial RT and RSA coefficients of rule, stimulus, response, SR 
conjunction, and rule-specific SR conjunction. A series of multi-level models were fitted within 
each session separately, using all RSA coefficients simultaneously. 
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Figure S4. Cue-switching costs and cross-cue generalization 
Correlations between behavioral costs of switching cues (i.e., the average and variability of 
RTs) and the cross-cue generalization decoding of rule, stimulus, response and stimulus-
response subspaces. 
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