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Abstract: Background: Current guideline-based implantable cardioverter-defibrillator (ICD) im-
plants fail to meet the demands for precision medicine. Machine learning (ML) designed for survival
analysis might facilitate personalized risk stratification. We aimed to develop explainable ML models
predicting mortality and the first appropriate shock and compare these to standard Cox proportional
hazards (CPH) regression in ICD recipients. Methods and Results: Forty-five routine clinical vari-
ables were collected. Four fine-tuned ML approaches (elastic net Cox regression, random survival
forests, survival support vector machine, and XGBoost) were applied and compared with the CPH
model on the test set using Harrell’s C-index. Of 887 adult patients enrolled, 199 patients died (5.0 per
100 person-years) and 265 first appropriate shocks occurred (12.4 per 100 person-years) during the
follow-up. Patients were randomly split into training (75%) and test (25%) sets. Among ML models
predicting death, XGBoost achieved the highest accuracy and outperformed the CPH model (C-index:
0.794 vs. 0.760, p < 0.001). For appropriate shock, survival support vector machine showed the
highest accuracy, although not statistically different from the CPH model (0.621 vs. 0.611, p = 0.243).
The feature contribution of ML models assessed by SHAP values at individual and overall levels was
in accordance with established knowledge. Accordingly, a bi-dimensional risk matrix integrating
death and shock risk was built. This risk stratification framework further classified patients with
different likelihoods of benefiting from ICD implant. Conclusions: Explainable ML models offer a
promising tool to identify different risk scenarios in ICD-eligible patients and aid clinical decision
making. Further evaluation is needed.

Keywords: implantable cardioverter-defibrillators; machine learning; mortality; first appropriate
shock; Shapley Additive exPlanations values; personalized risk stratification

1. Introduction

Since their first introduction in clinical practice four decades ago, implantable cardiac
defibrillators (ICDs) have been undoubtedly recognized as an effective modality to prevent
sudden cardiac death (SCD), which affects millions of people worldwide each year [1–3].
Nonetheless, as heterogeneity exists among patients, and a high proportion of ICD re-
cipients in the real-world did not receive appropriate device therapies in the long-term
follow-up [4–6]. Moreover, patients implanted with ICD may suffer from procedure-
related complications, inappropriate ICD shocks, and psychological disorders [7]. As such,
to classify those most likely to benefit from ICD therapy, personalized risk assessment
is warranted.

Efforts have never ceased to optimize risk stratification for ICD candidates. Previous
established models, such as the Seattle Heart Failure Model–D [8], the Seattle Propor-
tional Risk model [9,10], and other models [11–17] integrating both risks of ventricular
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arrhythmias and pump failure death have been proved to have acceptable discrimination
to identify potential beneficiaries. These tools built by traditional statistical modeling
strategies are easy to interpret and use. However, statistical modeling is not suitable for
handling complex interactions and high-order nonlinear relationships that exist in real
situations [18]. In contrast, machine learning (ML), inherently embedded to deal with
these problems, may be a feasible solution to improve risk prediction [18]. Along with
its high flexibility and accuracy, machine learning has also been questioned regarding its
low interpretability, which is of particular importance in healthcare settings. Nowadays,
with advances in explainable ML tools, such as the Shapley Additive exPlanation (SHAP)
values, it is possible to have a thorough understanding of ML models [19].

In this study, we compared machine learning approaches incorporating time-to-event
analysis to traditional Cox proportional hazards (CPH) modeling for all-cause death and
appropriate shock prediction. We also used SHAP values to explain each variable’s contri-
bution to outcome events. Finally, we suggested a feasible framework for risk stratification
by integrating those two dimensions of risk of death and shock.

2. Materials and Methods
2.1. Patient Population

We retrospectively enrolled 1417 adult patients who received initial single- or dual-
chamber ICD implantation from 1 January 2010, through 31 December 2020, at our insti-
tution. We excluded patients with specialized indications for ICDs (n = 447), including
cardiac channelopathies, hypertrophic cardiomyopathy, and congenital heart disease due
to their distinctive pathophysiology, and patients who did not meet the current indication
for ICD implant [3]. We also excluded patients without any visit data after implant (n = 83).
After the exclusion of these patients, 887 patients were retained for analysis. This study
complied with the Declaration of Helsinki and was approved by Ethics Committee of Fuwai
Hospital. All patients provided informed consent. The flowchart of the study, including
patient selection, is illustrated in Figure 1.
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2.2. Outcome Definition

All-cause death and the first appropriate ICD shock were both predefined endpoints.
Survival conditions were obtained by hospital records, death certification, or phone calls
to patients’ relatives. Patients were required to perform device interrogations every
6–12 months and shortly after perceiving device therapies. Appropriate ICD shock was
defined as ICD shock delivered for ventricular tachycardia or ventricular fibrillation and
was adjudicated by a trained electrophysiologist though the therapy zones were at the
discretion of the treating physicians. The censoring dates for the two endpoints were not
necessarily the same because survival status was further ascertained even after the last
follow-up of device interrogations.

