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Whole-exome sequencing identifies rare pathogenic variants
in new predisposition genes for familial colorectal cancer
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Purpose: Colorectal cancer is an important cause of mortality in
the developed world. Hereditary forms are due to germ-line muta-
tions in APC, MUTYH, and the mismatch repair genes, but many
cases present familial aggregation but an unknown inherited cause.
The hypothesis of rare high-penetrance mutations in new genes is a
likely explanation for the underlying predisposition in some of these
familial cases.

Methods: Exome sequencing was performed in 43 patients with
colorectal cancer from 29 families with strong disease aggregation
without mutations in known hereditary colorectal cancer genes. Data
analysis selected only very rare variants (0-0.1%), producing a puta-
tive loss of function and located in genes with a role compatible with
cancer. Variants in genes previously involved in hereditary colorectal
cancer or nearby previous colorectal cancer genome-wide association
study hits were also chosen.

INTRODUCTION

Colorectal cancer (CRC) is a very common disease, and its asso-
ciated mortality rate is quite significant in the developed world.
It is estimated that around 5% of the general population will
be diagnosed with CRC. Also, as life expectancy increases, the
number of CRC cases is also presumed to increase. As an illus-
trative example, there will be ~473,200 new CRC diagnoses and
~233,900 deaths related to this neoplasm in Europe during 2015."

Germ-line predisposition and environmental factors affect
CRC susceptibility, as established for many other complex
diseases. Importantly, the inherited germ-line contribution is
known to influence about 35% of all cases.? Included in this pre-
vious group, the Mendelian CRC syndromes are the best char-
acterized CRC cases because an inherited cause corresponds to

Results: Twenty-eight final candidate variants were selected and
validated by Sanger sequencing. Correct family segregation and
somatic studies were used to categorize the most interesting variants
in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARDI.

Conclusion: We identified new potential colorectal cancer predis-
position variants in genes that have a role in cancer predisposition
and are involved in DNA repair and the cell cycle, which supports
their putative involvement in germ-line predisposition to this neo-
plasm.
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5% of total CRC cases. Lynch syndrome and familial adenoma-
tous polyposis are the most frequent forms of Mendelian CRC
syndromes. Classic hereditary CRC syndromes are mainly due
to germ-line mutations in APC, MUTYH, and the mismatch
repair genes (i.e, MLHI, MSH2, MSH6, PMS2).** Finding
the causative mutation in familial CRC also has implications
that apply to genetic counseling practices that are of critical
importance for the analyzed family. Once it is established in a
particular family which individuals are carriers and which are
noncarriers, prevention strategies can be directed more pre-
cisely to those individuals carrying the causative mutation and
who are therefore at risk of developing CRC and other related
malignancies. On the other hand, noncarriers can be spared
excessive clinical monitoring.
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In addition to hereditary forms, around 30% of CRC cases
also present familial aggregation but an unknown inherited
cause. Among these cases, familial CRC type X can be used as
an example in which the clinical criteria of Lynch syndrome
are fulfilled but no alteration of the mismatch repair system is
found.® Then, the hypothesis of rare high-penetrance muta-
tions in genes yet to be discovered is a very likely explanation
for the underlying predisposition in a portion of these famil-
ial CRC cases. Therefore, past efforts in this direction included
some low-throughput sequencing studies in familial CRC cases
of some plausible candidate genes such as EPHB2, GALNT12,
PTPRJ], BMP4, and BMPRIA.“'® Next-generation sequencing
technologies added a new unbiased approach to facilitate the
identification of new genes responsible for predisposition to
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Heterozygous variants
Good coverage (>10)
Allelic frequency <0.5%
Shared in the same family
Present in <10 out of 43 sequenced patients
Frameshift, canonical splice site, nonsense, missense

4,447 Variants
(675 frameshift, splice site canonical or nonsense, and
3,772 missense)
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Deleterious by >4 in silico prediction tools
(missense only)
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1,353 Variants
(204 frameshift, splice site canonical or nonsense, and
1,149 missense)
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Present in <4 out of 43 sequenced patients
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GWAS hits
10 Variants

