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Transcriptome analysis reveals the
genetic basis underlying the seasonal
development of keratinized nuptial spines
in Leptobrachium boringii
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Abstract

Background: The expression of sexually selected traits often varies with populations’ breeding cycles in many
animals. The elucidation of mechanisms underlying the expression of such traits is a research topic in evolutionary
biology; however, the genetic basis of the seasonal development of their expression remains unknown. Male
Leptobrachium boringii develop keratinized nuptial spines on their upper jaw during the breeding season that fall
off when the breeding season ends. To illuminate the genetic basis for the expression of this trait and its seasonal
development, we assessed the de novo transcriptome for L. boringii using brain, testis and upper jaw skin and
compared gene expression profiles of these tissues between two critical periods of the spine growth cycle.

Results: We identified 94,900 unigenes in our transcriptome. Among them, 2,131 genes were differentially
expressed between the breeding period when the spines developed and the post-breeding period when the
spines were sloughed. An increased number of differentially expressed genes (DEGs) were identified in the upper
jaw skin compared with the testis and brain. In the upper jaw skin, DEGs were mainly enriched in cytosolic part,
peptidase inhibitor activity and peptidase regulator activity based on GO enrichment analysis and in glycolysis/
gluconeogenesis, ribosome biogenesis in eukaryotes and retinol metabolism based on KEGG enrichment analysis.
In the other two tissues, DEGs were primarily involved in the cell cycle, DNA replication and melatonin production.
Specifically, insulin/insulin-like growth factor and sex steroid hormone-related DEGs were identified in the upper
jaw skin, indicating . The expression variation of IGF2 and estrogen-related genes may be the main factors
regulating the seasonal development of the spines.

Conclusions: Our study provides a list of potential genes involved in the regulation of seasonal development of
nuptial spines in L. boringii. This is the first transcriptome survey of seasonally developed sexually selected traits for
non-model amphibian species, and candidate genes provided here may provide valuable information for further
studies of L. boringii.
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Background
Elucidating the mechanisms underlying the expression
of sexually selected traits (SSTs) has been an important
research topic in evolutionary biology since Darwin’s
theory of sexual selection was developed [1, 2]. Intrasex-
ual selection (competition for mates) and intersexual se-
lection (mate choice) are the two principle mechanisms
driving the evolution of animal sexual traits [3]. In most
species, males tend to compete with each other for ac-
quiring mates, and females tend to be choosy. Thus,
SSTs typically evolved in male individuals [1–3]. The
best studied SSTs are elaborate ornaments or weapons,
such as the peacock’s tail [4], horns of scarab beetles [5],
swords of the swordtail fish [6], and antlers of the deer
[7]. Among SSTs, weapons have evolved multiple times
across the animal kingdom [8]. Specific to male individ-
uals, weapons are often used in physical combat between
male rivals competing for mates by establishing domin-
ance hierarchies or defending reproduction resources
[1, 3, 8, 9]. However, despite a wealth of information
demonstrating the importance of weapons and their
evolution by sexual selection, physiological and genetic
mechanisms that regulate their development across
animal taxa remain unknown [2, 8].
Within species, characteristics of male SSTs in general

and the size of weapons in particular strongly depend on
individual body size, physiological condition, nutritional
condition and genetic quality [5, 10–14]. Moreover, the
expression of diverse male SSTs varies with a popula-
tions’ breeding cycle [15–18]. Some male SSTs, such as
ornamental plumage of birds, are highly expressed dur-
ing the breeding season [19]. Other SSTs, such as the
nuptial pads of amphibians, nuptial coloration of fishes,
or nuptial spines of Leptobrachium anurans, only appear
during the breeding season [15–18]. Seasonal changes in
plasma sex steroid hormones, especially in testosterone,
are important factors that regulate the growth of season-
ally developed male sexual traits [16, 18, 20, 21]. The in-
crease in testosterone (or related androgen) in males
could trigger the expression of such traits, whereas low

levels of this hormone would be insufficient to trigger its
activation [18, 19, 22]. Recent studies have demonstrated
that the insulin/insulin-like growth factor (IGF) pathway
is a widely conserved physiological mechanism regulat-
ing the development of pronounced sexual traits across
animal taxa [23, 24]. In addition, IGF can interact with
sex steroid hormones to regulate the development of
condition-sensitive sexual traits [25, 26]. However, prior
research on the mechanisms controlling the expression
of sexual traits mostly used physiological experiments,
such as histology and hormone implants experiments, or
measured expression levels of a small number of genes,
making the genetic basis of these mechanisms largely
unknown [15, 16, 20, 21, 27].
In amphibians, most SSTs develop only during the

breeding season [16]. In addition, hormonal-based
modulatory mechanisms for the expression of some
SSTs, such as skin excrescences at the thumb pads
and nuptial pads, have been well studied in numerous
anurans [16, 28]. Among amphibians, defensive struc-
tures such as spines and tusks are developed by males
of few anuran species [29, 30]. They have been
phenotypically described in diverse publications, but
the physiological mechanisms regulating their devel-
opment remain unexplored [16, 30]. In Leptobrachium
boringii, during the breeding season, adult males de-
velop 10 to 16 keratinized nuptial spines on the edge
of their upper jaw that are used as weapons during
combat with rivals for territory defense and acquiring
mates, and these spines fall off once the breeding sea-
son ends (Fig. 1) [31, 32]. Therefore, L. boringii could
be an excellent model to study the molecular basis
underlying the seasonal development of sexually selected
traits for seasonal breeding animals.
High-throughput next-generation sequencing technolo-

gies allow for the accurate exploration of gene expression
profiles of phenotypic traits for living organisms. Differen-
tial gene expression analysis allows studying the genetic
basis of context-specific tissue development without the
need for a reference genome [33]. Here, we sequenced

Fig. 1 Different phenotypes of the keratinized nuptial spines in Leptobrachium boringii during different breeding periods. Male L. boringii grow 10
to 16 nuptial spines on the upper jaw during the breeding period (left), and the spines are sloughed at the post-breeding period (right)
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and assembled the transcriptome of the brain, testis and
the upper jaw skin of male L. boringii during the breeding
and post-breeding periods using Illumina sequencing
technology. We then compared the differential gene ex-
pression profiles of the three tissues between these two
time periods of the spine growth cycle. Our objective was
to identify candidate genes involved in the seasonal devel-
opment of nuptial spines in Leptobrachium anurans.