2.3. Data Collection and Preprocessing

A total of 45 variables, including patient demographics, laboratory values, comor-
bidities, medications, electrocardiogram findings, and echocardiographic indices were
collected from electronic medical records. Fourteen variables with missing data are shown
in Table S1. All these variables had missing rates less than 5%. Data preprocessing was
performed using the scikit-learn (version 1.0.2) module in Python 3.7.13. Dichotomous
variables were encoded using the OneHotEncoder function. The New York Heart Associ-
ation (NYHA) functional classification was transformed to an ordinal variable using the
OrdinalEncoder function. Continuous variables were scaled to normal distribution through
Box-Cox transformation and standardization using the PowerTransformer function, to
diminish the impact of variable variances on model performance. Missing values were
imputed with the mean value of each variable by the SimpleImputer function. Raw data
and the corresponding transformed values are provided in Table S2.

2.4. Modeling Strategies

The modeling process of all-cause death and appropriate shock was independent.
All patients enrolled were randomly split into a training set (n = 665, 75%) and a test set
(n = 222, 25%) using a stratified sampling method based on outcome events. To avoid
data leakage, data preprocessing was performed after data partitioning. We modeled the
outcomes as right-censored data. Four ML algorithms, including elastic net Cox regression
(EN-Cox), random survival forests (RSF), survival support vector machine (SSVM), and
eXtreme Gradient Boosting (XGBoost), were applied to build prediction models using the
scikit-survival [20] (version 0.17.1) and XGBoost [21] (version 1.5.2) modules. To ensure
the best performance of each model, hyperparameter tuning techniques of grid-search
with five-fold cross-validation were used to obtain optimal hyperparameters. On the other
hand, the CPH model was fitted through stepwise backward Cox regression based on
Akaike’s information criterion by entering variables significantly related to outcomes at
a p < 0.10 level using the ‘rms’ package of R software 4.1.2. It was set as a benchmark for
model comparison. The best ML models were respectively selected to construct risk scores
predicting death and shock. Subsequently, patients were respectively divided into three
equal-sized risk groups (low, intermediate, high) of death and shock. Accordingly, a 3-by-3
risk assessment matrix accounting for both risks was built. This risk stratification system
ultimately identified patients with different likelihood of benefiting from ICD implant.

2.5. Model Interpretability

SHAP values, based on the coalitional game theory by Lundberg and Lee [19], were
used to explain each variable’s contribution to prediction (risk scores in this study). It
provides both global interpretability (to which extent each predictor contributes positively
or negatively to the outcome event on the average) and local interpretability (contribution
of each predictor to the outcome in an individual). SHAP summary plots and dependence
plots were used to illustrate global interpretability, whereas the force plot was used to
illustrate local interpretability.
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2.6. Statistical Analysis

Continuous variables were summarized as either the mean ± standard deviation
or the median with the interquartile range (IQR), as appropriate; categorical variables
were presented as frequencies and percentages. Baseline characteristics were compared
using the Student’s t, the Mann–Whitney U, the chi-square or the Fisher exact tests, as
appropriate. Survival curves were plotted using the Kaplan–Meier estimator. Log-rank
tests were used to compare unadjusted differences between groups. Model accuracy
was assessed on the test set using Harrell’s concordance index (C-index) owing to its
independence of the proportional-hazards assumption. The C-index ranges from 0 to 1,
with 1 representing perfect discrimination between subjects who experience the outcome or
not, with 0 representing a completely wrong model. The confidence intervals of the C-index
were estimated by the bootstrap method with 100 resamplings. The overall difference of the
C-index was tested using one-way ANOVA. Furthermore, the C-index of each ML model
was compared with the CPH model using the Dunnett’s test. In sensitivity analysis, we
imputed missing variables by multivariable imputation using Bayesian ridge regression in
an iterative method. A two-sided p-value ≤ 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

A total of 887 patients who had initial ICD implant were identified in the study. The
mean age at ICD implantation was 59.0 ± 13.0 years. Patients were predominantly male
(75.2%), with a secondary prevention indication (72.9%), and had no pacing indications
(93.3%). Approximately half had ischemic cardiomyopathy (48.8%). Most patients pre-
scribed β-blockers and renin–angiotensin–aldosterone system (RAAS) inhibitors, while
only 10.6% were prescribed calcium channel blockers. Patient characteristics before and
after the partition are summarized in Table 1, with all covariates included in the prediction
models. Compared to the test set, there were no significant differences except for higher
dual-chamber ICD use and blood urea nitrogen (BUN) levels in the training set for the pre-
diction of death. On the other hand, patients in both sets for the prediction of appropriate
shock had similar characteristics across all spectra.

