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Shoot Meristem Function and Leaf Polarity:
The Role of Class III HD–ZIP Genes
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ABSTRACT

T he shoot apical meristem comprises an organized
cluster of cells with a central region population of
self-maintaining stem cells providing peripheral

region cells that are recruited to form differentiated lateral
organs. Leaves, the principal lateral organ of the shoot,
develop as polar structures typically with distinct
dorsoventrality. Interdependent interactions between the
meristem and developing leaf provide essential cues that
serve both to maintain the meristem and to pattern
dorsoventrality in the initiating leaf. A key component of
both processes are the class III HD–ZIP genes. Current
findings are defining the developmental role of members of
this family and are identifying multiple mechanisms
controlling expression of these genes.

Introduction

A hallmark of land plant evolution has been development of
the leaf. Leaves are the principal organ for capture of energy
from sunlight and conversion, through photosynthesis, into
organic components for growth. In angiosperms, leaves are
typically planar, dorsoventrally flattened structures.
Dorsoventrality is specified early in development of
primordia. In the initiating leaf, the dorsal, or adaxial, side is
immediately adjacent to the shoot apical meristem, whereas
the ventral, or abaxial, side is farther from the shoot
meristem (Figure 1A and 1B). In the mature leaf, the adaxial
side is usually the upper sun-exposed side of the leaf and the
abaxial side is the lower shaded side of the leaf.

A series of surgical experiments carried out in the 1950s,
and elaborated upon more recently, were the initial key to
mechanisms that establish leaf dorsoventral patterning [1–3].
Separation of initiating primordia from the meristem by
surgical incision generated a radial, abaxial leaf. This
suggested, firstly, lateral organ patterning required an
interaction between the initiating organ and the shoot apical
meristem and, secondly, that in the absence of this
interaction loss of dorsoventrality resulted in radial organs.
Thus positional information in the context of the apical
meristem specifies dorsoventral patterning and development
of a leaf as a planar structure.

The first hint of a molecular basis for dorsoventral
patterning came from the aptly named phantastica (phan)
mutant in Antirrhinum [4,5]. Severely affected leaves in phan
mutants are abaxial and fully radial, whereas weakly affected
leaves have abaxial sectors on the adaxial leaf surface
surrounded by ectopic lamina. The phenotypes of phan are
entirely consistent with a requirement for dorsoventrality in
lamina development. Subsequent to the work in Antirrhinum,
there has been a relative explosion of information in the field,

with identification and description of many additional genes
and potential networks that combine to pattern adaxial and
abaxial fate in the leaf [6–8]. To provide a basic primer to this
field, this review will focus entirely on the role of one family
of genes in leaf patterning and meristem function. These
genes are the Class III HD–ZIP family. Members of this gene
family are both necessary and sufficient for adaxial leaf fate
and they potentially represent a pivotal component for leaf
patterning–shoot meristem interactions. Class III HD–ZIP
genes also provide a good example of the role of miRNAs in
plant development.

Markers of Dorsoventrality

The extent to which adaxial and abaxial sides of a mature
leaf can be distinguished varies between species; however, in
developmental model species such as the dicot Arabidopsis or
the monocot maize, many cell types differentiate top from
bottom [9–11]. In Arabidopsis, epidermal cells on both sides of
the leaf are jigsaw-shaped, but adaxial cells are larger and
uniform in size relative to variable abaxial cell size. Trichome
density is a useful marker on early juvenile leaves, where
adaxial trichomes are much more frequent than abaxial
trichomes. In subepidermal cell layers, closely aligned
elongate palisade mesophyll cells lie juxtaposed to the adaxial
epidermis. Less closely spaced, larger spongy mesophyll cells
form abaxial internal tissue (Figure 1C). The palisade and
spongy mesophyll tissues are optimized for light capture and
gas exchange, respectively. Vasculature is also patterned in
the dorsoventral dimension with xylem, the water-conducting
tissue, adaxial to the organic nutrient–conducting phloem
tissue (Figure 1D). Vascular bundles within the stem are also
patterned with xylem more central to peripheral phloem.
Conceptually, the dorsoventral vascular patterning of the leaf
can be translated into a collateral central–peripheral pattern
within the stem.
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Class III HD–ZIP Genes—The Arabidopsis Family