Results and Discussion
Illumina sequencing and de novo assembly
Due to the absence of a reference genome for L. boringii,
we de novo assembled a transcriptome as a reference for
read mapping and gene expression profiling in this spe-
cies. The assembly generated 602,214,290 raw reads for
L. boringii. We obtained an average of 31,817,564 clean
reads for our 18 samples (Additional file 1: Table S1). In
our assembly, 183,601 transcripts with a total length of
258,254,318 bp were obtained, and they were assembled
into 94,900 unigenes, which totaled 81,414,717 bp. N50
lengths of the transcripts and unigenes were 2,941 bp
and 1,854 bp, respectively (Table 1), and Q20 of all sam-
ples were greater than 96% (Additional file 1: Table S1).
In addition, the mapping rates of clean reads to the as-
sembled unigenes for all samples ranged from 75.70% to
81.83% (Additional file 1: Table S1). Taken together, our
de novo assemblies revealed a high quality compared
with previous studies [5, 34, 35]. This high quality of
sequence reads and assembly was the foundation of all
our subsequent analyses [36].

Functional annotation and classification of unigenes
We used the databases NR, Swiss-Prot, PFAM, KOG,
GO, and KEGG for unigene annotation. NR and Swiss-
Prot databases resulted in reliable protein annotations
for approximately 25% of unigenes. The number and
percentage of annotated unigenes are presented in
Table 2. Among all annotated databases, the largest
match of annotation hits (24.51%) was obtained with the
GO database. KEGG showed the smallest match

(11.19%, Table 2). Of 94,900 unigenes assembled, 29,319
genes (30.89%) exhibited a positive match against at least
one database. Thus, many of the unigenes have not been
functionally annotated. However, several reasons could
explain this annotation failure. Those unsuccessfully
annotated unigenes could be partially or misassembled
transcripts, sequences from UTR protein regions, or
meaningless protein genes. In addition, for non-model
amphibians, published genomic data in general and es-
pecially genetic data on the expression of sexual traits
are still lacking. All of these factors combined with the
absence of genomic information for L. boringii would
have caused the failure of functional annotation of a part
of the identified unigenes. However, considering that
previous studies successfully annotated approximately
25,000 genes in other non-model amphibian species,
such as Odorrana margaretae, Megophrys sangzhiensis
and Rhacophorus omeimontis [34, 37], our gene anno-
tation results (more than 29,000 unigenes annotated)
from L. boringii’s transcriptome can be considered as
high quality.
In our study, a total of 23,260 unigenes (~25%) were

assigned to 50 sub-categories of GO terms belonging to
the following three main categories: cellular component
(CC), molecular function (MF) and biological process
(BP). These main categories included 17, 11 and 22 sub-
categories, respectively (Fig. 2). The most enriched GO
terms were related to cell and organelle parts for the
category CC, binding and catalytic activity for MF, and
cellular process and metabolic process for BP (Fig. 2).
The KOG database mainly describes the phylogenetic
classification of proteins encoded in complete genomes
[38]. In our annotation, only a small proportion of
assembled unigenes were mapped to the KOG database,
with 12,357 genes classified functionally into 26 categories
(Fig. 3). The most enriched KOG categories were General
function prediction (2,746 or 22.2%), Signal transduction
mechanisms (2,416 or 19.6%), and Posttranslational

Table 1 Number and length of transcripts and unigenes in the
Leptobrachium boringii transcriptome

Length Transcripts Unigenes

200–500 bp 79,093 58,375

500–1 k bp 33,563 16,031

1 k-2 k bp 29,559 9,898

>2 k bp 41,386 10,596

Total length 258,254,318 81,414,717

Mean length 1,407 858

N50 2,941 1,854

Total number 183,601 94,900

Table 2 Summary of unigenes annotated in different databases

Database Annotated unigenes Percentage (%)

NR 22,577 23.79

PFAM 22,121 23.30

Swiss-Prot 19,514 20.56

KOG 12,357 13.02

GO 23,260 24.51

KEGG 10,625 11.19

All 29,319 30.89

NR NCBI non-redundant protein sequences, NT NCBI non-redundant nucleotide
sequences, PFAM Protein family, Swiss-Prot A manually annotated and reviewed
protein sequence database, KOG Clusters of Orthologous Groups of proteins, GO
Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes database,
All, total number of unigenes that were successfully annotated in at least
one database
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modification, protein turnover and chaperones (1,158 or
9.4%). In addition, we further annotated all unigenes into
pathways in KEGG for understanding their high-level
functions and utilities in the biological system of studied
animals [39]. A total of 10,625 unigenes were mapped to
259 signaling pathways in our annotation. Signal transduc-
tion was the most enriched pathway, followed by pathways
in the endocrine system and immune system (Fig. 4).
These annotations may provide a valuable resource for
further understanding of specific functions and pathways
in L. boringii studies.

Analysis of differentially expressed genes in the studied
tissues
To explore genes controlling the seasonal development
of nuptial spines in L. boringii, we compared the gene
expression profiles in the brain, testis and upper jaw skin

between the breeding and post-breeding periods and
identified the significantly differentially expressed genes
(DEGs). The final set of DEGs in each tissue was re-
vealed by the hierarchical clustering of expression pat-
terns (Additional file 2: Figure S1). The hierarchical
clustering of DEGs revealed that sample groups were
more divergent across tissues than between the studied
time periods. Each tissue had a relatively distinct gene
clusters and expression pattern, so we performed the
following differential expression analysis separately for
each studied tissue.
Overall, we finally identified 2,131 DEGs in the three

tissues, and 75 DEGs were shared by these tissues
(Fig. 5d). For approximately 70% (1,484) of the DEGs
that were functionally annotated, we were able to
complete an overall comprehensive review of these
DEGs. As shown in the Venn diagram (Fig. 5d), more

Fig. 2 Gene Ontology (GO) classification of the assembled unigenes in Leptobrachium boringii