Table 1. Demographics of the training and test sets.

Characteristics

Datasets of All-Cause Death

p-Value

Datasets of First
Appropriate Shock

p-Value
All Patients

(n = 887)
Training Set

(n = 665)
Test Set
(n = 222)

Training Set
(n = 665)

Test Set
(n = 222)

Demographics

Age (years) 59.0 ± 13.0 59.3 ± 12.8 58.3 ± 13.7 0.361 59.0 ± 13.1 59.1 ± 13.0 0.894

Male sex 667 (75.2%) 504 (75.8%) 163 (73.4%) 0.537 498 (74.9%) 169 (76.1%) 0.779

Body mass index
(kg/m2)

24.7 ± 3.6 24.8 ± 3.5 24.5 ± 3.8 0.284 24.8 ± 3.7 24.6 ± 3.3 0.631

Ischemic etiology 433 (48.8%) 324 (48.7%) 109 (49.1%) 0.984 317 (47.7%) 116 (52.3%) 0.269

Family history of
sudden death

25 (2.8%) 20 (3.0%) 5 (2.3%) 0.723 16 (2.4%) 9 (4.1%) 0.293

Clinical characteristics

Smoking 416 (46.9%) 316 (47.5%) 100 (45.0%) 0.574 314 (47.2%) 102 (45.9%) 0.802

Primary prevention 240 (27.1%) 185 (27.8%) 55 (24.8%) 0.425 179 (26.9%) 61 (27.5%) 0.94

Dual-chamber ICD 303 (34.2%) 240 (36.1%) 63 (28.4%) 0.044 230 (34.6%) 73 (32.9%) 0.703

Systolic BP (mmHg) 120.5 ± 16.6 120.9 ± 16.4 119.5 ± 17.2 0.298 120.8 ± 16.9 119.7 ± 15.7 0.377
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Table 1. Cont.

Characteristics

Datasets of All-Cause Death

p-Value

Datasets of First
Appropriate Shock

p-Value
All Patients

(n = 887)
Training Set

(n = 665)
Test Set
(n = 222)

Training Set
(n = 665)

Test Set
(n = 222)

Diastolic BP
(mmHg)

73.5 ± 10.3 73.8 ± 10.1 72.9 ± 10.9 0.292 73.5 ± 10.5 73.7 ± 9.8 0.736

NYHA class 0.396 0.498

I 239 (26.9%) 176 (26.5%) 63 (28.4%) 184 (27.7%) 55 (24.8%)

II 326 (36.8%) 255 (38.3%) 71 (32.0%) 249 (37.4%) 77 (34.7%)

III 260 (29.3%) 189 (28.4%) 71 (32.0%) 188 (28.3%) 72 (32.4%)

IV 62 (7.0%) 45 (6.8%) 17 (7.7%) 44 (6.6%) 18 (8.1%)

Echocardiogram

LVEDD (mm) 60.3 ± 10.9 60.4 ± 10.8 59.9 ± 11.2 0.606 60.0 ± 11.0 61.2 ± 10.5 0.158

LVEF (%) 43.1 ± 14.6 43.2 ± 14.3 43.0 ± 15.3 0.897 43.4 ± 14.7 42.2 ± 14.1 0.282

LAD (mm) 42.5 ± 8.1 42.5 ± 7.9 42.5 ± 8.8 0.941 42.3 ± 8.0 43.0 ± 8.4 0.306

IVS (mm) 9.4 ± 2.3 9.4 ± 2.2 9.5 ± 2.7 0.555 9.4 ± 2.4 9.4 ± 2.1 0.747

RVD (mm) 22.6 ± 4.3 22.5 ± 4.2 22.9 ± 4.5 0.281 22.7 ± 4.5 22.6 ± 3.7 0.780

Tricuspid valve
regurgitation

84 (9.5%) 61 (9.2%) 23 (10.4%) 0.696 67 (10.1%) 17 (7.7%) 0.351

Mitral valve
regurgitation

169 (19.1%) 121 (18.2%) 48 (21.6%) 0.305 127 (19.1%) 42 (18.9%) 1.000

Electrocardiogram findings

Heart rate
(beats per minute)