Class III HD–ZIP transcription factors have in common a
homeodomain DNA binding motif and a leucine zipper
dimerization motif (HD-ZIP), and are a subset of a much
larger group of plant proteins that also include a sterol/lipid
binding (START) domain [12,13] (Figure 2A). Although lipid
ligands for a small number of START domain proteins have
been identified in animals, none to date have been found for
plant START proteins. There are five Class III HD–ZIP genes
in Arabidopsis, each encoding a protein in the range of 833–
852 amino acids, and sharing between 60% to 85% amino
acid homology (Figure 2B). PHABULOSA (PHB) and
PHAVOLUTA (PHV) are most closely related to one another,
sharing 85% amino acid identity [14]. Likewise, ATHB8 and
ATHB15 form a relatively closely related pair, sharing 75%
amino acid identity [15]. ATHB15 has also been published
under the name CORONA (CNA) [16,17]. REVOLUTA (REV), in
some previous work published as INTERFASICULAR
FIBERLESS1 (IFL1), shares between 60% and 66% amino acid
identity with other members of the group [18–20].

Patterned Expression

All five Class III HD–ZIP genes in Arabidopsis have well-
defined tissue-specific expression patterns within the embryo

and shoot. There are several principal reports describing
tissue specific expression patterns, as determined by in situ
hybridization, for REV [15,18,20], PHB [14], and PHV [15]. For
comparative analysis, expression patterns in embryo and
shoot for all five HD–ZIP genes have also been reported [17].
PHB and REV are expressed early in embryogenesis and

appear throughout the 16-cell embryo. As development
proceeds, expression becomes confined to the adaxial domain
of the cotyledons and the central region of the embryo,
including the shoot apical meristem and provasculature
(Figure 2C). The expression of PHV and ATHB15 reiterate
this pattern although expression initiates later and is more
restricted than that of PHB and REV. The adaxial expression
pattern is also in the developing organs of the shoot.
However, in the shoot apical meristem PHB is expressed
throughout very early stages of organ initiation as well as in
regions that predict sites of successive organs. Discrete bands
of expression extend from these presumptive organ sites to
the very central region of the shoot apical meristem. The
significance of this expression pattern is still to be
determined. Potentially, expression of genes within these
bands may contribute to coordinating central zone stem cell
activity with peripheral zone lateral organ cell recruitment.
In the shoot, REV is expressed adaxially in lateral organs, as
well as in vasculature, and has a complex pattern in the shoot
apical meristem, but, like PHB, predicts the site of organ
initiation. ATHB15 has high levels of expression in the
vasculature of the shoot and in axillary and floral meristems.
In contrast to other members, expression of ATHB8 is more
limited, being restricted to procambial cells of the embryo
and vasculature of developing organs [17,21–23]. Some of the
differences in expression patterns of these genes are
consistent with differential contributions to development, as
described below.

Loss-of-Function Effects

A visible gross plant phenotype for loss-of-function
mutations in Class III HD–ZIP genes has only been described
for REV, as redundancy seems to mask the role of other
family members in development [18–20,24]. REV mutants
have a diverse range of phenotypes. One of the most
prominent defects is a failure in initiation and development
of secondary meristems in the axils of vegetative rosette and
cauline leaves, resulting in plants with few branches (Figure
2C). Flowers display variable phenotypes and may lack organs
or form only rudimentary tapered filaments. In the
inflorescence stem, there is a loss of xylem and interfasicular
layers interconnecting vascular bundles. Despite this loss,
there is no defect in vascular dorsoventral patterning.
Loss of PHB and PHV, either as single mutants or together

in a double mutant, has no evident phenotypic consequences.
However, mutations in both genes enhance rev defects,
indicating PHB and PHV are redundant with each other and
also with REV [15,17]. Depending on the background, loss of
all three genes results in either partially abaxial cotyledons
without a shoot apical meristem or a single abaxial cotyledon,
or, in the extreme, failure to correctly pattern embryo
development. Additional loss of ATHB15 in this background
increases the frequency of the more severe phenotype. These
patterning defects coincide with the expression pattern of
these genes and are consistent with loss of both organ adaxial
patterning and shoot central patterning within the embryo.