Fig. 3 Eukaryotic orthologous group (KOG) classification of the assembled unigenes in Leptobrachium boringii
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DEGs were found in the upper jaw skin compared with
the brain and testis. This finding suggests that the upper
jaw skin causes greater changes in gene expression
than the sexual glands (testes) and central nervous
system (brain) during different breeding periods in L.
boringii, indicating that the upper jaw skin might play
a relatively important role in the development of
nuptial spines compared with the other two tissues.
Significant GO enrichment and KEGG enrichment (p <
0.05) in each tissue could provide valuable information to
understand the gene function of the DEGs involved in the
development of nuptial spines (Table 3; Table 4; Additional
file 1: Table S2).
To validate the differentially expression profiles ob-

tained from RNA-seq, we selected eight DEGs among
the three tissues for qRT-PCR analysis. Six of them
closely matched the results detected by RNA-seq, with a
correlation coefficient of R = 0.957 (Fig. 6). Although the
other two genes (GAG1L, KRT) did not have a perfect
match and exhibited approximately 4-fold differences in
relative expression, they still exhibited the same expres-
sion pattern at the two time periods. The correlation
coefficient for all eight genes was R = 0.745. Overall, the
qRT-PCR results were consistent with the RNA-

sequencing data, indicating that our transcriptome data
were credible.

Differentially expressed genes in the upper jaw skin
A total of 1,181 DEGs were identified in the upper jaw
skin between the breeding and post-breeding periods in
L. boringii. Among them, 748 genes (63.34%) were
down-regulated, and the remaining 433 genes (36.66%)
were up-regulated during the breeding period (Fig. 5c).
A complete list of the DEGs in the upper jaw skin is
provided (Additional file 1: Table S3). To better under-
stand the biological processes of the DEGs in the skin
during the two time periods of the development cycle
for nuptial spines, we assigned all DEGs to GO and
KEGG databases and analyzed the significant enrich-
ments. However, despite the fact that so many DEGs
were identified from the upper jaw skin, no significant
enrichment of GO terms was identified among all DEGs
(Additional file 1: Table S2). In up-regulated DEGs in
the upper jaw skin, ncRNA metabolic process, tRNA
metabolic process and ether hydrolase activity were
found to be significantly enriched (adjust P < 0.05), indi-
cating that the nuptial spines were actively transcribed
during the growth period (Additional file 1: Table S2).

Fig. 4 KEGG classification of the assembled unigenes in Leptobrachium boringii. A to E represent five categories of the KEGG pathways: a cellular
processes; b environmental information processing; c genetic information processing; d metabolism; e organismal systems
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The most enriched GO terms among DEGs (P < 0.05) in
the skin were related to the cytosolic part, peptidase in-
hibitor activity, peptidase regulator activity and the
extracellular region (Table 3a). This finding indicates
that the seasonal development of the nuptial spines may
be caused by changes in the cytosol cells and their extra-
cellular matrix from the ‘dermis base’ of spines in upper
jaw skin. The differential expression of peptidase inhibi-
tor and regulator activities may be involved in the regu-
lation of growth metabolism for the nuptial spines. The
significantly enriched KEGG pathway among all DEGs
in the upper jaw skin was only glycolysis/gluconeogene-
sis (Table 4). In addition, both the up-regulated and
down-regulated genes were significantly enriched in the
pathways related to the category of metabolism and
genetic information processing. Yet, different biological
processes were enriched between up-regulated and
down-regulated genes (Table 4). During the breeding
period, DEGs involved in translation and protein pro-
cessing exhibited high expression levels, whereas during

the post-breeding period, DEGs were mainly involved in
the metabolism of cofactors and vitamins, amino acids
and carbohydrates.
We identified the top 10 up-regulated and 10 down-

regulated genes in the upper jaw skin by the order of
FDR correction to obtain potential genes that may dir-
ectly control the seasonal development of the nuptial
spines. Our results indicate that the most differentially
expressed genes in the upper jaw skin were mainly
expressed in the extracellular matrix and were involved
in peptidase inhibitor activity, the regulation of tran-
scription and metabolic processes including COL28A1,
SERPINB4, OGN and CSTB (Table 5). The top three
most down-regulated genes during the breeding period
were all lysosomal alpha-gluacosidase-like genes (Table 5).
A previous study proposed that lysosome-mediated au-
tophagy may participate in the regulation of cell death by
degrading the extracellular matrix [40]. We thus consid-
ered that the epidermal cells of the upper jaw skin con-
nected to the keratinized spines may undergo apoptosis

Fig. 5 Differential expression analysis of tissue comparisons between the breeding and post-breeding periods. Volcano plot of differentially expressed
genes in the brain (a), testis (b) and upper jaw skin (c; spine for short in figure) are separately presented. The X axis represents differential fold-change
(log2FC) of the differentially expressed genes (DEGs), and the Y axis represents the –log padj value of the DEGs. padj represents the adjusted P-value of
the DEG, and 0.05 was set as the significance level. Significantly up-regulated DEGs in the breeding period compared with the post-breeding period
are presented in red, whereas significantly down-regulated DEGs are shown in green. Non-significantly differentially expressed genes are presented in
blue. d Venn diagram showing co-differentially expressed genes among different tissue comparisons in Leptobrachium boringii
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when these spines are sloughed. Newt-specific cysteine-
rich growth regulator (nsCCN) is a growth factor that was
first identified in the newt species Notophthalmus virides-
cens and has an important role in the regeneration process
of heart tissue [41]. In L. boringii, we observed a high ex-
pression level of nsCCN in the upper jaw skin after the
spines had sloughed. Hence, we hypothesized that nsCCN
may play a crucial role in the regeneration of epidermal
cells after spines separate from the skin. The surface of
the nuptial spines is highly keratinized, and the deciduous
part is mainly the keratinized region. Interestingly, many
of the keratin-related genes were up-regulated in the

upper jaw skin when these spines developed. These genes
were down-regulated when these weapons were sloughed
(Additional file 1: Table S3). These findings support the
involvement of keratin-related genes in the development
of nuptial spines.