69.0 ± 13.6 68.6 ± 13.7 70.1 ± 13.4 0.163 68.6 ± 13.8 70.1 ± 13.3 0.167

CLBBB 48 (5.4%) 32 (4.8%) 16 (7.2%) 0.232 38 (5.7%) 10 (4.5%) 0.604

CRBBB 53 (6.0%) 42 (6.3%) 11 (5.0%) 0.564 39 (5.9%) 14 (6.3%) 0.939

Frequent PVCs 371 (41.8%) 283 (42.6%) 88 (39.6%) 0.494 281 (42.3%) 90 (40.5%) 0.711

Pacing indication 59 (6.7%) 45 (6.8%) 14 (6.3%) 0.934 44 (6.6%) 15 (6.8%) 1.000

Comorbidities

Myocardial
infarction

345 (38.9%) 266 (40.0%) 79 (35.6%) 0.276 256 (38.5%) 89 (40.1%) 0.732

Atrial fibrillation 259 (29.2%) 190 (28.6%) 69 (31.1%) 0.531 189 (28.4%) 70 (31.5%) 0.425

Hypertension 383 (43.2%) 291 (43.8%) 92 (41.4%) 0.599 285 (42.9%) 98 (44.1%) 0.797

Diabetes 179 (20.2%) 134 (20.2%) 45 (20.3%) 1.000 134 (20.2%) 45 (20.3%) 1.000

Hyperlipidemia 431 (48.6%) 324 (48.7%) 107 (48.2%) 0.954 322 (48.4%) 109 (49.1%) 0.922

Stroke 58 (6.5%) 42 (6.3%) 16 (7.2%) 0.758 48 (7.2%) 10 (4.5%) 0.208

Hyperuricemia 78 (8.8%) 64 (9.6%) 14 (6.3%) 0.169 59 (8.9%) 19 (8.6%) 0.995

Laboratory tests

NT-proBNP
(pg/mL)

788.9
(302.0,1779.0)

765.8
(299.2,1761.8)

853.3
(330.8,1794.2)

0.479 743.6
(299.5,1714.0)

874.8
(316.8,1904.3)

0.268

Hemoglobin (g/L) 140.3 ± 18.1 140.1 ± 17.9 141.0 ± 19.0 0.530 140.8 ± 18.3 138.9 ± 17.8 0.174

Creatinine (µmol/L) 88.0
(75.2,103.7)

87.7
(75.3,104.0)

88.0
(75.0,102.6)

0.955 87.7
(75.0,104.0)

88.3
(75.7,102.9)

0.982

BUN (mmol/L) 6.6 (5.3,8.6) 6.7 (5.4,8.7) 6.0 (4.9,8.3) 0.015 6.6 (5.3,8.6) 6.5 (4.9,8.7) 0.428
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Table 1. Cont.

Characteristics

Datasets of All-Cause Death

p-Value

Datasets of First
Appropriate Shock

p-Value
All Patients

(n = 887)
Training Set

(n = 665)
Test Set
(n = 222)

Training Set
(n = 665)

Test Set
(n = 222)

hs-CRP (mg/L) 1.9 (0.8,4.6) 2.0 (0.8,4.7) 1.9 (0.8,4.2) 0.962 2.0 (0.8,4.3) 1.7 (0.8,5.6) 0.856

Medications

ACEI/ARB/
ARNI

573 (64.6%) 426 (64.1%) 147 (66.2%) 0.617 433 (65.1%) 140 (63.1%) 0.637

Amiodarone 461 (52.0%) 354 (53.2%) 107 (48.2%) 0.222 344 (51.7%) 117 (52.7%) 0.862

Beta-blockers 747 (84.2%) 567 (85.3%) 180 (81.1%) 0.170 564 (84.8%) 183 (82.4%) 0.462

Calcium channel
blockers

94 (10.6%) 74 (11.1%) 20 (9.0%) 0.446 72 (10.8%) 22 (9.9%) 0.796

Diuretics 564 (63.6%) 428 (64.4%) 136 (61.3%) 0.453 422 (63.5%) 142 (64.0%) 0.956