DOI: 10.1371/journal.pgen.0020089.g001

Figure 1. Leaves Arise on the Flanks of the Shoot Meristem

(A) Vegetative apex of Arabidopsis. The adaxial side of the leaf is adjacent
to the central shoot apical meristem, whereas the opposite, abaxial, side
of the leaf is farther from the shoot meristem. Dorsoventrality is
established early in development and is clearly evident in the leaf on the
left, which arches over the meristem due to differential growth on each
side of the leaf. Scale bar is 50 lm.
(B) Developing vegetative leaf of Arabidopsis. Adaxial trichomes on the
larger leaf are one marker distinguishing dorsoventrality. Scale bar is 250
lm.
(C) Diagrammatic representation of a leaf cross section with adaxial and
abaxial outer epidermal and inner mesophyll marked.
(D) Cross section of leaf midvein with adaxial xylem and abaxial phloem
cells marked.
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All HD–ZIP genes function in postembryonic development.
Mutations in both PHB and PHV enhance shoot phenotypes
of rev [17]. Like PHB and PHV, loss of either ATHB8 or
ATHB15 or combined loss of both of these genes has no gross
phenotypic effect, although vascular development is slightly
perturbed in athb15 mutants. However, mutations in ATHB8
and ATHB15 suppress axillary and floral meristem defects of
rev mutants. Together, genetic interactions suggest
overlapping redundant as well as competitive interactions
between these genes in development [17].

Dominant Effects

Mutations in PHB were first reported as temperature-
sensitive, semidominant mutants with radial, adaxialized
leaves and enlarged meristems [25]. Ectopic meristems
surround the adaxial leaf as would be expected if adaxial fate
promotes meristem formation or, alternatively, if PHB
independently promotes meristem formation. Like PHB,
gain-of-function mutations in REV, as in rev-10d and the allele

amphivasal vascular bundle 1 (avb1), result in stem fasciation
indicative of an increase in meristem size, adaxialized leaves,
and conversion of normally collateral vasculature of the stem,
where xylem is central to peripheral phloem to amphivasal
vasculature with the xylem surrounding phloem [15,26]. All of
these phenotypes are not always evident even with identical
mutations and genetic background, suggesting that growth
conditions may influence expressivity of the phenotype.
All dominant mutations in Class III HD–ZIP genes occur

within a defined region around the 39 end of the fourth exon
and 59 end of the fifth exon (Figure 3). An allelic series of phb-
d mutants revealed either a point mutation at a splice site,
resulting in a small percentage of transcripts with a short
peptide sequence insertion, or point mutations resulting in
an amino acid change [14]. Multiple dominant alleles of phv
and rev also have single nucleotide changes within the same
region as found in phb-d alleles [14,15,26]. However, as
discussed below, changes in amino acid sequence in the
dominant mutants do not appear to be significant as the site

DOI: 10.1371/journal.pgen.0020089.g002

Figure 2. Class III HD–ZIP Genes in Arabidopsis

(A) Class III HD–ZIP genes encode 833–852 amino acid proteins with main domains indicated; an N-terminal HD-ZIP domain, and a 213–218 amino acid
START domain.
(B) Relationship between five Arabidopsis Class III HD–ZIP genes.
(C) Representation of expression pattern of PHB in longitudinal section of embryo (left) and transverse section of shoot apex (right). In the embryo,
expression is adaxial in cotyledons and in central provasculature. In the shoot apex, expression is adaxial in developing leaves and in the meristem.
ad, adaxial; ab, abaxial; p, peripheral; c, central; m, meristem
(D) Phenotype of rev mutants. In wild-type, axillary meristems in axils of leaves give rise to lateral branches (arrows). In rev mutants, axillary meristems
are frequently absent, and fewer or no lateral shoots are produced.
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of all these mutations is within the predicted binding site for
the small regulatory microRNAs, miR165 and miR166 [27,28].