Differentially expressed genes in the testis and brain
Using the same method as for the upper jaw skin, we
further analyzed DEGs in the testis and brain. In sum-
mary, fewer DEGs were identified in these two tissues
compared with the upper jaw skin. A total of 843 and
107 genes were differentially expressed in the testis and

Table 3 The most enriched GO terms of differentially expressed genes in the three tissues

Go term P-value DEG (all) Representative genes

(a) Upper jaw skin: differentially expressed genes: 1181

Cytosolic part
(GO:0044445:CC)

<0.001 17 (148) Rab interacting lysosomal protein; keratin, type I cytoskeletal 42-like;
keratin 17; dystrophin related protein 2

Peptidase inhibitor activity (GO:0030414:MF) <0.001 20 (232) Collagen alpha-1(XXVIII) chain; Cathelicidin antimicrobial peptide; small
nuclear ribonucleoprotein polypeptide A; serpin B5

Peptidase regulator activity GO:0061134:MF) <0.001 20 (234) Cystatin B (stefin B); tectorin alpha, gene 2 precursor; cystatin-like isoform
1; WAP four-disulfide core domain protein 3-like

Extracellular region part
(GO:0044421:CC)

<0.001 49 (786) Keratin 17; newt-specific cysteine-rich growth regulator; keratin, type II
cytoskeletal 75-like; extracellular matrix protein 1 isoform 1

Prefoldin complex
(GO:0016272:CC)

<0.001 11 (71) Keratin, type I cytoskeletal 42-like; keratin 17;keratin, type I cytoskeletal 18-B;
dystrophin related protein 2

Extracellular region (GO:0005576:CC) <0.001 95 (1993) Keratin 17; insulin-like growth factor-binding protein 2 precursor;
transmembrane protein 111

(b) Testis: differentially expressed genes: 843

Chromosome
(GO:0005694:CC)

<0.001 51 (627) Origin recognition complex, subunit 1; shugoshin-like protein 2;
ubiquitin-conjugating enzyme E2 T

Chromosomal part (GO:0044427:CC) <0.001 45 (538) Tryptophan rich basic protein precursor; centromere protein I; proliferating
cell nuclear antigen

Chromatin
(GO:0000785:CC)

<0.001 26 (194) DNA replication licensing factor mcm4; GTP-binding nuclear protein Ran;
transcriptional activator Myb isoform 2

Cell cycle
(GO:0007049:BP)

<0.001 50 (711) Meiotic nuclear divisions 1 homolog; proliferating cell nuclear antigen;
cyclin-dependent kinases regulatory subunit 2

MCM complex
(GO:0042555:CC)

<0.001 6 (10) DNA replication licensing factor mcm5; DNA replication licensing factor
mcm4; zygotic DNA replication licensing factor mcm6

Chromatin binding
(GO:0003682:MF)

<0.001 17 (131) High mobility group nucleosomal binding domain 3; DNA replication
licensing factor mcm4; transcriptional activator Myb isoform 2

(c) Brain: differentially expressed genes: 107

Aralkylamine N-acetyltransferase activity
(GO:0004059:MF)

0.002 1 (1) Arylalkylamine N-acetyltransferase;

Selenium binding (GO:0008430:MF) 0.003 2 (41) Selenoprotein P, plasma, 1-like precursor;

Sulfonylurea receptor activity (GO:0008281:MF) 0.004 1(2) ATP-binding cassette sub-family C member 9 isoform 1;

Actin crosslink formation
(GO:0007049:BP)

0.009 1 (5) Actinin, alpha 3

Cysteine-type peptidase activity
(GO:0008234:MF)

0.009 3 (241) Cthepsin K-like; cathepsin L1 precursor;

Protein-hormone receptor activity
(GO:0016500:MF)

0.014 1 (8) Thyrotropin receptor isoform 1 precursor

The significantly enriched GO terms in each tissue of Leptobrachium boringii are presented above. For each GO term, its ID, the ontology of level 1 (BP, Biological
Process; MF, Molecular Function; CC, Cellular Component), count of the number of differentially expressed genes (DEGs) and the number of all annotated genes
are presented (All in brackets). The representative genes of each enriched GO term are also provided here
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brain, respectively. In the testis, 499 genes (59.19%) were
down-regulated and 344 genes (40.81%) were up-
regulated during the breeding period (Fig. 5b; Additional
file 1: Table S4). In the brain, the corresponding data

were 52 genes (48.60%) and 55 genes (51.40%), respect-
ively (Fig. 5a; Additional file 1: Table S5).
Among the three studied tissues, we found the greatest

elevated number of enriched GO terms in the testis with

Table 4 Significantly enriched KEGG pathways among differentially expressed genes in Leptobrachium boringii