MRA 524 (59.1%) 396 (59.5%) 128 (57.7%) 0.676 394 (59.2%) 130 (58.6%) 0.919

Digitalis 196 (22.1%) 143 (21.5%) 53 (23.9%) 0.520 150 (22.6%) 46 (20.7%) 0.633

Statin 449 (50.6%) 330 (49.6%) 119 (53.6%) 0.342 332 (49.9%) 117 (52.7%) 0.523

Antiplatelet 322 (36.3%) 248 (37.3%) 74 (33.3%) 0.326 239 (35.9%) 83 (37.4%) 0.758

Anticoagulants 163 (18.4%) 115 (17.3%) 48 (21.6%) 0.180 120 (18.0%) 43 (19.4%) 0.733

Values are presented as the mean ± standard deviation, median (interquartile range), or frequency (%).
ACEI/ARB/ARNI, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker/angiotensin receptor-
neprilysin inhibitor; BP, blood pressure; BUN, blood urea nitrogen; CLBBB, complete left bundle branch block;
CRBBB, complete right bundle branch block; hs-CRP, high-sensitivity C-reactive protein; ICD, implantable
cardioverter-defibrillator; IVS, interventricular septum thickness; LAD, left atrial diameter; LVEDD, left ventricu-
lar end-diastolic diameter; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonist;
NT-proBNP, N-terminal pro-brain natriuretic peptide; NYHA, New York Heart Association; PVC, premature
ventricular contractions; RVD, right ventricular diameter.

3.2. Outcome Events

During the study period, 199 patients died, with a median follow-up duration of
4.8 (IQR, 3.0–7.1) years (incidence rate of 5.0 per 100 person-years); 265 patients received
the first appropriate shock with a median follow-up of 2.7 (IQR, 1.1–5.1) years (12.4 per
100 person-years).

3.3. Prediction of All-Cause Death and Appropriate Shock

ML and CPH models were developed in the training set. Table 2 shows the parameter
search space and optimal parameters for the ML models. Model performance in the test
set is shown in Figure 2. For the prediction of death, the CPH model achieved a C-index
of 0.760 (95% CI 0.752–0.768) on the test set. Among ML algorithms, XGBoost and RSF
both showed a significantly greater C-index than the CPH model (C-index difference of
0.034 and 0.021, respectively, both p < 0.001). The EN-Cox model had a trend toward better
performance than the CPH model (C-index difference of 0.011, p = 0.178). For the prediction
of appropriate shock, SSVM had the highest C-index of 0.621 (95% CI 0.613–0.628), but it
was not significantly higher than the CPH model (C-index difference of 0.009, p = 0.243).
EN-Cox had similar discrimination compared to the CPH model. However, XGBoost
and RSF were not superior to the CPH model (C-index difference of −0.023 and −0.022,
respectively, both p < 0.001). Model performance in the training set is provided in Table S3.
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Table 2. Parameter search space and optimal parameters for each model.

Algorithms Parameter Search Space Optimal Parameter
for Death Prediction

Optimal Parameter
for Shock Prediction

EN-Cox
l1 ratio 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0 0.9 0.2

alpha Log distribution from 0.0001 to 1 0.0233 0.0339

RSF

number of trees 100, 200, 300, 400, 500 400 500

maximum depth 2, 3, 4, 5, 6, 7 4 7

minimum samples
required to split 10, 14, 28, 22, 40, 50 22 40

minimum samples
required at leaf nodes 5, 7, 9, 11, 20, 25 5 9

SSVM

alpha 0.1, 1, 10, 100 0.1 0.1

gamma 1, 0.1, 0.01, 0.001 1 0.001

kernel rbf, poly, linear, sigmoid, cosine poly rbf

degree (poly kernels only) 2, 3, 4, 5 4 -

XGBoost

loss function CoxPH - -

learning rate 0.01, 0.05, 0.10 0.1 0.1

number of trees 20, 25, 30 30 30

maximum depth 1, 2 2 2

fraction of samples 0.4, 0.5 0.4 0.4

fraction of variables 0.4, 0.5 0.5 0.4

minimum samples
required to split 1, 2 1 1

EN-Cox, elastic net Cox regression; RSF, random survival forests; SSVM, survival support-vector machine;
XGBoost, eXtreme Gradient Boosting.
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Figure 2. Comparison of C-index between CPH and ML algorithms for all-cause death (A) and
first appropriate shock (B) in the test set. For predicting all-cause death, the C-index of CPH, EN-
Cox, RSF, SSVM, and XGBoost were 0.760 (95% CI 0.752–0.768), 0.771 (95% CI 0.763–0.779), 0.781
(95% CI 0.773–0.788), 0.767 (95% CI 0.759–0.775), and 0.794 (95% CI 0.786–0.802), respectively. For pre-
dicting shock, the C-index of CPH, EN-Cox, RSF, SSVM, and XGBoost were 0.611 (95% CI 0.604–0.618),
0.608 (95% CI 0.601–0.615), 0.589 (95% CI 0.581–0.597), 0.621 (95% CI 0.613–0.628), and 0.588
(95% CI 0.580–0.596), respectively. CI, confidence interval; CPH, Cox proportional hazards regression;
other abbreviations as in Table 2.
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3.4. Explainability Based on SHAP Values