Regulation by microRNAs

MicroRNAs are approximately 21 nucleotides in length and
are generated from longer precursor transcripts. The
precursor transcripts notably form a hairpin loop structure
that is recognized and cleaved into a double stranded form
carrying the microRNA and a complementary sequence.
Ultimately, the microRNA as a single strand is guided to the
target transcript, a process involving the small RNA binding
proteins of the ARGONAUTE family. Subsequently, target
transcripts are either cleaved within the region binding the
microRNA or are subject to translational inhibition. Much
more detail on this pathway and the genes involved can be
found in reviews on the subject [29–31].

The Arabidopsis genome encodes two copies of miR165 and
seven copies of miR166, which have near perfect match with a
sequence conserved within the transcript of all Arabidopsis
Class III HD–ZIP genes [27] (Figure 3). So far, regulation of
Class III HD–ZIP genes by microRNAs appears to occur by
transcript cleavage, as is typical for many plant genes targeted
by microRNAs. Several lines of evidence support this model
[15,26,32,33]. Firstly, REV and PHB cDNA constructs that
alter the microRNA binding site but not the corresponding
amino acid sequence induce the same phenotypes as the gain-
of-function mutations in these genes. Secondly, transcript
cleavage products can be generated in in vitro assays and can
be detected in plant extracts. Thirdly, in phb-1d mutants, the
mutant PHB transcript is ectopically expressed and occurs
throughout the leaf, whereas constitutive expression of wild-
type PHB, using a 35S promoter, does not, in general, induce
a phenotype. Although constitutive expression of the Class III
HD–ZIP genes does not result in a phenotype, there are two
interesting exceptions. Overexpression of PHB did result in
adaxialization of early leaves in a small proportion of
transformants [33] and overexpression of ATHB8 induces a

phenotype with an increase in vascular xylem [34]. Occasional
overexpression phenotypes may reflect dosage-dependent
effects between microRNAs and target transcripts.
As might be expected, overexpression of microRNAs

results in a reduction in Class III HD–ZIP gene transcripts.
Two semidominant mutants, meristem enlarged1 (men1) and
jabba-1D (jab-1D), isolated from activation tagged lines of
Arabidopsis, have increased levels of miR166a and miR166g,
respectively [35,36]. Although homozygous men1 are seedling
lethal, men1/þ plants have a range of phenotypes including an
enlarged shoot apical meristem and slight downcurling of
leaves suggesting weak abaxialization of lateral organs [35].
Meristem, leaf patterning, and vascular defects also appear in
the jab-1D mutant, and the severity of these phenotypes is
stronger in homozygous compared with heterozygous plants
[36]. In both men1/þ and jab-1D, overexpression of different
miR166 genes has differential effects on expression of
individual members of the Class III HD–ZIP genes. In jab-1D
mutants, PHB, PHV, and ATHB15 are downregulated.
However, REV is upregulated and this accounts for
adaxialization of leaves but not meristem defects. Again,
differential effects of miR165/166 on Class III HD–ZIP genes
may be a consequence of dosage-dependent interactions
between microRNA and target and the degree to which
expression patterns of these two overlap. This in turn is
potentially influenced by regulatory interactions between the
different Class III HD–ZIP genes.