Tissue DEGs type Pathway FDR DEGs All genes

Spine All Glycolysis/Gluconeogenesis 1.65E-02 14 87

Up-regulated Ribosome biogenesis in eukaryotes 7.88E-04 10 70

Biosynthesis of secondary metabolites 3.12E-03 22 360

Proteasome 1.68E-02 6 40

Sulfur relay system 3.97E-02 3 9

Pentose phosphate pathway 4.08E-02 5 35

Aminoacyl-tRNA biosynthesis 4.40E-02 5 37

Down-regulated Retinol metabolism 8.78E-04 12 91

ECM-receptor interaction 4.19E-03 11 98

Tyrosine metabolism 4.19E-03 8 53

Drug metabolism - cytochrome P450 1.20E-02 10 98

Glycolysis / Gluconeogenesis 1.52E-02 9 87

Nicotinate and nicotinamide metabolism 1.52E-02 6 39

Vitamin B6 metabolism 2.30E-02 3 8

Pantothenate and CoA biosynthesis 2.39E-02 4 18

Testis All Cell cycle 3.29E-11 27 125

DNA replication 9.73E-11 14 30

Cell cycle - yeast 1.38E-10 20 73

Meiosis - yeast 4.89E-05 12 56

Mismatch repair 5.80E-05 7 17

Pyrimidine metabolism 5.76E-04 14 97

Fanconi anemia pathway 3.52E-03 8 41

Homologous recombination 5.07E-03 6 24

Purine metabolism 1.78E-02 17 187

Down-regulated Cell cycle 0.00E + 00 26 125

DNA replication 1.67E-13 14 30

Cell cycle - yeast 3.46E-13 19 73

Meiosis - yeast 3.19E-07 12 56

Mismatch repair 2.53E-06 7 17

Pyrimidine metabolism 1.11E-04 12 97

Fanconi anemia pathway 1.29E-04 8 41

Homologous recombination 3.89E-04 6 24

Base excision repair 1.57E-02 5 31

Nucleotide excision repair 2.18E-02 5 34

Spliceosome 2.31E-02 10 133

Oocyte meiosis 2.31E-02 9 112

Purine metabolism 2.74E-02 12 187

p53 signaling pathway 4.31E-02 6 61

The significantly enriched KEGG pathways in each tissue of Leptobrachium boringii are presented above. FDR represent the false discovery rate adjusted P-value.
For each enriched KEGG pathway, we counted the number of differentially expressed genes (DEGs) and the number of all annotated genes (All in brackets). Spine
represents the upper jaw skin
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16 terms significantly enriched among all DEGs and 103
GO terms significantly enriched among down-regulated
genes. The enriched GO terms were predominantly
related to chromosome, DNA replication metabolism,
cell division, cell cycle and spermatogenesis (Table 3b,
Additional file 1: Table S2). Consistent with the GO
term enrichment results, significant pathways enriched

in KEGG were mostly assigned to genetic information
processing, cellular processes, and metabolism (Table 4).
Cell cycle, DNA replication, Cell cycle-yeast, and
Meiosis-yeast were the most enriched pathways among
all DEGs. The top most up-regulated and down-
regulated genes identified in the testis were mainly re-
lated to the above function categories (Additional file 1:

Fig. 6 Quantitative real-time PCR confirmation of differentially expressed genes identified by RNA-seq. Relative expression levels are fold-changes
expressed as the ratio of gene expression at the breeding period to post-breeding period normalized with GADPH gene

Table 5 Top 20 most differentially expressed genes in the upper jaw skin

Gene_Id Symbol FDR log2FC Expression Gene Description

comp80990_c0 GAA 7.69E-21 −4.1233 Down Lysosomal alpha-glucosidase-like

comp65666_c0 GAA 4.74E-20 −4.1481 Down Lysosomal alpha-glucosidase-like

comp41689_c0 GAA 4.87E-18 −4.5083 Down Lysosomal alpha-glucosidase-like

comp42769_c0 N/A 8.91E-16 −5.0603 Down Hypothetical protein LOC100026915

comp78052_c0 COL28A1 4.91E-15 −3.6949 Down Collagen alpha-1(XXVIII) chain

comp83419_c0 SERPINB4 1.54E-12 −3.196 Down Serpin peptidase inhibitor, clade B (ovalbumin), member 4

comp95579_c0 OGN 2.13E-12 −3.0357 Down Mimecan-like

comp82704_c0 N/A 7.28E-12 −4.6938 Down UDP-GlcNAc: beta Gal beta-1,3-acetylglucosaminyl transferase 6 isoform 1

comp94451_c0 N/A 3.84E-11 −3.916 Down Hypothetical protein LOC100493539

comp93492_c0 nsCCN 9.4E-11 −3.3559 Down Newt-specific cysteine-rich growth regulator

comp87325_c0 N/A 3.55E-31 5.7757 Up WAP four-disulfide core domain protein 3-like

comp70946_c0 CSTB 7.89E-23 4.2488 UP Cystatin B (stefin B)

comp28513_c0 KRT42 1.93E-11 7.2399 Up Keratin, type I cytoskeletal 42-like

comp95706_c0 CEACAM2 7.64E-10 2.7041 Up Carcinoembryonic antigen-related Cell adhesion molecule 2-like, partial

comp90443_c0 HIGD1A 2.68E-09 2.6328 UP HIG1 domain family, member 1A

comp94262_c0 CD59 3.23E-09 2.5861 Up CD59 glycoprotein-like

comp75816_c0 TMEM229B 1.41E-08 2.548 Up Transmembrane protein 229b-like

comp82708_c0 NPPC 3.42E-08 2.7999 Up C-type natriuretic peptide 2

comp84554_c0 LDHA 3.87E-08 2.6708 Up Lactate dehydrogenase A

comp20263_c0 N/A 5.16E-08 5.0778 Up Hypothetical protein M91_20043

The gene ID, FDR, log2 FC, and gene description of the top 10 down-regulated and 10 up-regulated significantly differentially expressed genes (DEGs) are presented.
Expression means gene expression level at the breeding period compared with the expression level at the post-breeding period (up- or down-regulated). We sorted
the DEGs first by the smallest FDR and then by the largest absolute value of log2 FC. FDR, false discovery rate adjusted P-value. Log2 FC, log2 transformed
fold-change values
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Table S6). Overall, the enrichment results overwhelm-
ingly highlighted the activity of genetic processing and
cellular processes in the testis. Generally, the seasonal
expression of secondary sexual traits and sex accessory
structures in most amphibians, especially the nuptial ex-
crescences of anurans, are regulated by gonadal activity
and gonadal steroid hormones [16]. However, we identi-
fied no significantly enriched terms related to steroid
hormones in the testis. In L. boringii, time spent on par-
ental care for offspring by reproducing males represents
a significant proportion (greater than 70%) of the breed-
ing season [32, 42]. Such a parental behavior is often
correlated with low androgen levels in vertebrate males
[21, 43]. Hence, the steroid hormone-related genes were
rarely differentially expressed in the testis during the
breeding season of L. boringii. We still find some DEGs
in the testis that might be indirectly involved in steroid
hormone activity. The relaxin and progesterone receptor
genes are good examples of such genes (Additional file 1:
Table S4). Therefore, we hypothesized that the gonadal
activity may not directly participate in the regulation of
the seasonal development of the nuptial spines through
testosterone but though other factors such as estrogen-
related genes.
Probably due to the limited number of DEGs in the

brain, no significant enrichment of GO terms and KEGG
pathways was identified. Among the enriched GO terms
(p < 0.05), “aralkylamine N-acetyltransferase activity” was
the most enriched term (Table 3c). Aralkylamine N-
acetyltransferase is involved in the production of mela-
tonin; it functions in the modulation of circadian rhythm
and is essential for seasonal reproduction of vertebrates
[44]. The top DEGs in the brain were mainly related to
signal transduction (Additional file 1: Table S6). Among
the top DEGs, kisspeptin precursor gene was the most
down-regulated during the breeding period (Table 3).
Kisspeptin is a G-protein coupled receptor ligand that
can stimulate the secretion of aldosterone and the re-
lease of insulin [45]. Furthermore, we found a consistent
expression pattern of ncCCN in the brain as well as in
the upper jaw skin with ncCCN exhibiting high expres-
sion levels during the post-breeding period. Previous
studies reported that the phenotypic variation of sexual
traits would lead to alterations of gene expression in the
brain [46]. Thus, we proposed that the brain may indir-
ectly modulate the seasonal expression of nuptial spines
through the genes specified above but also through other
still unidentified genes.

