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Abstract
Background: A common challenge in systems biology is to infer mechanistic descriptions of
biological process given limited observations of a biological system. Mathematical models are
frequently used to represent a belief about the causal relationships among proteins within a
signaling network. Bayesian methods provide an attractive framework for inferring the validity of
those beliefs in the context of the available data. However, efficient sampling of high-dimensional
parameter space and appropriate convergence criteria provide barriers for implementing an
empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain
Monte Carlo technique to a typical study of cellular signaling pathways.

Results: As an illustrative example, a kinetic model for the early signaling events associated with
the epidermal growth factor (EGF) signaling network was calibrated against dynamic measurements
observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin
potential scale reduction factor, was applied to the model predictions. The posterior distributions
of the parameters exhibited complicated structure, including significant covariance between specific
parameters and a broad range of variance among the parameters. The model predictions, in
contrast, were narrowly distributed and were used to identify areas of agreement among a
collection of experimental studies.

Conclusion: In summary, an empirical Bayesian approach was developed for inferring the
confidence that one can place in a particular model that describes signal transduction mechanisms
and for inferring inconsistencies in experimental measurements.

Background
Cellular response to extracellular stimuli is governed by
biochemical reactions that allow the transfer of informa-
tion from the cell membrane to the nucleus and back [1].
Based upon well-crafted bench experiments, many of the
molecular players in the various signaling pathways are
known. However, the roles that individual proteins play
at specific points in time and in particular systems are

largely unknown [2]. It is precisely in this situation that
mathematical models are most helpful [3].

Mathematical models are tools used to rationalize about
the intracellular signaling mechanisms that underpin bio-
logical response [4]. Mathematical models that describe
biochemical kinetics are explicit statements about molec-
ular-molecular interactions that are presumed to be
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important in a system and the corresponding dynamics of
these interactions. These interactions give rise to a flow of
molecular information in the form of reaction pathways
[5]. The primary goal of the analysis of these reaction
pathways is to make predictions: what do we expect to
happen in a particular reacting mixture under particular
reaction conditions, given our current understanding of
molecular interactions? Similarities confirm our explicit
statements while differences between the expected behav-
iors and new data highlight areas of uncertainty in our
understanding and provide the engine for scientific
progress [6]. Analogous to experimental studies, the abil-
ity of a particular mathematical model to describe a sys-
tem of interest must include a statement of belief.

Belief derived from a mathematical model is expressed
commonly in terms of a single point estimate for the pre-
dictions, obtained from the set of parameters that mini-
mizes the variance between model and data [7]. Given
that a model constrains the set of possible states of the sys-
tem, it would be particularly valuable to provide an esti-
mate of the uncertainty associated with the model
predictions given the available data. A Bayesian view of
statistics is a mathematical expression of our beliefs [8].
Beliefs are established based upon the observation of data
and the interpretation of that data within the context of
our prior knowledge [6]. Mathematical models provide a
quantitative framework for representing prior knowledge
of the detailed biochemical interactions that comprise a
signaling network. The unknown parameters of the model
can be calibrated against the observed network dynamics.
With recent advances in computational power, computa-
tionally-intensive Bayesian techniques, such as Markov
Chain Monte Carlo (MCMC) algorithms [9], are an attrac-
tive option for assessing the uncertainty in the model
parameters given the calibration data and are increasingly
applied to biological systems [10].

MCMC techniques provide random walks in parameter
space whereby successive steps are weighted by the likeli-
hood of observing data given the corresponding parame-
ter values. A prior distribution is used to determine the
size of proposed steps (i.e., the proposal distribution)
within parameter space. The historical challenge with
implementing a Bayesian approach is to specify a prior
distribution for the values of the unknown parameters [8].
Conventional application of Bayesian techniques to cellu-
lar signaling networks focus on using proposal distribu-
tions that dynamically scale the prior distributions during
the simulation (e.g., [11-13]), whereby the structure of the
proposal distribution is unchanged during the simula-
tion, or that is based upon the prior information encoded
within the model and the parameter values at local
optima (e.g., [14,15]). Moreover, a common approach in
the field is to use small models as a vehicle to demonstrate