We computed the SHAP values of CPH and ML models in the test set. As illustrated
in Figures 3 and S1, for the XGBoost model predicting death, increased N-terminal pro-
brain natriuretic peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDD),
the New York Heart Association (NYHA) functional classification, left atrial diameter
(LAD), high-sensitivity C-reactive protein (hs-CRP), age, BUN, and abnormal systolic blood
pressure (< 110 mm Hg or > 140 mm Hg) were the most important risk factors. In contrast,
increased left ventricular ejection fraction (LVEF) and hemoglobin level were among the
most protective factors. For SSVM predicting shock risk, the primary prevention indication,
increasing age, previous myocardial infarction, and higher LVEF, body mass index, and
systolic blood pressure were the most protective factors, while male sex, usage of RAAS
inhibitors, increased LAD, and LVEDD were the greatest risk factors (Figure 3 and S2).
SHAP summary plots show that each predictor in CPH models had the same effect direction
as the regression coefficients (Table S4). The summary plots of other ML algorithms are
shown in Figure S3. In addition, Figure 4 illustrates how each variable contributes to the
outcome prediction in a single patient.
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Figure 3. Model interpretability using SHAP values. CPH model (A), XGBoost (B) for prediction
of death; CPH model (C), SSVM (D) for prediction of appropriate shock. The X-axis stands for
SHAP value, and the predictor lies orderly on the Y-axis according to their importance (the higher in
position, the more important). Only the top 10 important predictors are left in the plot. Each point on
the summary plot represents a single predictor of an individual. Overlapping points are jittered in the
y-axis. Red and blue colors respectively indicate higher and lower values of a predictor. For example,
a high value of NT-proBNP increases the risk score of death in the CPH model predicting death. In
other words, it is a risk factor. Conversely, a high value of diastolic blood pressure reduces the death
risk score, making it a protective factor. SHAP, SHapley Additive exPlanations; other abbreviations
as in Figure 2 and Table 1.
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Figure 4. SHAP force plots for XGBoost predicting all-cause death (A) and SSVM predicting shock (B)
in a single patient. Red and blue bars respectively represent the positive and negative effects of each
predictor contributing to the occurrence of the outcome. The extent of impact is represented by the
size of the bar. Bold values represent the predicted risk scores. Of note, values have been transformed
and raw values can be seen in Table S2. Abbreviations as in Table 1, Table 2, and Figure 3.

3.5. Establishment of Bi-Dimensional Risk Profiles

XGBoost and SSVM were respectively chosen to construct the risk model for all-cause
death and appropriate shock. Patients were classified into three increasing risk categories
of all-cause death and appropriate shock by XGBoost and SSVM (Figure 5), respectively.
Accordingly, 3*3 risk profiles were developed (Figure 6). Patients with the highest risk of
death (16.58 per 100 person-years) and lowest risk of shock (3.99 per 100 person-years) may
not benefit from ICD implant. Conversely, patients with the lowest risk of death (0.39 per
100 person-years) and highest risk of shock (16.99 per 100 person-years) may benefit from
implant. For those patients with both high risk of death and shock, low risk of death and
marginally high risk of shock, shared decisions between patients and clinicians are needed.
Strategies need to be made in accordance with risk scenarios.
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Figure 6. The construction of bi-dimensional risk profiles. (A), The cumulative incidence curves.
(B), Bar plot of the annual incidence rate. The X-axis and Y-axis represent the three increasing risk
strata of appropriate shock and all-cause death, respectively. A 3*3 risk profile was built accordingly.
As a result, three different treatment strategies might be considered.

3.6. Sensitivity Analysis

Instead of mean imputation, Bayesian ridge regression was used to impute missing
values. Data partitioning, preprocessing, and hyperparameter search spaces were kept the
same. The results supported the primary analysis. The best hyperparameters (Table S5)
selected did not substantially deviate from the primary analysis. Model performance was
compared and is shown in Figure S4. For the prediction of death, XGBoost also showed
better performance than the CPH model (C-index difference of 0.025, p < 0.001). For the
prediction of shock, SSVM also had better performance than the CPH model, although not
statistically different (C-index difference of 0.011, p = 0.103). The explanation of the models
predicting death and shock is shown in Figure S5.