Potential genes regulating the seasonal development of
the nuptial spines
Previous studies have proposed that the development
and maintenance of male sexually selected traits in ver-
tebrates often rely on the regulation of androgens,

including testosterone [16, 21, 47]. In addition, the ex-
pression of SSTs tends to be more sensitive to the body
condition than to other phenotypic traits of the holders,
and recent discoveries implicated the widely conserved
insulin/insulin-like growth factor pathway as the com-
mon physiological mechanism regulating the growth of
these sexual traits [23, 24]. Based on our results and re-
sults of previous studies, we further selected DEGs with
functional categories related to insulin/insulin-like growth
factor and sex steroid hormone-related genes from all
DEGs between the two studied time periods to identify
potential genes regulating the seasonal development of
the nuptial spines.

Insulin/insulin-like growth factor-related genes
As a result, we selected three significant DEGs between
the two studied periods associated with insulin/insulin-
like growth factor (IGFBP2, IGF2-B, nsCCN) in the upper
jaw skin. Consistent with previous studies, IGFBP2 and
IGF2-B revealed up-regulated expression when the nuptial
spines were developed (Table 6). The insulin-like growth
factors (IGF-I and IGF-II) are produced by most tissues of
vertebrates and play roles in the regulation of proliferation
and differentiation of cells in most tissues [26]. IGF-
binding proteins (IGFBP) alter the interaction of IGFs
with their cell surface receptors and modulate the func-
tion of the IGFs in cell culture [48]. The up-regulated
IGF2-B and IGFBP2 genes during the breeding period
may increase the metabolism and growth of the cells of
the upper jaw skin connected with the nuptial spines,
allowing the growth of these weapons. However, the exact
molecular pathway involved must be verified by further
experiments. Additionally, the up-regulated nsCCN in the
upper jaw skin and brain when nuptial spines are sloughed
may play an important role given their vital role in the
tissue regeneration process.
The expression of striking sexual traits is always

associated with the holder’s body condition, as their ex-
pression is commonly sensitive to the nutrition history
[24, 49]. However, prior studies on condition-dependent
sexual traits rarely focused on amphibians, and such sexual
traits are often tightly coupled with individual variation
within a population [25]. In our study, for the first time,
we found that the expression of a striking male sexual trait
was likely associated with the changes in physiological
condition during a reproductive cycle of an amphibian
species. Insulin-like growth factor 2 (IGF2) may be the
main peptide affecting the development of nuptial spines
in L. boringii, and this is different from the regulation pat-
tern for exaggerated traits in most vertebrates through
IGF1 [23, 27]. In conclusion, the seasonal development of
the nuptial spines in L. boringii may operate in a
condition-dependent manner, and the IGF2 gene may be
involved in the regulation of this development.
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Sex steroid hormone-related genes
Five significantly DEGs involved in sex steroid hormone-
related pathways were identified in the upper jaw skin,
and two related DEGs were identified in the testis
(Table 6). Seasonally breeding amphibians often undergo
dramatic changes in the concentration of sex hormones
and in reproductive characteristics such as sexual mor-
phological traits and reproductive behaviors triggered by
those hormones at the onset and termination of each
breeding cycle [16, 50]. Specifically, 17β-hydroxysteroid
dehydrogenases (17β-HSD) are a group of alcohol oxido-
reductases that play a key role in the regulation of intra-
cellular concentrations of steroid hormones, including
androgens and estrogens [51, 52]. CYP3A5 encodes a
member of the cytochrome P450 enzyme superfamily
catalyzing the metabolism of steroid hormone into less
biologically active metabolites [53, 54]. During the post-
breeding period, the high expression of 17β-HSD genes
(HSD17B2, HSD17B6 and HSD17B11) and CYP3A5
may increase the degradation and metabolism of steroid
hormones and thus decrease the concentration of active
androgen and estrogen in the upper jaw skin. Generally,
testosterone regulates the expression of male secondary
sexual traits directly by stimulating intracellular andro-
gen receptors in the target tissues or indirectly by
aromatizing androgens into estrogen and binding to es-
trogen receptors [21]. Interestingly, in the upper jaw
skin, no androgen receptor but an estrogen receptor
gene (NR3A1) was differentially expressed between the
breeding and the post-breeding periods (Table 6). Once
activated, NR3A1 (or ERα) can translocate into the nu-
cleus and regulate the activity of eukaryotic gene expres-
sion, cellular proliferation and differentiation in target
tissues [55, 56]. However, to date, only a few amphibian
species have been reported to have α isoform of the

estrogen receptor (ER) [57, 58]. Our study is the first to
report the expression of ERα in the skin of an amphibian
species, indicating that the upper jaw skin where the
spines develop may be a target tissue whose growth and
replacement are regulated by estrogen.
Commonly, the presence of male parental care behav-

ior will decrease the expression of secondary sexual
traits [28]. However, male L. boringii express and main-
tain nuptial spines, a secondary sexual trait, during the
entire breeding season while simultaneously taking care
of offspring for a relatively long time period (at least two
months) [31, 42]. Together with the low androgen-
dependent parental care behavior in L. boringii, the sea-
sonal acquisition and maintenance of nuptial spines may
be regulated by estrogen. Moreover, the up-regulated
7β-HSD genes and ERα would have an inhibitory effect
on androgen output during the post-breeding period
[59, 60]. Thus, estrogens may play an important role in
the seasonal regulation of the nuptial spines in L. bor-
ingii. However, elucidating whether the seasonal devel-
opment of the nuptial spines is regulated by androgen
directly, by aromatization of androgen into estrogens
exerting related effects, or by both still needs further
investigation.
Relaxin is a small peptide hormone that can enhance

male sperm motility and fertilization capacity in verte-
brates [61, 62]. The expression of fRLX was altered with
the annual reproductive cycle of a frog species Pelophy-
lax esculentus and regulated by testosterone [63, 64].
The up-regulated fRLX in the testis of L. boringii during
the breeding period may enhance male reproductive ac-
tivity. The progesterone receptor (PGR) gene was also
up-regulated in the testis during the breeding period.
This gene is activated by progesterone and can inhibit
androgen-dependent reproductive behaviors in males