424 Variants
(125 frameshift, splice site canonical or nonsense, and
299 missense)
6-36 Variants per family
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Prioritize variants that fulfilled previous criteria, with
interesting gene function and interactions, and located
in protein domains
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28 Candidate variants
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Figure 1 Schematic of the data analysis steps after whole-exome
sequencing. Forty-three patients with colorectal cancer (CRC) from 29
families with strong CRC aggregation compatible with an autosomal
dominant pattern of inheritance were sequenced. Variants remaining after
each filtering step are indicated. GWAS, genome-wide association study.
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human disease. Palles et al.!* recently reported the identification
of germ-line mutations in the POLE and POLDI genes in indi-
viduals with multiple colorectal adenomas, carcinoma, or both,
or early onset of this disease using whole-genome sequencing.
Smith et al.”? recently performed exome sequencing in a cohort
of patients with sporadic CRC enriched for early onset, and
variants in genes showing biallelic inactivation were selected.
In addition, exome sequencing was completed in CRC familial
cases and shared variants were selected within families in an
additional study.”® Finally, a Finnish cohort of familial CRC was
also sequenced in order to find rare truncating variants present
in two or more cases."

Accordingly, the aim of our study was to find rare predisposi-
tion variants in new genes by performing exome sequencing in
patients with familial CRC compatible with an autosomal dom-
inant inheritance and without an alteration in the previously
known hereditary CRC genes. In doing so, our final goal is to
facilitate genetic counseling and to be able to correctly address
prevention strategies in these families.

MATERIALS AND METHODS

Patients

Forty-three CRC patients from 29 families with strong CRC
aggregation compatible with an autosomal dominant pat-
tern of inheritance were selected. Alterations in APC or the
mismatch repair genes, and homozygous or compound het-
erozygous mutations in MUTYH were previously excluded.
Families were chosen based on the following criteria: three
or more relatives with CRC, two or more consecutive affected
generations, and at least one case of CRC diagnosed before
the age of 60. In two families, advanced adenomas (i.e., size
>1cm, villous architecture, or high-grade dysplasia) were
taken into account as early disease presentation. In addition,
other extracolonic cancers were considered in six families.
Fourteen families were collected in high-risk CRC clinics
(Hospital Clinico San Carlos in Madrid, Hospital Clinic in
Barcelona, and Hospital Donostia in San Sebastidn), and two
patients with CRC were selected to be sequenced from among
available affected individuals, preferentially those most dis-
tantly related. On the other hand, 15 families were chosen
from the EPICOLON Consortium' and one patient with
CRC per family was selected to be sequenced. This study was
approved by the institutional ethics committee of each par-
ticipating hospital. Written informed consent was obtained
at CRC diagnosis on a systematic basis.

Germ-line DNA samples used for exome sequencing were
obtained from peripheral blood, whereas formalin-fixed, par-
affin-embedded tumor DNA was isolated in some cases for loss
of heterozygosity (LOH) studies using the QIAamp DNA Blood
Kit or QIAamp Tissue Kit (Qiagen, Redwood City, CA) and fol-
lowing the manufacturer’s instructions.

Exome sequencing
Quality control was applied to DNA samples (3-5 pg needed

per reaction at a concentration of 50-300ng/pl measured
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by PicoGreen, A260/280 = 1.7-2, integrity check by aga-
rose electrophoresis). The whole exome was characterized
by using the HiSeq2000 platform (Illumina, San Diego, CA)
and SureSelectXT Human All Exon V4 for exon enrichment
(Agilent, Santa Clara, CA). Initial DNA shearing was performed
using the Covaris S2 equipment, achieving an optimal range in
the size distribution of fragments. Library size and concentra-
tion were checked by capillary electrophoresis (Bioanalyzer
2100; Agilent). Adapters with different indexes for each sample
were incorporated during enrichment, allowing samples to be
multiplexed before sequencing. After enrichment, the indexed
libraries were pooled and massively parallel sequenced using a
paired-end 2 x 75-base pair (bp) read length protocol.