Regulation of Regulators

One gene involved in microRNA-mediated regulation of
PHB is ARGONUATE1 (AGO1). AGO1 is a key component of
RNA-mediated gene silencing. In plants, AGO1 binds
microRNAs and is sufficient to mediate cleavage of target
transcripts [37,38]. Mutations in ago1 disrupt many aspects of
development, including organ dorsoventral patterning. In
plants carrying strong ago1 mutant alleles, lateral organ
development is severely affected, leading to a number of
disparate interpretations of the phenotype [39–41]. It is
possible that both adaxial and abaxial fates are affected by
ago1 such that leaves in severely affected plants have lost
polarity. However, in strong ago1 mutants PHB expression is
expanded throughout the leaf and weak ago1 alleles have leaf
development defects consistent with adaxialization of the
leaf, indicating that one role of AGO1 is regulation of PHB via
miRNAs [41].
Another component implicated in microRNA-mediated

regulation of PHB is SERRATE (SE). Mutations in SE have a
number of effects on shoot development including time to
flowering, meristem size, leaf serrations, and dorsoventral
patterning defects [42–45]. In severe mutants, leaves and leaf
vasculature are adaxialized. se mutants have increased levels
of expression of several Class III HD–ZIP genes. In the case of
PHB, the domain of expression is expanded to the abaxial
side of the leaf and the level of PHB is increased in the abaxial
side of the leaf, similar to the pattern of misexpression in the
dominant phb-1D mutants. The Class III HD–ZIP genes are
likely secondarily affected by SE because the level of miR166 is
greatly reduced in se mutants [45]. Concomitant with a
reduction in miR166, the level of the precursor transcript for
miR166 is increased in se mutants indicating that SE may
function in processing miRNA precursor transcripts. SE

DOI: 10.1371/journal.pgen.0020089.g003

Figure 3. MicroRNAs and Class III HD–ZIP Target Sequences

Diagrammatic representation of the PHB gene. Exons are represented as
boxes and introns as lines. The three structural domains in the coding
sequence are the HD-ZIP (yellow-orange) and the START (red) domains.
Below them is the sequence of the microRNA binding site in the five
Class III HD–ZIP genes and miR165 and miR166 sequences.
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encodes a protein with a domain sharing limited similarity to
a zinc finger, although the precise function is still to be
determined [44].

Dominant mutations in PHB and mutations in AGO1 and
SE all result in PHB misexpression with increased levels of
transcript in the adaxial domain and ectopic expression in
the abaxial domain of young leaf primordia. Changes in
adaxial and abaxial expression in these backgrounds suggest
miRNAs regulating PHB expression are expressed throughout
early leaf primordia. One report shows miR165/166
expression throughout the Arabidopsis shoot [46]. However
two other reports, in Arabidopsis and in maize, indicate that
these microRNAs are spatially restricted in the shoot apex
and may function in patterning [41,47]. A further report
examining expression in the embryo indicates dynamic
expression throughout development, but in early
embryogenesis miR166 is initially abaxial and at the distal tips
of initiating cotyledons, an expression pattern closely
complementary to that of the HD–ZIP genes [36]. Resolution
of the degree to which miR165/166 and HD–ZIP target genes
overlap may come from analysis of the expression pattern of
sensor constructs where a cell-autonomous reporter gene
carries the miRNA target binding site [48]. To add to this
picture, Class III HD–ZIP tissue-specific expression appears
to be directed simply by the promoter [21,22,49], in which
case microRNAs may serve to modulate expression levels,
particularly at boundaries where regulator and target
expression overlap.

The LOB-domain gene ASYMMETRIC LEAVES2, which is
required in leaf patterning, appears to negatively regulate
miR165. Levels of miR165 are further increased in mutants
lacking both ASYMMETRIC LEAVES2 and the RNA silencing
pathway gene RDR6, an RNA-dependant RNA polymerase
[46]. However, regulation of miR165 by ASYMMETRIC
LEAVES2 and RDR6 is likely to be indirect as RDR6 acts in a
pathway with three genes, AGO7, SGS3, and DCL4, known to
regulate production of a specific class of small RNAs known
as trans-acting siRNA [50–55]. Downstream targets of these
trans-siRNA pathway genes are ETTIN and ARF3, two AUXIN
RESPONSE FACTOR genes required for abaxial fate
[50,56,57].