4. Discussion

We leveraged a single-center ICD cohort to create CPH and ML models that predict
all-cause death and appropriate shock with an average of nearly 5-year follow-up. We
demonstrated that optimized ML models had comparable or better performance than
CPH models. SHAP plots further showed that traditional risk factors in ML models had
explainable predictive value consistent with established knowledge. Ultimately, we raised
a feasible framework to classify ICD patients into a 3*3 matrix of risk scenarios, which
may facilitate individualized risk stratification. To the best of our knowledge, this is the
first head-to-head study comparing survival ML algorithms with the statistical CPH in
ICD patients.

Risk scores using statistical modeling strategies have shown satisfactory performance
in ICD benefit prediction [8–17,22,23]. Survival analysis using CPH regression is a standard
paradigm for identifying risk factors and predicting prognosis. However, it only works
under two key assumptions: the proportional hazard assumption and the linearity assump-
tion. In comparison, ML approaches do not rely on prior hypotheses and assumptions
and therefore are highly flexible [18]. In addition, ML algorithms can handle complex
interactions in large datasets in which CPH regression may fail to converge [24]. To date,
ML algorithms have been widely applied to cardiovascular disease, from arrhythmias
identification to electro-anatomical mapping and to clinical decision support and prognosis
prediction [18]. In this study, ML-based models also had an excellent performance in the
outcome prediction of ICD recipients.
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We demonstrated that XGBoost had the highest discrimination among ML methods in
all-cause death prediction and outperformed the CPH model. We further utilized SHAP
values to interpret the model. As it showed, older age, higher NT-proBNP, LVEDD, LAD, hs-
CRP, BUN, and worsening heart functional status assessed by NYHA were among the most
important risk factors. Conversely, higher LVEF and hemoglobin were the most protective
factors. These results were in line with previous findings, as deteriorated heart and renal
function were related to an increased risk of death [11,16,17,25–27]. Additionally, hs-CRP,
a biomarker of acute inflammation, was an established risk factor [28]. Systolic blood
pressure was also one of the most predictive factors, with a U-shaped relationship shown
in the SHAP dependence plot. Death risk increased at both low and high systolic blood
pressure, highlighting the role of blood pressure control on mortality. This phenomenon
was overlooked in previous studies [11,25].

On the other hand, predicting appropriate ICD shock was much harder. Although
we demonstrated SSVM achieved the highest accuracy, it was only minimal to moderate.
Expectedly, prevention indication ranked first among various clinical characteristics, un-
derlining its importance to SCD risk [3]. Consistent with previous studies, male sex, higher
LAD, and LVEDD were related to an increased risk of shock [9,11,15,22], while myocardial
infarction, increasing age, LVEF, body mass index, and systolic blood pressure were related
to a decreased risk [9,11,17,29]. However, compared to the general consensus [30], the
use of RAAS inhibitors was associated with an increased shock risk. This might partly be
attributed to the data-driven nature of ML algorithms and does not necessarily represent a
causal relationship. Of note, this effect was not found in other ML algorithms predicting
shock risk (Figure S3D–F). As a result, more caution is needed when choosing the right
model in the clinical setting.

Our results outlined the difficulties and complexities of predicting ICD shock, which
was a surrogate for life-threatening ventricular arrhythmias. It has been widely accepted
that the development of ventricular tachycardia/ventricular fibrillation is a dynamic and
evolving process involving the participation of multiple pathophysiological processes [22,31,32].
Abnormal heart function, electrical instability, genetic mutations, autonomic dysregulation,
and comorbidities have been found to contribute to an increased risk of SCD [7,33,34].
Nonetheless, evidence was inconclusive because of conflicting results, limiting their uti-
lization in clinical settings [7,33,34]. Specifically, several factors may contribute to the
low accuracy of this study. First, our cohorts mainly comprised patients with secondary
prevention. Previous studies have demonstrated the failure to identify risk factors and
establish a risk model in these patients [35,36]. Second, a paucity of cardiac magnetic
resonance imaging (MRI) data also impaired the performance. Myocardial replacement
fibrosis detected by late gadolinium enhancement is more strongly associated with SCD
than LVEF in both ischemic and nonischemic cardiomyopathy [23,29,32,37]. Furthermore,
a broader scar zone size is related to a greater SCD risk [27,29,37]. T1-mapping techniques
might also add information to arrhythmogenesis [33,34]. Third, ICD programming was left
at the discretion of the operators. A standard protocol was not applied. In conclusion, ML
is not a panacea. On the contrary, model performance largely depends on prior knowledge
and data quality.