Data analysis
Base calling and quality control were performed using the
Real-Time Analysis software sequence pipeline (Illumina).
Sequence reads were trimmed to keep only those bases with
a quality >10 and then mapped to the human genome build
(hgl9/GRCh37) using Genome Multitool,' allowing up to
four mismatches. Reads not mapped by Genome Multitool
were submitted to a last round of mapping with BLAT-like Fast
Accurate Search Tool.”” Uniquely mapping nonduplicate read
pairs were locally realigned with Genome Analysis Toolkit."®
The SAMtools suite (http://samtools.sourceforge.net) was used
to call single-nucleotide variants and short insertions/dele-
tions, taking into account all reads per position."? Variants with
high strand bias (P > 0.001 in at least one sample) or regions
with low mappability (identified with the Genome Multitool
mappability tool as having 75-bp reads and two mismatches)'¢
were filtered out. Variant annotation took into account data
available in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/), the
1000 Genomes Project (http://www.1000genomes.org), the
Exome Variant Server (http://evs.gs.washington.edu), and the
Geuvadis European Exome Variants Server (http://geevs.crg.
eu) and from an in-house database (100 whole genomes of
Spanish ancestry from Centre Nacional d’Analisi Genomica
(http://www.cnag.cat)). Functional consequences of variants
were also predicted by SnpEft (http://snpeff.sourceforge.net)
(stop codon, frameshift, splicing, missense, synonymous), as
well as by position (coding, intronic, exon-intron junction,
untranslated regions). Regarding missense changes, six bioin-
formatic predictions for pathogenicity were available (PhyloP
(http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.
txt), SIFT (Sorting Intolerant From Tolerant; http://sift.bii.a-
staredu.sg),  PolyPhen  (http://genetics.bwh.harvard.edu/
pph2), MutationTaster (http://www.mutationtaster.org), GERP
(Genomic Evolutionary Rate Profiling; http://mendel.stanford.
edu/SidowLab/downloads/gerp), LRT (likelihood ratio test)).
Because a dominant inheritance pattern was expected, homo-
zygous variants were removed, except for chromosome X non-
pseudoautosomal regions in male samples. When analyzing
two affected individuals from the same family, only shared vari-
ants were selected. Variants with low sequencing coverage (<10)
and those with an allelic frequency 20.5% in the 1000 Genomes
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Project, Exome Variant Server, Geuvadis European Exome
Variants Server, or the Centre Nacional d’Analisi Gendmica in-
house database were filtered out. Variants present in >10 of the
43 individuals in our data set were discarded because they most
likely corresponded to polymorphisms. Also, only variants
predicted to have a strong effect on gene function (frameshift,
splice-site canonical, nonsense, and missense) were chosen.
Regarding missense variants, we used six bioinformatics tools
to select for a deleterious amino acid change, namely, PhyloP
(score >0.85), SIFT (score <0.05), PolyPhen (score >0.85),
GERP (score >2), Mutation Taster (score >0.5), and LRT (score
>0.9), and only those with four or more deleterious predictions
were further considered.

Biological functions and pathways of the genes containing
variants were annotated with terms and previous bibliogra-
phy according to NCBI Gene (http://www.ncbi.nlm.nih.gov/
gene), Gene Ontology (http://www.geneontology.org/GO),
KEGG (http://www.genome.jp/kegg/), and Reactome (http://
www.reactome.org/PathwayBrowser/). A list of cancer terms
was created from these previous databases (Supplementary
Table S1 online) and used to select variants from among genes
that had those terms annotated. All previous filters were per-
formed using an automated pipeline encoded with R software
(http://CRAN.R-project.org). CRC specificity of this pipeline
regarding function and bibliography was tested by comparing
our data with an external germ-line exome sequencing data
set with equivalent coverage, which included the same num-
ber of patients with chronic lymphocytic leukemia from the
International Cancer Genome Consortium (https://www.icgc.
org/). Also, variants present in both data sets were filtered out.