Linking to Chromatin

Aside from cleavage, microRNA targeting to the PHB
transcript also influences the methylation status of the PHB
locus [58]. High levels of methylation are usually associated
with transcriptionally inactive chromatin, and, conversely,
low methylation levels are typically associated with
transcriptionally active chromatin. In wild-type plants the
PHB locus is methylated at the 39 end of the gene, although
methylation levels are low in meristem-enriched tissues where
PHB is expressed. The dominant allele, which may no longer
effectively bind miR165/166, fails to mediate methylation of
the PHB gene. Thus miR165/166 may function, directly or
indirectly, in transcriptional as well as posttranscriptional
regulation of PHB. The PHV gene is also methylated in the 39

region indicating Class III HD–ZIP genes as a whole may be
subject to multiple levels of regulation. The significance of
this regulatory system is yet to be established, but multiple
levels of regulation may serve several purposes. Conceivably,
microRNA-directed cleavage of transcripts acts as an efficient
mechanism for rapid inactivation of transcripts within a cell.

Simultaneous or subsequent methylation of the locus would
then maintain a stable repressed state in cells where gene
expression is no longer required.

Conclusions

The Class III HD–ZIP genes play multiple, possibly
interdependent, roles in plant development. Conservation of
these genes and expression patterns throughout land plants,
in particular in lower land plant species, highlight a critical
role in development of the basic plant body [59]. Spatial,
temporal, and quantitative regulation of expression appears
to involve a number of mechanisms including
posttranscriptional and transcriptional gene silencing
mediated by microRNAs. The importance of microRNAs as
regulators of this gene family is reflected in conservation of
miR166 and conservation of Class III HD–ZIP gene function
in divergent plant species [27,47,60,61]. An additional layer of
regulation may involve modulation of function via a sterol-
type ligand. Evaluation of the contribution and interplay of
these regulatory mechanisms and the degree to which
components of regulation are conserved are clearly going to
be subjects of much future research. “
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Accession Numbers

Accession numbers from the Genbank genebank (http://www.ncbi.
nlm.nih.gov/Genbank) are for: PHABULOSA (PHB), 2G34710;
PHAVOLUTA (PHV), 1G30490; ATHB8, 4G32880; ATHB15, 1G52150;
and REVOLUTA (REV), 5G60690.

Acknowledgments

I thank Catherine Kidner and Robert Martienssen for critical reading
of the manuscript and Peter Etchells for the figure of vasculature. My
apologies to colleagues whose research I failed to adequately cite due
to space limitations, in particular to those whose work moves beyond
the bounds of Arabidopsis.

Funding. MEB is a recipient of a Royal Society Wolfson Merit
Award, and her laboratory is funded by the Biotechnology and
Biological Sciences Research Council, United Kingdom.

Competing interests. The author has declared that no competing
interests exist.

References
1. Sussex IM (1955) Morphogenesis in Solanum tuberosum L.: Experimental

investigation of leaf dorsiventrality and orientation in the juvenile shoot.
Phytomorph 5: 286–300.

2. Snow M, Snow R (1959) The dorsiventrality of leaf primordia. New Phytol
58: 188–207.

3. Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2005) Microsurgical and
laser ablation analysis of leaf positioning and dorsoventral patterning in
tomato. Development 132: 15–26.

4. Waites R, Hudson A (1995) phantastica: A gene required for dorsoventrality
of leaves in Antirrhinum majus. Development 121: 2143–2154.

5. Waites R, Selvadurai HR, Oliver IR, Hudson A (1998) The PHANTASTICA
gene encodes a MYB transcription factor involved in growth and
dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779–789.

6. Engstrom EM, Izhaki A, Bowman JL (2004) Promoter bashing, microRNAs,
and Knox genes. New insights, regulators, and targets-of-regulation in the
establishment of lateral organ polarity in Arabidopsis. Plant Physiol 135:
685–694.

7. Byrne ME (2005) Networks in leaf development. Curr Opin Plant Biol 8:
59–66.

8. Kepinski S (2005) Integrating hormone signaling and patterning
mechanisms in plant development. Curr Opin Plant Biol 9: 28–34.