Disregarding the mode of death (pump failure or sudden death) may lead to in-
complete risk assessment and subsequent biased clinical decisions to an ICD candidacy.
Therefore, we developed a framework by integrating the risk of all-cause death and shock
and finally identified nine risk profiles. Patients with the highest risk of death and the
lowest risk of shock may not benefit from ICD implant. As a result, an ICD may be deferred
in this scenario. On the other hand, for those with the lowest risk of death but the highest
risk of shock, an ICD implant is justified. For patients with both the highest risk of shock
and death, shared decisions between healthcare providers and patients are encouraged, as
ICD is solely amenable to shockable arrhythmic events instead of non-shockable rhythms
or pump failure death. Additionally, a comprehensive evaluation must be implemented
before decision-making in other scenarios.
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In fact, this risk assessment framework was first introduced by Buxton et al. [38]. A
total of 25 baseline variables including the electrophysiological study result were collected
in 674 patients with coronary artery disease enrolled in the MUSTT (Multicenter Unsus-
tained Tachycardia Trial) study [38]. Risk scores of all-cause death and arrhythmic death
were built, with satisfactory C-indexes of 0.78 and 0.70, respectively. Later, Lee et al. [11]
also developed similar dual risk stratification models using 3445 primary prevention ICD
patients by competing risk analysis. More recently, Reeder et al. [17] and Younis et al. [15]
also built such models using data from the SCD-HeFT (Sudden Cardiac Death in Heart
Failure Trial) and MADIT (Multicenter Automatic Defibrillator Implantation) trial. The
former had a C-index for the non-arrhythmic mortality of 0.68 and ventricular tachycar-
dia/ventricular fibrillation of 0.71 [15]. The latter had an area under the curve at 5 years for
death of 0.79 and ICD shock of 0.65 [17]. Our study was inspired by these landmark studies
and further demonstrated the potential of ML to reach a higher plateau than traditional
statistical modeling. As the amount of clinical data is increasing faster than ever before, it
is of vital importance to bring ML into daily practice. ML can exclusively, efficiently, and
accurately identify complex patterns from big data. Moreover, it can be easily integrated
into electrical medical systems and be updated consistently and automatically.

Our study had several limitations. First, all patients were enrolled in a single center
with predominantly secondary prevention indication. Therefore, it may not necessarily
be applicable to other populations. Moreover, due to the absence of key variables, we
cannot validate and thus make comparisons with established models mentioned before.
Nevertheless, as a proof-of-concept study, our primary goal was to illustrate the capacities
and advantages of ML and the feasibility of constructing a bi-dimensional risk frame-
work instead of building an out-of-the-box model. Second, appropriate shock may not
be a suitable surrogate for life-threatening arrhythmias. Landmark studies have demon-
strated only an approximately 50% reduction in SCD in the ICD group compared with
placebo [39]. Furthermore, adopting an ICD programming strategy of delayed therapy and
high-rate cutoff was associated with reduced inappropriate shocks, unnecessary shocks,
and mortality [40,41]. Therefore, appropriate ICD shock may be affected by programming
setting and does not necessarily equal life-threatening arrhythmias. However, until now, it
has remained the best surrogate endpoint for SCD in clinical research [11,17]. Third, CMR-
derived parameters, electrocardiographic measurements, and electrophysiological study
results were not available in the study, which showed incremental value in addition to
traditional risk factors [22,23,27,32,34,37]. Still, our results showed the capacity of routinely
available clinical parameters to derive efficient predictive models. Last, model calibration
was not evaluated in the study due to the difficulties of XGBoost and SSVM algorithms in
estimating the baseline or cumulative hazard function. This is also a downside of many
ML methods implementing survival analysis. In summary, improvements must be made
before using these algorithms in clinical settings, including but not limited to increasing
sample size, adding more clinically relevant parameters, fine-tuning and optimizing the
algorithms, and validating performance in external datasets.

5. Conclusions

In this head-to-head comparison of ML and traditional CPH modeling in the risk
stratification of ICD recipients, we demonstrated that optimized ML is at least as good as
or even better than CPH. A bi-dimensional risk matrix integrating death and shock risk
using ML algorithms could facilitate clinical decision-making. This study is exploratory,
and further refinement and adjustment are needed before translation into clinical practice.
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