Once a variant list per sequenced CRC patient was generated,
a thorough manual annotation using NCBI Gene corroborated
variant genome position and annotated protein interactions. The
amino acid position of missense variants in functional domains,
disulfide bonds, or posttranslational modifications was verified,
as well as their effect on protein tridimensional structure, when
available, using NCBI Protein (http://www.ncbi.nlm.nih.gov/
protein) and UniProtKB (http://www.uniprot.org/). Also, their
conservation in 46 vertebrates was checked (comparative align-
ment UCSC (https://genome.ucsc.edu/)).

Variant prioritization

Once all previous information was available, variant prioritiza-
tion selected those variants more plausible to be causative of
CRC genetic predisposition when they fulfilled more stringent
criteria (0-0.1% allelic frequency; present in <4 individuals in
our data set; >5 missense pathogenicity predictions; gene terms
and bibliography compatible with cancer; interesting interac-
tions and protein information; and amino acid species conserva-
tion). It is noteworthy that variants in genes previously involved
in hereditary CRC were carefully checked, as were those genes
near previous CRC genome-wide association studies (GWAS)
hits (Supplementary Table S2 online) with less strict criteria
(missense considered deleterious by four or more bioinformatics
tools). As previously specified, thresholds to select variants were
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applied for sequencing coverage, allelic frequency, presence in
our data set, predictions by bioinformatics tools, presence in the
functional and bibliography term list, and absence in the exter-
nal exome set. On the other hand, there were no thresholds for
some other additional variant/gene information that was used if
available to further select for variants present within each fam-
ily. This information included protein function and interactions;
amino acid position in functional domains, disulfide bonds, or
posttranslational modification sites; effect on protein tridimen-
sional structure; and amino acid species conservation. Therefore,
variants also complying with these last criteria were considered
more interesting functionally and were further selected as final
candidates. Some studied CRC families had up to four variants
prioritized, whereas other families had none.

Variant validation, segregation analysis, and tumor loss of
heterozygosis

Exome sequencing results for prioritized variants were vali-
dated using specific primers for polymerase chain reaction
amplification designed using Primer3Plus (http://primer3plus.
com/cgi-bin/dev/primer3plus.cgi) and Sanger sequencing
(GATC Biotech, Cologne, Germany).

Segregation analysis of the prioritized variants was per-
formed in additional family members (those with CRC and
advanced adenoma) when germ-line DNA was available. When
possible, somatic LOH was studied in tumor DNA of patients
carrying the selected variants. LOH was tested by comparing
Sanger sequencing results for germ-line and tumor DNA of
the same individual. In addition, microsatellite markers within
and around the gene of interest were used when LOH of the
wild-type allele was suspected. Sanger and microsatellite mark-
ers results were always concordant. Primer details are listed in
Supplementary Table S3 online.

Network analysis

Ingenuity Pathway Analysis (IPA; Qiagen; http://www.qiagen.
com/ingenuity) was used to perform a core analysis to check
the putative enrichment for canonical pathways, disease and
biological functions, and molecular networks among the 18
final candidate genes carrying variants that either fulfilled CRC
family segregation or could not be tested (variants without cor-
rect family segregation were not included). IPA was run with
an experimentally observed filter, aiming to obtain information
based on confirmed data. The IPA networks generation algo-
rithm transformed the gene list into a network set using Global
Molecular Network connections and Ingenuity Pathways
Knowledge Base.

RESULTS
Whole-exome sequencing was performed in 43 patients with
CRC from 29 families (2 affected relatives from 14 families
and 15 unrelated patients with CRC) with strong disease
aggregation compatible with an autosomal dominant pattern

of inheritance but without mutations in known hereditary
CRC.
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After sequencing, mean coverage was >95x in all samples.
Raw data were analyzed using an automatic pipeline that
selected only very rare variants (0-0.1%) producing a putative
loss of function and located in genes with a role compatible with
cancer. Also, variants in genes previously involved in heredi-
tary CRC or nearby previous CRC GWAS hits were prioritized
(Figure 1). Initial filtering removed variants in homozygosis,
those with low coverage, those not shared in the same family,
those with a frequency 20.5% and those present in 210 of the 43
individuals in our data set. On the other hand, frameshift, non-
sense, canonical splice-site, and missense variants were selected
(4,447 variants: 675 frameshift, splice-site canonical, or non-
sense and 3,772 missense). When missense variants complying
with most pathogenicity prediction tools (designated deleteri-
ous by at least 4 of 6 tools) were selected, 2,353 remained. Of
these, 1,411 variants annotated with functional or bibliographi-
cal terms from our cancer list were selected.