new Bayesian algorithms (e.g., [11-14,16]). While these
small models, sometimes called toy models, are computa-
tionally attractive, larger models foreshadow potential
problems that may arise when a Bayesian technique is
used in practice, such as computational efficiency. The
computational efficiency of a MCMC algorithm depends
highly on the structure of the proposal distribution. One
of the recent advances in the field has been has been a
technique that allows the MCMC algorithm to "learn" a
better structure for the proposal distribution "on-the-fly."
These algorithms are "empirical" Bayesian techniques in
the sense that the structure of the proposal distribution is
conditioned on the observed data. Adaptive MCMC
(AMCMC) algorithms (e.g., [17]) dynamically adjust the
proposal distribution from a non-informative prior distri-
bution at the start of the simulation to a proposal distri-
bution that reflects the structure in the cumulative Markov
chain. The objective of this study was to develop and
apply an Adaptive MCMC technique to a typical study of
cellular signaling pathways. As an illustrative example, a
kinetic model for the early signaling events associated
with one receptor of the epidermal growth factor (EGF)
signaling network was calibrated against dynamic meas-
urements observed in primary rat hepatocytes.

Methods
A model for early ErbB1 signaling
To illustrate the empirical Bayesian approach, a mathe-
matical model was developed for describing the early sig-
naling events via the ErbB1 receptor. Developing this
model was divided into three steps: specifying the model
topology, calibrating the model, and estimating the
uncertainty in the model predictions. In the following sec-
tions, each of these aspects is described in greater detail.

Model topology
The application of quantitative methods to the EGF sign-
aling pathway was pioneered by Kholodenko et al. [18],
and extended by many others (e.g., [19-22]). The model
used here is similar to the original Kholodenko model but
incorporates three key changes. First, the reactions were
grouped into reaction classes that are defined based upon
peptide motif-motif interactions [23]. Organizing cell sig-
naling reactions into a small set of reaction classes pro-
vides a direct link to the automatic reaction network
generation literature (e.g., [21,24,25]). Parameters for
specific reactions were assigned based upon membership
in a particular reaction class. Second, binding between
proteins, which include multiple peptide motifs, was
assumed competitive. In practice, this additional con-
straint for ErbB1 converts a differential equation for unoc-
cupied phosphotyrosine ErbB1 (EY P) into an algebraic
conservation equation. Finally, the molecular mechanism
associated with Ras activation was modified to reflect
recent biochemical observations that the activity of mem-
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brane-bound Sos is modulated via an allosteric mecha-
nism [26]. For brevity, the resulting reaction network is
shown schematically in Figure 1 and the corresponding
equations can be found in an additional file (see Addi-
tional file 1). With the addition of the Ras mechanism and
other modification, the resulting model, comprised of 35
non-linear ordinary differential equations and one alge-
braic equation, was slightly more complicated than the
original Kholodenko model that contained 22 non-linear
ordinary differential equations.

Model calibration
The resulting biochemical kinetic reaction network speci-
fies a particular causal connectivity diagram between pro-
teins (i.e., a set of coupled non-linear differential algebraic
equations). This connectivity diagram must be coupled
with parameters for each reaction to simulate the concen-
tration changes with time. The values for the parameters
were determined to be consistent with observed experi-
mental data. In particular, dissociation constants for par-
ticular protein-protein interactions were constrained by
the recent observations by MacBeath and coworkers
[27,28]. In addition, measurable interaction strengths
between peptide motifs were used to estimate reaction

path degeneracy (Klinke DJ: Signal Transduction Net-
works in Cancer: Quantitative Parameters Influence Net-
work Topology, submitted) (see Additional file 1: Table
S5 for a list of the dissociation constants and values for
reaction path degeneracy). These data helped reduce the
number of parameters determined from 43 (38 kinetic
parameters and 5 initial concentrations) in [18] to 34 (28
kinetic parameters and 6 initial concentrations) in this
study.