Table 6 Significantly differentially expressed genes involved in the two candidate pathways in Leptobrachium boringii

Gene name Gene Id Tissues Expression |log2FC| Description

Insulin/insulin-like growth factor-related genes

IGFBP2 comp91565_c0 Spine Up 1.8375 Insulin-like growth factor-binding protein 2 precursor

IGF2-B comp95271_c0 Spine Up 1.4543 Insulin-like growth factor II-B precursor

nsCCN comp93492_c0 Spine Down 3.3566 Newt-specific cysteine-rich growth regulator

nsCCN comp93492_c0 Brain Down 2.3587 Newt-specific cysteine-rich growth regulator

Steroid hormone-related genes

HSD17B11 comp93113_c2 Spine Down 2.5100 Hydroxysteroid (17-beta) dehydrogenase 11

HSD17B6 comp93072_c0 Spine Down 2.2184 Hydroxysteroid (17-beta) dehydrogenase 6 homolog precursor

HSD17B2 comp82544_c0 Spine Down 1.7356 Estradiol 17-beta-dehydrogenase 2-like

ESR1 comp77282_c0 Spine Down 1.6833 Estrogen receptor alpha

fRLX comp81782_c0 Testis Up 2.9616 Relaxin

PGR comp92661_c0 Testis Up 1.8223 Progesterone receptor

Expression indicates gene expression level at the breeding period compared with the expression level at the post-breeding period (up- or down-regulated).
|log2FC|, the absolute value of log2 transformed fold-change. Spine represents the upper jaw skin
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[65, 66]. Thus, we hypothesize that the high expression
of PGR during the breeding season may increase the
propensity of males for providing parental care at the ex-
pense of courtship and mating activities. Finally, there
may be other unknown important genes participating in
the regulation of seasonal expression for this trait in L.
boringii; thus, further study is needed.
Taken together, candidate genes involved in insulin/in-

sulin-like growth factor and sex steroid hormone path-
ways indicate that the nuptial spines in L. boringii
exhibit high estrogen sensitivity and low insulin/insulin-
like growth factor sensitivity during the post-breeding
period when the spines are sloughed. Thus, the seasonal
development and maintenance of the nuptial spines in
male L. boringii are likely modulated by the circulating
sex steroid hormones and the nutritional status. Candi-
date genes in the testis and brain may indirectly partici-
pate in this process by regulating the synthesis and
metabolism activity of steroid hormones and insulin
growth factor. Further study should focus on these two
candidate pathways and use testable experiments to
validate the molecular mechanism.

Conclusions
In this study, we conducted a transcriptome analysis of
an anuran species to explore the genetic basis of the
seasonal growth of a sexual weapon trait. Our overall
transcriptome provided a rich list of unigenes expressed
in adult males of L. boringii during the breeding and the
post-breeding periods. DEGs between different growth
periods of the keratinized nuptial spines in L. boringii
were identified. In total, 94,900 unigenes and 2,131
DEGs were generated in our transcriptome. These genes
greatly contribute to current genetic resources for the
anuran species. The number of DEGs identified from
the upper jaw skin was larger than the testis and the
brain, indicating that the upper jaw skin might contrib-
ute more to the seasonal changes in the spine activity.
Candidate genes related to steroid hormone signaling
pathways and the insulin/insulin-like growth factor path-
way are likely involved in regulating the seasonal growth
of the spines. The candidate genes and pathways are
promising for future studies on the seasonal growth of
the nuptial spines in Leptobrachium species and may be
helpful for other vertebrates.

Methods
Sample collection and RNA extraction
L. boringii male individuals were caught from the popu-
lation of the Badagong Mountain Natural Reserve
(Hunan, China, 29°39′-29°49′ N, 109°41′-110°09′ E)
during the breeding season of 2014. Sampling was per-
formed during the breeding period (in late March when
the nuptial spines were developed) and during the

subsequent post-breeding period (in late May once the
spines had sloughed, Fig. 1). At each sampling time,
three individuals were caught as biological replicates for
each study period. Once caught, these toads were kept
in single plastic boxes containing the same plant leaves
and water from their natural environment and trans-
ported to the laboratory. The living toads were eutha-
nized by injecting buffered MS-222 solution (3 g/l)
through the dorsal skin. Each toad was dissected with
0.1% diethyl pyrocarbonate (DEPC)-ddH2O solution-
treated scissors, and a tissue sample (each approximately
100 mg in scale) was taken from the brain, testis and the
upper jaw skin and stored in liquid nitrogen until
needed. Specifically, the tissue upper jaw skin was taken
from the skin area that contained a ‘papillary dermis
base’ of the spine, and the tissue brain was taken from
the whole brain region of each sampled individual. The
testis sample was randomly taken from the whole tissue
with the certain portion of each individual.
Total RNA of each sample was extracted using an RNA

extraction kit (Omega Bio-Tek, USA) with TRIzol® Re-
agent (Invitrogen, CA, USA) following the manufacturer’s
instructions. RNA degradation and contamination was
tested using 1% agarose gels. We measured RNA purity
and RNA concentration using the NanoPhotometer® spec-
trophotometer (IMPLEN, CA, USA) and Qubit® RNA
Assay Kit in Qubit® 2.0 Flurometer (Life Technologies,
CA, USA), respectively. RNA integrity was assessed using
the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, USA). Total
RNA was extracted from each tissue sample separately for
three replicates of each breeding period, and 18 high-
quality RNA samples were finally acquired.