CRC specificity of this pipeline regarding function and bib-
liography was tested by comparing our set with an external
germ-line exome sequencing data set for a different disease.
After applying frequency, heterozygosity, function, and bibli-
ography filters, a ¢ test was used to compare the mean number
of frameshift, splice-site canonical, or nonsense variants per
individual in the two exome data sets. In doing so, our pipeline
selected more variants in our exome data set (mean,,. = 41.87;
mean_ = 34.05; P=3.75x107"), supporting the CRC speci-
ficity of our pipeline.

After checking the aforementioned pipeline specificity, we
continued with variant filtering, and 1,353 variants that were
not present in the external data set were further considered. At
this stage, 10 variants in genes previously implicated in CRC
predisposition and CRC GWAS hits that fulfilled previous cri-
teria had been selected as final candidates. Stricter filtering was
applied to prioritize variants in new genes, including allelic fre-
quency 0-0.1%, presence in <4 of the 43 individuals in our data
set, and compliance with most pathogenicity prediction tools
for missense classification (designated deleterious by =5 tools),
leaving 424 selected variants (125 frameshift, splice-site canoni-
cal, or nonsense and 299 missense), ranging from 6 to 36 vari-
ants per family. Filtering for the 10 variants in genes previously
implicated in CRC predisposition and CRC GWAS hits was the
same except for pathogenicity prediction tools for missense
classification (designated deleterious by >4 tools). Finally, as
previously specified, thresholds regarding sequencing coverage,
allelic frequency, presence in our data set, prediction by bioin-
formatics tools, presence in functional and bibliography term
lists, and absence from the external exome set were applied
in order to select variants. On the other hand, there were no
thresholds for some other additional variant/gene information
that was used, if available, to further select for variants present
within each family. This information included protein function
and interactions; amino acid position in functional domains,
disulfide bonds, or posttranslational modification sites; effect
on protein tridimensional structure; and amino acid species
conservation. Therefore, variants also complying with these last
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Table 2 Results for the final 28 prioritized variants regarding Sanger validation, family segregation, and somatic status