As cellular context may influence the strength of a partic-
ular pathway [29], experimental data was extracted from
the literature to calibrate the initial signaling events in a
specific system: the response of primary rat hepatocytes to
20 nM of EGF. Parameter values were chosen based on
appropriate measurements in rat hepatocytes if available.
The changes in phosphorylated ErbB1 [18,30,31], Grb2
binding to ErbB1 [18], Grb2 binding to Shc [18], phos-
phorylated Shc [18,22,31], phosphorylated PLCγ-1 [31],
Sos binding to ErbB1 [30], and the active fraction of Ras
(RasGTP) [30] were calibrated to observations in isolated
hepatocytes from Harlan Sprague Dawley rats upon expo-
sure to 20 nM EGF. Initial expression of ErbB1 prior to
EGF stimulation was observed to be 100 nM. However, in

Schematic diagram of model developed for early EGF signalingFigure 1
Schematic diagram of model developed for early EGF signaling. A schematic diagram of the biochemical events rep-
resented in the mathematical model represented using Systems Biology Graphical Notation [57]. The model represents ErbB1 
synthesis and degradation; binding to EGF ligand; receptor dimerization and activation; activation of the signaling pathways 
associated with the binary interactions between ErbB1 + PLCγ-1, ErbB1 + Shc, Shc + Grb2, ErbB1 + Grb2, and Grb2 + Sos; 
deactivation following PTP + ErbB1 interactions; ligand-induced downregulation of ErbB1; Ras activation by ErbB1-bound Sos; 
and dissociation of active Shc.
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the absence of specific kinetic measurements in rat hepa-
tocytes, data obtained from human cell lines were used.
Total ErbB1 receptor expression was calibrated to changes
in ErbB1 expression in HMEC 184A1 cells observed fol-
lowing exposure to 20 nM EGF [20]. In addition, the
dynamics of Shc phosphorylation was also compared
against measurements obtained using 10 nM EGF in the
MCF-7 cell line [22]. The model equations were encoded
and evaluated in MATLAB V7.0 (The MathWorks, Natick,
MA). Summed squared error between experimental and
simulated measurements was used to determine good-
ness-of-fit. Using the set of coupled differential algebraic
equations, the maximum likelihood estimates for
unknown parameter values were determined from these
experimental data using a simulated annealing optimiza-
tion algorithm [32]. The optimum values were used as a
starting point for the Markov Chain.

A Bayesian perspective on model-based inference
The expected value for some property of a model can be
calculated from the following integral:

where f(Θ) is a generic function of the model parameters.
The expected value is dependent on the particular formu-
lation of the model, M, and the data used in calibrating
the model, Y. As not all combinations of parameters pro-
vide realistic simulations, values for f(Θ) are weighted by
distribution of parameters given M and Y (i.e., the poste-
rior distribution P(Θ|M, Y)). Using Bayes theorem, the
posterior distribution of the parameters can be re-
expressed in terms of more computationally tractable
quantities:

In equation 2, P(Θ|M) is the probability of sampling a
point in parameter space Θ prior to any knowledge about
data Y (i.e., the prior for Θ), P(Y) is called conventionally
the evidence for a model, and P(Y|Θ, M) is the conditional
probability of simulating data Y given Θ and M (i.e., the
likelihood of Y given Θ and M).

As the evidence for a model can be considered as a con-
stant, the posterior distribution of the parameters is pro-
portional to the product of the likelihood of the data and
the priors. A form of the likelihood can be obtained by
assuming that the errors associated with each experiment
are independent samples from multivariate normal distri-
bution with a mean of zero:

where v is the the dispersion matrix, k is the number of
experimentally observed variables acquired Nobs times,
and Σ is the variance-covariance matrix of the error associ-
ated with the experimental observations. The dispersion
matrix is a k × k positive-definite matrix where each ele-
ment,

corresponds to the normalized sum of the product of the
deviation between specific observations, Yiu, and their
respective model prediction, Mi(Θ). A common approach
for evaluating the likelihood function in Bayesian infer-
ence problems is to assume that the variance-covariance
matrix of the error associated with the experimental obser-
vations (i.e., Σ) is a scaled identity matrix (i.e., the matrix
is diagonal with all non-zero elements identical). How-
ever, the error models associated with an observation may
depend highly on the experimental assay selected [29]. In
addition, the data used in calibrating the model may cor-
respond to different experimental studies and different
techniques. Given that Σ is unknown a priori in most prac-
tical problems, Box and Draper noted that the marginal
conditional probability, P(Y|Θ, M), can be obtained by
assuming a prior for P(Σ) equal to |Σ|-(k+1)/2 [33]. The cor-
responding likelihood relationship, of the form of a
Wishart distribution, can be reduced analytically to a sim-
ple form expressed in terms of the determinant of the dis-
persion matrix:

Similarly, an approximate Bayesian approach was recently
described that uses a likelihood function equal to the
determinant of the dispersion matrix alone [16]. In prac-
tice, the dispersion matrix can be normalized to a refer-
ence quantify to minimize the contribution of round-off
error in calculating P(Y|Θ, M). Given the rugged land-
scape of the dispersion matrix with respect to the parame-
ter space, a closed form solution of the expectation
integral (i.e., Equation 1) is intractable. As an alternative,
Monte Carlo sampling is an efficient method for integrat-
ing such complex integrals [32]. In the following section,
a Monte Carlo algorithm is proposed that provides a Baye-
sian estimate of P(Θ|M, Y).

E f M Y f P M Y d
Min

Max

[ ( ) | , ] ( ) ( | , ) ,Θ Θ Θ Θ
Θ

Θ
= ⋅∫ (1)

P M Y
P Y M P M

P Y
( | , )

( | , ) ( | )
( )

.Θ Θ Θ= ⋅
(2)

P Y M
Nobsk

Nobs
exp v vT( | , , )

( ) | |

Θ Σ

Σ

Σ=

⋅

⋅ − ⋅ ⋅ ⋅( )⎡
⎣⎢

⎤
⎦⎥

−1

2
1
2 2

1
2

1

p

(3)

v
Yiu Mi

Yiu

Y ju Mj
Y ju

ij

u

Nobs

= −⎧
⎨
⎩

⎫
⎬
⎭

⋅
−⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪=
∑ ( ) ( )

,
Θ Θ

1

(4)

P Y M v Nobs( | , ) | | ./Θ ∝ − 2 (5)
Page 4 of 18
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:371 http://www.biomedcentral.com/1471-2105/10/371
A Bayesian estimate for P(Θ|M, Y) can be obtained using
computer-intensive methods. The Metropolis-Hasting
(MH) algorithm [34,35] is a Monte Carlo technique that
creates a sequence (i.e., a chain) of θs that, in the limit of
a long chain are drawn from the target distribution,
P(Θ|M, Y). When the proposed steps are drawn from a sta-
tionary distribution, the resulting chain is a Markov chain.
A proposed new step in the Markov chain, θN, is accepted
based upon the relative conditional probability of the
new step in capturing the observations (i.e., P(Y|θN, M))
relative to the current step. This acceptance criteria enables
the collective Markov chain to represent samples drawn
from the target distribution P(Θ|M, Y). New proposed
steps within the Markov chain are drawn from a proposal
distribution ∏(·). As mentioned above, the challenge in
implementing a Markov Chain Monte Carlo (MCMC)
approach is specifying the proposal distribution, ∏(·). In
this study, the initial estimate of scale of proposal distri-
bution for Θ was proportional to 1/P, where P is the row
dimension of the vector Θ [36]. Parameter sampling was
performed in log space to ensure that all kinetic parame-
ters and species concentrations remain positive. In high
dimensional problems with expensive calculations of the
likelihood function, efficient sampling of P(Θ|M, Y) is
essential and can be obtained using a proposal distribu-
tion that reflects the structure of the target distribution
(i.e., the covariance of P(Θ|M, Y)).

A prior distribution, P(Θ), is used to provide an initial
estimate of the proposal distribution, ∏(Θ). In conven-
tional MCMC algorithms, the proposal distribution can
be scaled to achieve a target acceptance fraction but the
structure of the proposal distribution remains fixed to that
specified by the prior distribution. A recent development
in the MCMC field has been the development of adaptive
MCMC (AMCMC) algorithms (e.g., [17]) that dynami-
cally adjust the structure of the proposal distribution
based upon the prior steps of an evolving Markov chain.
The prior distribution used in this study was non-inform-
ative (i.e., the same for all parameters), proper (i.e., a
finite integral), normally distributed (i.e., N(0, 1/P)), and
used to specify the initial proposal distribution (∏(·)).
Non-informative in this context means that no informa-
tion was used to specify that there was greater uncertainty
in some of the parameters relative to others. Following a
specified "learning" period, the proposal distribution was
adjusted, as described in the next section, to reflect the
structure in the cumulative Markov chain.