Illumina sequencing and de novo assembly
For each tissue, using 3 μg total RNA as input material,
a cDNA library was constructed using the NEBNext®
Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA)
following the manufacturer’s instructions. In brief,
mRNA was purified from total RNA using poly-T oligo
(dT) magnetic beads, and fragments were generated
using divalent cations under elevated temperature in
NEBNext First Strand Synthesis Reaction Buffer (5×).
First strand cDNA was synthesized using random hex-
amer primers and M-MuLV Reverse Transcriptase
(RNase H−), and second strand cDNA was subsequently
synthesized with DNA Polymerase I and RNase H. The
library fragments with a preferential length of 150 to
200 bp were purified with the AMPure XP system (Beck-
man Coulter, Beverly, USA). Then, PCR was performed
with Phusion High-Fidelity DNA polymerase, universal
PCR primers and Index (X) Primer. We purified PCR
products using the AMPure XP system and assessed library
quality using the Agilent Bioanalyzer 2100 system. The
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above cDNA samples were then clustered using the TruSeq
PE Cluster Kit (Illumina, USA) on a cBot Cluster Gener-
ation System. We sequenced all libraries on an Illumina
Hiseq 2000 platform (San Diego, CA, USA), and 100 bp
paired-end reads were then generated for each of them.
Clean reads were obtained by removing the trimming

adapter sequences, reads containing poly-N and low quality
reads (reads with greater than 5% unknown nucleotides or
reads with less than 13 bp) from raw reads. The number of
raw reads, clean reads and Q20 were calculated at the same
time. All subsequent analyses were based on the clean
reads. Due to the absence of reference sequences for L. bor-
ingii, high quality clean reads were de novo assembled using
Trinity software (r20140717) with the min_kmer_cov set to
2 and with default values for all remaining parameters [67].
Unigenes was selected from the longest transcript copy of
each gene clusters to avoid redundant transcripts [68]. All
unigenes from the 18 tissue samples were combined in a
unigene database for the studied species, and all subsequent
analyses were performed on this database.

Functional annotation of unigenes
To functionally annotate the unigenes in L. boringii, we
searched our unigene set against the datasets of non-
redundant protein sequences (NR) in the National Center
for Biotechnology Information (NCBI; http://www.ncbi.
nlm.nih.gov), the Protein family database (PFAM; http://
pfam.xfam.org/) and the manually annotated and reviewed
protein sequence database (Swiss-Prot database; http://
www.ebi.ac.uk/swissprot/) using NCBI-BLAST (v 2.2.30)
[69] with an E-value cut-off of 1 × 10−5. Annotation was
extended to the Functional classifications of Gene Ontology
(GO; http://www.geneontology.org/), the Clusters of
Orthologous Groups of proteins (KOG/COG; http://
www.ncbi.nlm.nih.gov/COG), and Pathway Annotation of
the Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/pathway.html). GO annotation
was performed using Blast2GO pipelines with an E-value ≤
1E-3 [70, 71]. KOG annotation was searched with an
E-value ≤1E-5 [38]. We searched the unigenes against the
KEGG database using KOBAS (v 2.0) [72].

Differential expression analyses
Gene expression levels in each tissue were estimated
using the software package RSEM (v 1.2.0) based on the
expectation-maximization (EM) algorithm [73]. Firstly,
clean reads of each sample were mapped back onto the
assembled transcripts. Then, the read count for each
gene was obtained from the mapping results. The gene
expression level was estimated by calculating the frag-
ments per kb per million reads (FPKM) [74]. The pro-
files of gene expression level generated for each tissue
were combined and used to detect DEGs between the
breeding and the post-breeding periods. We used DESeq

R package (v2.15.3) [75] to perform differential gene ex-
pression analyses in the three tissues between these two
time periods. The resulting p-values were adjusted using
the Benjamini and Hochberg’s approach for controlling
the false discovery rate [76]. Genes with an adjusted
p-value (FDR) < 0.05 and |log2 (fold-change)| > 1 were
assigned as significant level.

Enrichment analysis of differentially expressed genes
GO enrichment of the DEGs was analyzed using GOseq R
packages based on Wallenius non-central hyper-geometric
distribution [77], which can adjust for gene length bias in
DEGs. The smallest P-value indicates the highest degree of
GO enrichment. KEGG pathway enrichment of the DEGs
was tested using KOBAS software [72]. The hypergeo-
metric test was applied in the enrichment analysis.
The minimum threshold of statistical significance was
fixed at p = 0.05.

Data confirmation by quantitative PCR analysis
To confirm the accuracy of our transcriptome data, we
selected eight genes among the significantly DEGs in the
three tissues and performed quantitative PCR experi-
ments. PCRs were performed with a CFX96 Touch Real-
Time PCR Detection System (BIO-RAD, Hercules, CA,
USA) using SYBR Green I Dye with a 20-μl total volume
mixture containing 2 μl of cDNA as the template. The
expression levels of the tested genes were normalized
with a housekeeping gene (glyceraldehyde-3-phosphate
dehydrogenase, GAPDH) as an internal control, and
relative gene expression was analyzed with the 2-△△Ct

method [78]. Mean values and standard errors were de-
termined by three biological replicates. The specific
primers for these genes were designed using PRIMER 5,
and information on these primers is additionally provided
(Additional file 1: Table S7).

Additional files

Additional file 1: Table S1. The statistics and quality of reads throughout
all samples in the Leptobrachium boringii transcriptome. Table S2. Significant
enrichment of GO terms in the three tissues. Table S3. Differentially expressed
genes in the upper jaw skin. Table S4. Differentially expressed genes in the
testis. Table S5. Differentially expressed genes in the brain. Table S6.
Top 10 most differentially expressed genes in testis and brain of
Leptobrachium boringii. Table S7. Specific primers used for quantitative
PCR validation. (XLSX 769 kb)

Additional file 2: Figure S1. Heatmap comparing differentially expressed
genes of the three tissues between different breeding periods. (DOCX 265 kb)
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