Gene Category Mutation Samples Sanger CRCseg AAseg LOH CcosmIC
CDKN1B New ¢.195G>T(p.Q65H) FAM14 Y Y 2/2 Y 2/2 Y 7/636 (1.1%)
XRCC4 New €.497_498delTG(p. FAM10 Y Y 2/2 \& 9/577 (1.56%)
V166Efs*3)
EPHX1 New €.293G>A(p.R98Q) FAM11 Y Y 2/2 & 18/576 (3.13%)
NFKBIZ New €.2153_2154dupAT FAM8 Y Y 4/4 N 11/576 (1.91%)
(p.*719Ifs*10)
SMARCA4 New €.295C>T(p.R99W) FAM3 Y Y 2/2 Y 1/1 N 60/646 (9.29%)
BARD1 New c.1811-2A>G H458 Y Y 2/2 N 18/577 (3.12%)
BRIP1 New c.1702_1703delAA H463 Y NA N 28/636 (4.4%)
(p.N568Wfs+9)
RB1 New c.491A>G(p.K164R) H466 Y NA Y 126/713(17.67%)
AKR1C4 New? C.667C>T(p.R223%) H467 Y NA N 13/576 (2.26%)
CARD9 New €.1228G>T(p.E410%) H456 Y NA N 13/578 (2.25%)
NSMCE2 New c.346delT(p.S116Lfs*18) H465 Y NA N 3/602 (0.5%)
BMPRTA Hereditary €.1327C>T(p.R443C) H460 Y NA N 23/757 (3.04%)
CCDC18 New? €.3268G>A(p.R1036H) H460 Y NA N 22/597 (3.69%)
MYC GWAS €.906C>A(p.H302Q) H460 Y NA N 6/636 (0.94%)
POLE Hereditary c.5473A>T(p.H1810L) H462 Y NA NA 40/577 (6.93%)
7SC2 New ¢.5116C>T(p.R1706C) 1139 Y NA NA 28/635 (4.41%)
RAD52 New €.590_593dupAACC FAM13 Y Y 3/3 N 0/1 N 9/577 (1.56%)
(p.S199Tfs+88)
BMP4 GWAS c.1001C>T(p.A334V) FAM3 Y Y 2/2 N 0/1 N 8/577 (1.39%)
DUSP4 GWAS C.82G>A(p.A28T) H468 Y N 1/2 5/577 (0.87 %)
DUSP4 GWAS C.82G>A(p.A28T) H466 Y NA 5/577 (0.87%)
LAMAS GWAS €.4930C>T(p.R1644C) FAM8 Y N 3/4 51/576 (8.85%)
CETNZ2 New C.3+2T>C FAM8 Y N 2/4 4/577 (0.69%)
MAP9 New €.681dupA(p.A228Sfs*4) FAM8 Y N 2/4 25/576 (4.34%)
ENG Hereditary €.934C>T(p.A312V) H469 Y N 1/2 9/635 (1.42%)
RUNX2 New €.622T>C(p.P208S) FAM1 Y N 2/3 13/577 (2.25%)
PIK3R1 New C.220G>A(p.V74l) FAM4 Y N 3/4 83/961 (8.64%)
SMURF2 New €.838C>T(p.H280Y) FAM12 Y N 3/4 16/577 (2.77%)
ATM New? €.8327T>C(p.12776T) H470 Y N 1/2 210/707 (29.7 %)
DHX9 New €.286T>G(p.V40G) FAM2 N 21/576 (3.65%)

AA seg, advanced adenoma segregation; CRC seg, colorectal cancer segregation; GWAS, genome-wide association study; LOH, loss of heterozygosity; N, no; NA, not
available; Y, yes.

2Category: new genes corresponded mainly to those not previously found to be involved in CRC predisposition, except for AKR1C4 (Smith et al.'?; Gylfe et al.’¥), CCDC18
(Gylfe et al.™), and ATM (Gala et al.*®), with seminal evidence.

Samples: identifier for individuals in which the variant was found in exome sequencing. Samples with the header “FAM" belong to families with two sequenced individuals
who share the same variant.

Sanger: refers to Sanger sequencing confirmation of the variant found by exome sequencing.

CRC seg: proportion of CRC cases within the family that carry the variant, including additional CRC cases when available.

AA seg: proportion of advanced adenomas cases within the family that carry the variant.

LOH: depletion of the wild-type allele in tumor DNA in comparison with the germ line.

COSMIC: proportion of somatic mutations found in large-intestine carcinoma for the gene carrying the variant (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/).
“Indicates results for both Sanger sequencing and microsatellite markers.