Adaptive MCMC algorithm
The following adaptive MH algorithm was used to gener-
ate a Monte Carlo Markov Chain from multi-response
data:

1. Start the chain using initial values for θ0 obtained
via simulated annealing and an initial proposal distri-
bution with the corresponding elements:

where P is the row dimension of Θ, δjk is the Kro-
necker's delta, and s is an adjustable proposal scaling
factor used to give an initial acceptance fraction of 0.2.
Select a value for s. Note that the Kronecker's delta, δjk,
is equal to 1 when the indices j and k are equal and δjk
is equal to 0 when the indices are not equal.

2. Using the current θi of the Markov chain, propose a
candidate step, θN, that is drawn from ∏(·) according
to

which cumulatively represent a random walk through
parameter space with the step size in a particular
parameter direction determined by ∏(·).

3. Evaluate P(Y|M, θN) using the form of the likeli-
hood:

where Yj is a vector of observed responses for experi-
ment j, Mj(θN) is the corresponding vector of predicted
responses using a model and the corresponding
parameter values θN, and Nobs, j is the number of
responses observed in experiment j.

4. Calculate the Metropolis acceptance probability:

where q(·) is the jumping probability in the direction
given as the argument. Given that, in this case, the pro-
posal distribution is symmetric, the q(·) terms cancel.

5. Accept move θi+1 = θN with probability h, else retain
current location θi+1 = θi.

6. Update Cov(θi+1... θ0) and s every x AMCMC steps.
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7. Using the current values for Cov(Θ) and s, update
the proposal distribution whereby elements of ∏(·)
are calculated using the following adaptive relation-
ship:

where Choljk(·) is the jk element of the upper triangu-
lar matrix obtained from Cholesky factorization of the
covariance matrix, Cov(·), and NL is the number of
steps contained in an initial non-adapting "learning"
period. As proposal density is symmetric, the condi-
tion of a detailed balance among random steps within
parameter space is satisfied using h as an acceptance
probability.

8. Go to 2.

The algorithm was implemented in Matlab (Natick, MA),
numerical integration of the set of differential algebraic
equations was obtained using the SUNDIALS IDA solver
(Lawrence Livermore National Laboratory, Livermore,
CA), and R/Bioconductor was used for the analysis of the
Markov chain. In addition, the Markov Chains generated
by this AMCMC algorithm converge to a stationary target
distribution for P(Θ|Y, M) (i.e., is ergodic) as the adapta-
tion of the proposal distribution exhibits diminishing
adaptation (i.e., limi→∞||∏i - ∏i-1|| = 0) [37].

An inherent characteristic of a Markov chain generated
using a Metropolis-Hasting algorithm is the autocorrela-
tive structure of the chain. The presence of autocorrelation
between subsequent steps biases estimating the covari-
ance of the model parameters. Mixing is a term used to
characterize the autocorrelative structure of the chain. In
well-mixed chains, steps separated by a specified distance
within the chain exhibit minimal autocorrelation. To
minimize the effect of autocorrelation, independent sam-
ples from the posterior distribution can be obtained by
selecting values from the Markov Chain at every nth itera-
tion, a technique called "thinning." Thinning was used to
improve recursive calculation of the proposal covariance
of the Markov Chain during the MCMC run. A thinning
value of 40 was used to estimate the covariance recursively
from the evolving Markov chain, while a thinning value of
200 was used to obtain P(Θ|Y, M) from the final Markov
chains.

Convergence of Markov chain
One of the challenges with implementing a MCMC
approach for Bayesian inference is deciding when the
cumulative Markov chain is a representative sample

drawn from the underlying stationary distribution. A
Markov chain represents a random walk within parameter
space weighted by the relative conditional probability of
each step. Convergence is a criteria used to evaluate how
long of a chain is necessary to traverse a representative
sample of parameter space. Numerous algorithms have
been developed to diagnose the convergence of a Markov
chain [38]. Most conventional applications of these con-
vergence criteria have focused on the model parameters.
However, models of cellular signal transduction pose sig-
nificant challenges for model-based inference and require
a non-conventional approach.