9. Esau K (1977) Anatomy of Seed Plants. NewYork: JohnWiley and Sons. 550 p.
10. Freeling M (1992) A conceptual framework for maize leaf development. Dev

Biol 153: 44–58.
11. Tefler A, Poethig RS (1994) Leaf development in Arabidopsis. In: Meyerowitz

EM, Somerville CR, editors. Arabidopsis. New York: Cold Spring Harbor
Press. pp. 379–401.

PLoS Genetics | www.plosgenetics.org June 2006 | Volume 2 | Issue 6 | e890789



12. Sessa G, Steindler C, Morelli G, Ruberti I (1998) The Arabidopsis Athb-8, -9
and -14 genes are members of a small gene family coding for highly related
HD–ZIP proteins. Plant Mol Biol 38: 609–622.

13. Schrick K, Nguyen D, Karlowski WM, Mayer KF (2004) START lipid/sterol-
binding domains are amplified in plants and are predominantly associated
with homeodomain transcription factors. Genome Biol 5: R41.

14. McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, et al. (2001) Role of
PHABULOSA and PHAVOLUTA in determining radial patterning in shoots.
Nature 411: 709–713.

15. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, et al. (2003) Radial
patterning of Arabidopsis shoots by class III HD–ZIP and KANADI genes.
Curr Biol 13: 1768–1774.

16. Green KA, Prigge MJ, Katzman RB, Clark SE (2005) CORONA, a member of
the class III homeodomain leucine zipper gene family in Arabidopsis,
regulates stem cell specification and organogenesis. Plant Cell 17: 691–704.

17. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, et al. (2005) Class III
homeodomain–leucine zipper gene family members have overlapping,
antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:
61–76.

18. Zhong R, Ye ZH (1999) IFL1, a gene-regulating interfascicular fiber
differentiation in Arabidopsis, encodes a homeodomain–leucine zipper
protein. Plant Cell 11: 2139–2152.

19. Ratcliffe OJ, Riechmann JL, Zhang JZ (2000) INTERFASCICULAR
FIBERLESS1 is the same gene as REVOLUTA. Plant Cell 12: 315–317.

20. Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA
regulates meristem initiation at lateral positions. Plant J 25: 223–236.

21. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, et al. (1995) The
expression of the Athb-8 homeobox gene is restricted to provascular cells in
Arabidopsis thaliana. Development 121: 4171–4182.

22. Kang J, Dengler N (2002) Cell cycling frequency and expression of the
homeobox gene ATHB-8 during leaf vein development in Arabidopsis. Planta
216: 212–219.

23. Ohashi-Ito K, Fukuda H (2003) HD–zip III homeobox genes that include a
novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in
procambium and xylem cell differentiation. Plant Cell Physiol 44: 1350–
1358.

24. Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is
necessary for apical meristem development and for limiting cell divisions
in the leaves and stems of Arabidopsis thaliana. Development 121: 2723–2735.

25. McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in
Arabidopsis. Development 125: 2935–2942.

26. Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function
mutation of the IFL1/REV gene, is associated with alterations in the polarity
of leaves, stems and carpels. Plant Cell Physiol 45: 369–385.

27. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002)
MicroRNAs in plants. Genes Dev 16: 1616–1626.

28. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, et al. (2002)
Prediction of plant microRNA targets. Cell 110: 513–520.

29. Baulcombe D (2004) RNA silencing in plants. Nature 431: 356–363.
30. Du T, Zamore PD (2005) microPrimer: The biogenesis and function of

microRNA. Development 132: 4645–4652.
31. Kidner CA, Martienssen RA (2005) The developmental role of microRNA in

plants. Curr Opin Plant Biol 8: 38–44.
32. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical

framework for RNA silencing in plants. Genes Dev 17: 49–63.
33. Mallory AC, Reinhart BJ, Jones–Rhoades MW, Tang G, Zamore PD, et al.

(2004) MicroRNA control of PHABULOSA in leaf development: Importance
of pairing to the microRNA 59 region. EMBO J 23: 3356–3364.

34. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, et al. (2001)
The Arabidopsis ATHB-8 HD–zip protein acts as a differentiation-
promoting transcription factor of the vascular meristems. Plant Physiol
126: 643–655.

35. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, et al. (2005) microRNA-directed
cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis
inflorescence stems. Plant J 42: 84–94.

36. Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of
Arabidopsis shoot apical meristem and lateral organ formation by
microRNA miR166g and its AtHD–ZIP target genes. Development 132:
3657–3668.

37. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA

Slicer that selectively recruits microRNAs and short interfering RNAs. Proc
Natl Acad Sci U S A 102: 11928–11933.

38. Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within
Arabidopsis RNA silencing pathways. Mol Cell 19: 421–428.

39. Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, et al. (1998) AGO1
defines a novel locus of Arabidopsis controlling leaf development. EMBO J
17: 170–180.

40. Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, et al. (1999) The
PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and
has overlapping functions with the ARGONAUTE1 gene. Development 126:
469–481.

41. Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs
leaf polarity through ARGONAUTE1. Nature 428: 81–84.

42. Clarke JH, Tack D, Findlay K, Van Montagu M, Van Lijsebettens M (1999)
The SERRATE locus controls the formation of the early juvenile leaves and
phase length in Arabidopsis. Plant J 20: 493–501.

43. Ori N, Eshed Y, Chuck G, Bowman JL, Hake S (2000) Mechanisms that
control knox gene expression in the Arabidopsis shoot. Development 127:
5523–5532.

44. Prigge MJ, Wagner DR (2001) The Arabidopsis SERRATE gene encodes a
zinc-finger protein required for normal shoot development. Plant Cell 13:
1263–1279.

45. Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot
meristem function and leaf axial patterning in Arabidopsis. Nature 437:
1022–1026.

46. Li H, Xu L, Wang H, Yuan Z, Cao X, et al. (2005) The putative RNA-
dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC
LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in
Arabidopsis leaf development. Plant Cell 17: 2157–2171.

47. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004)
microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity.
Nature 428: 84–88.

48. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo
investigation of the transcription, processing, endonucleolytic activity, and
functional relevance of the spatial distribution of a plant miRNA. Genes
Dev 18: 2237–2242.

49. Hawker NP, Bowman JL (2004) Roles for Class III HD–Zip and KANADI
genes in Arabidopsis root development. Plant Physiol 135: 2261–2270.

50. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and
SGS2/SDE1/RDR6 are required for juvenile development and the
production of trans-acting siRNAs in Arabidopsis. Genes Dev 18: 2368–2379.

51. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed
phasing during trans-acting siRNA biogenesis in plants. Cell 121: 207–221.

52. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, et al. (2004)
Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis
mRNAs. Mol Cell 16: 69–79.

53. Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis
method identifies an endogenous trans-acting short-interfering RNA that
targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci U S
A 102: 9703–9708.

54. Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in
trans-acting small interfering RNA biogenesis and vegetative phase change
in Arabidopsis thaliana. Proc Natl Acad Sci U S A 102: 12984–12989.

55. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the
biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19: 2164–2175.

56. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate
Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell
17: 2899–2910.

57. Garcia D, Collier SA, Byrne ME, Martienssen RA (2006) Specification of leaf
polarity in Arabidopsis via the trans-acting siRNA pathway. Current Biol 16:
933–938.

58. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis
class III HD–ZIP mRNAs are required for methylation of the template
chromosome. Dev Cell 7: 653–662.

59. Floyd SK, Zalewski CS, Bowman JL (2006) Evolution of Class III
Homeodomain-leucine zipper genes in streptophytes. Genetics 173. In press.

60. Floyd SK, Bowman JL (2004) Gene regulation: Ancient microRNA target
sequences in plants. Nature 428: 485–486.

61. McHale NA, Koning RE (2004) MicroRNA-directed cleavage of Nicotiana
sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure
of apical meristems. Plant Cell 16: 1730–1740.

PLoS Genetics | www.plosgenetics.org June 2006 | Volume 2 | Issue 6 | e890790