criteria were considered more interesting functionally and were Candidate variants were subsequently validated by Sanger
further selected as final candidates. Some CRC families had up  sequencing, and, if confirmed, segregation was studied in addi-
to four selected variants, whereas other families had none. The  tional affected family members when available (Table 2). A vari-
final 28 prioritized variants are shown in Table 1. ant in DHX9 was not confirmed (1 of 28 prioritized variants).
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Figure 2 Pedigrees from families FAM3, FAM8, FAM10, FAM11, FAM14, and H458 are shown. Filled symbols indicate those affected by colorectal
cancer (upper right quarter), adenoma(s) (lower right quarter), stomach cancer (lower left quarter), or breast cancer (upper left quarter). Colon, breast, stomach,
thyroid, lung, prostate, and nasopharynx refer to the type of cancer. (+), mutation carrier; (=), wild type. AA, advanced adenoma; ACV, cerebrovascular accident;
Duode, duodenum carcinoma; non-AA, nonadvanced adenoma.
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LOH in tumor DNA was analyzed in variants with correct
disease segregation when possible (Table 2; Supplementary
Figure S1 online). Among the 28 prioritized variants, the best
candidates for being involved in CRC genetic predisposition
included those located in genes such as CDKNIB, XRCC4,
EPHXI, NFKBIZ, SMARCA4, and BARDI because they seg-
regated correctly with disease presentation (Figure 2; the rest
of families are shown in Supplementary Figure S2 online).
Regarding variants in these genes, it is expected that three of
them abolish protein function and the other three are missense
changes with strongly deleterious in silico predictions. Family
segregation and tumor LOH of the wild-type allele was posi-
tive for variants in CDKNI1B, XRCC4, and EPHX]1. Other inter-
esting variants were found in BRIPI, RB1, AKRI1C4, CARDY,
NSMCE2, BMPRIA, CCDCI8, MYC, POLE, and TSC2,
although segregation analysis was not feasible. Nevertheless,
tumor LOH of the wild-type allele was present for the BRIPI
and RBI variants. It is noteworthy that variants in BMP4 and
RAD52 showed correct family segregation for CRC, but they did
not correlate with advanced adenoma presentation, although
they can still be considered interesting candidates. As reported
in the COSMIC database, somatic mutations in sporadic CRC
were more common for the RB1, SMARCA4, and POLE genes
(Table 2). Candidate variants within genes previously impli-
cated in CRC predisposition and CRC GWAS hits included
those located in AKRI1C4, BMPRI1A, CCDCI18, MYC, POLE,
BMP4, DUSP4 (present in two independent families), LAMAS5,
ENG, and ATM. The variant in the BMP4 gene segregated with
CRC but not with advanced adenoma. DUSP4, LAMAS5, ENG,
and ATM variants did not segregate with disease, whereas dis-
ease segregation could not be tested for variants in AKRIC4,
BMPRIA, CCDC18, MYC, and POLE. The POLE variant did
not correspond to those previously reported and did not fall
within the exonuclease or polymerase domains."*

In addition, we performed IPA to test for a putative enrich-
ment for canonical pathways, disease and biological functions,
and molecular networks among the 18 final candidate genes
carrying variants that either fulfilled CRC family segregation
or for which segregation analysis was not possible. A relevant
network that contains 9 of the 18 genes was obtained with an
overrepresentation of the DNA Replication, Recombination
and Repair, Cell Cycle, Connective Tissue Development and
Function terms (Supplementary Figure S3a online). On the
other hand, when testing for canonical pathways in our set, the
“Role of BRCA1 in DNA damage response” network included
some of our more interesting candidates, such as SMARCA4,
BARDI, BRIP1, and RBI (Supplementary Figure S3b online).

DISCUSSION
Exome sequencing in 43 patients with CRC from 29 families
with strong disease aggregation identified new potential CRC
predisposition variants in CDKNIB, XRCC4, EPHX1, NFKBIZ,
SMARCA4, and BARDI.
CDKNI1B (p27, Kipl) binds to cyclin E/A-CDK2 and cyclin
D-CDK4 complexes and hinders their activation. By doing
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so it exerts control on cell cycle progression.” The ¢.195G>T
(p.Q65H) mutation is located inside the cyclin-dependent
kinase inhibitor region, particularly in the B-hairpin (residues
61-71), which interacts with CDK2.2' Therefore, this variant
most likely affects the normal interaction between CDKN1B
and CDK2, causing a deregulation in cell cycle progression.
Interestingly, germ-line mutations in this gene have been previ-
ously implicated in multiple endocrine neoplasia.> Moreover,
a polymorphism in this gene has been significantly associated
with hereditary prostate cancer.”

XRCC4 is involved in the repair of DNA double-strand
breaks by nonhomologous end joining and the completion of
V(D)] recombination events, along with DNA ligase IV and
the DNA-dependent protein kinase?* The c¢.497_498delTG
(p.-V166Efs*3) mutation is predicted to abolish protein func-
tion, and it is likely to contribute to genomic instability and
tumorigenesis.

The EPHXI1 enzyme converts epoxides produced by the deg-
radation of aromatic compounds to trans-dihydrodiols, which
afterward are conjugated and excreted from the body. Thus,
EPHX1 can be considered an important biotransformation
protein.” The affected residue of the ¢.293G>A (p.R98Q) muta-
tion is located in the epoxide hydrolase N-terminus region.
Because EPHX1 alleles can have a differential efficiency in pro-
carcinogen detoxification, it can be postulated that they may
affect cancer risk in a specific manner.?

NFKBIZ is involved in inflammatory response through regu-
lation of nuclear factor-«xB transcription factor complexes.””*
The ¢.2153_2154dupAT (p.*7191fs*10) mutation disrupts a stop
codon, producing an abnormally long C-terminal region. This
could affect the interactions with nuclear factor-kB complexes
that bind to that region, altering the transcriptional regulation
of its target genes and leading to cancer predisposition.

The SMARCA4 protein is a component in the large SNF/
SWI complex involved in chromatin remodeling. This complex
is necessary to activate the transcription of genes that are usu-
ally repressed by chromatin.? The ¢.295C>T (p.R99W) muta-
tion is located in the region necessary for the interaction with
SS18L1, which inhibits transcription of c-FOS and is required
for dendritic growth and branching in cortical neurons. It can
be hypothesized that this variant may cause predisposition to
CRC by impairing this network and causing abnormal cell pro-
liferation. Germ-line mutations in this gene can cause rhabdoid
tumor predisposition syndrome type 2*° and small-cell carci-
noma of the ovary, hypercalcemic type.*!

BARDI interacts with the well-known BRCA1 protein. Both
proteins, along with others, participate in several cellular path-
ways involved in DNA damage repair, ubiquitination, and
transcriptional regulation to preserve genomic stability.*> The
¢.1811-2A>G mutation is predicted to cause exon 9 skipping,
disrupting the BRCT1 domain, which is postulated to partici-
pate in ligand binding according its structure.”® This domain
is highly homologous to the BRCA1 BRCT1 domain, which is
considered to bind substrates of DNA damage response kinases
such as ATM. Moreover, tumor-associated mutations in the
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BRCT domains of BRCAL1 abolish binding to phosphorylated
substrates.** Thus, disruption of this BARDI domain likely
affects its capacity to interact with other proteins, abolishing its
tumor suppressor function. Germ-line mutations in this gene
predispose to breast and ovarian cancer,* and its expression has
been involved in differential CRC prognosis.*

Focusing on the best candidates to be involved in CRC
genetic predisposition (CDKNIB, XRCC4, EPHXI, NFKBIZ,
SMARCA4, and BARDI), it is remarkable that, as highlighted by
the IPA analysis and previous studies, most of them have been
formerly involved in DNA repair, cell cycle, and predisposition
to germ-line cancer, which supports their putative involve-
ment in genetic predisposition to CRC as well. Among them,
mutated BARDI and BRIPI have been found in the germ-line
DNA of breast cancer patients described in several reports.’>*’
In addition, DNA repair constitutes a cellular mechanism with
proven importance in the genetic predisposition for CRC.?

Among those variants within genes previously involved in
CRC predisposition or located in CRC GWAS hits, it is remark-
able that so far three independent studies, including ours, have
identified interesting variants in the AKR1C4 gene.'>!*

Taken together, we could conclude that our results highlight
some interesting candidates for CRC germ-line predisposition,
with an overrepresentation of genes involved in DNA repair and
the cell cycle. We identified several putative new genes predis-
posing to CRC and some with previous involvement in cancer
predisposition, including CDKN1B, XRCC4, EPHX1, NFKBIZ,
SMARCA4, and BARDI, that deserve to be considered in addi-
tional familial CRC cohorts with an unknown hereditary cause.
Furthermore, once their role in hereditary CRC is confirmed,
more complex functional studies would be warranted to help
understand the molecular mechanism of disease predisposition.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper
at http://www.nature.com/gim
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