As the objective of this study is to make statements of
belief about the predictions of the model rather than par-
ticular values of the parameters, a convergence criterion
was developed based upon the predictions of the model.
The focus on predictions rather than the parameters was
motivated by timescale considerations. When a complex
dynamical system experiences an abrupt change in envi-
ronmental conditions, the response of the system can be
simplified into different kinetic manifolds (e.g., [39]).
This phenomenon has been termed the slaving principle
[40]. The evolution in the system is constrained by the
slow variables (i.e., the slow kinetic manifold) while the
fast variables (i.e., the fast kinetic manifold) exist at a
pseudo-equilibrium. An implication of the slaving princi-
ple on Bayesian inference is that the posterior distribu-
tions of parameters may exhibit one-sided distributions.
The parameters associated with a variable contained
within the fast kinetic manifold may be increased above a
threshold value with minimal impact on the dynamic
response of the system. Below the threshold value, the
dynamics of the corresponding variables impinge upon
the slow kinetic manifold altering the dynamic response
of the system and fitness of the model. In practice, the
upper bounds of the parameters are defined by the toler-
ance of the ODE solver to solve systems with divergent
timescales. To surmount this computational challenge,
the Gelman-Rubin method was used for assessing conver-
gence of model predictions derived from a series of three
parallel Markov chains [41,42]. The method is based
upon the concept that convergence has been achieved
when the variance among chains is less than within single
chains.

To estimate convergence, we use the prediction, PYij,

obtained from a single draw from J parallel MCMC sam-

ples of length N, where j ∈ J and i ∈ N. To illustrate the
calculations, a simplified notation is used where PYij rep-

resents the state of species k at time m (i.e., (tm, θij)). For

each prediction, the between-sequence (B) and within-
sequence (W) variances for PYij are computed as follows:
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where  is the mean of the N predictions obtained

from the j -th sequence:

 is the mean of the predictions across sequences:

and the sample variance of the predictions for the j - th
sequence, Sj is given by:

The overall variance of the predictions derived from the
target distribution is estimated from W and B by:

The Gelman-Rubin method diagnoses convergence from
the potential scale reduction factor:

whereby parallel chains of length N should be increased

until  is less than 1.2 [42]. These converged parallel
chains represent samples drawn from a stationary distri-
bution. In conventional use, the Gelman-Rubin method is
applied to the second N iterations drawn from parallel
chains, each of length 2N. The first N steps are discarded
as they are assumed to be drawn from tails of the station-
ary distributions. Due to the cost of these calculations,
only the "learning" period was discarded. The remainder
of the parallel chains were used to estimate the conver-
gence of the predictions to a stationary distribution.

Results
Model calibration
The mathematical model, shown schematically in Figure
1, was calibrated against values obtained from the litera-
ture. The values reported in the literature were obtained
largely in primary rat hepatocytes in response to 20 nM
EGF. Kinetic parameters associated with EGF binding to
ErbB1 and affinities for protein-protein interactions were
used from the literature to reduce the number of free
parameters. Dissociation constants (KD's) for particular
protein-protein interactions, where reported, were also
obtained from the literature [27,28] (see Additional file 1:
Table S5). In addition, dissociation constants for reactions
that create a cyclic pathway (e.g., reaction classes 8, 11, 14,
and 15) were constrained by thermodynamic considera-
tions. In addition, the initial values for Grb2, PLC-γ, Shc,
Sos, RasGTP, and RasGDP were determined using simu-
lated annealing. A list of all of the parameters can be
found in (see Additional file 1: Table S3). The initial con-
centration of PTP was specified to be 100 nM, as the initial
concentration of PTP was confounded with other param-
eters (data not shown). The initial values for protein
expression are dependent on the assumed dissociation
constants for protein-protein interaction. Similar dynam-
ics of the system are observed if systematic reductions in
the KD's of protein-protein interaction are coupled with
corresponding decreases in the concentration of the sign-
aling proteins (data not shown). Given the best fit values
determined using simulated annealing, an empirical
Bayesian approach was used to estimate the uncertainty in
the model parameters given the available calibration data.

An empirical Bayesian approach to sensitivity analysis
A series of Markov chains generated using a Metropolis-
Hasting algorithm were used to estimate the conditional
uncertainty in the model parameters. Three parallel
Markov chains were calculated each containing 900,000
steps. The simulation of each chain took approximately
550 hours on a single core of a 2.66 GHz Dual-Core Intel
Xeon 64-bit processor with 8 GB RAM. The parameter val-
ues obtained using simulated annealing provided the
starting point for the chain. A "learning" (a.k.a. "burn-in")
period of 100,000 steps was specified a priori to provide an
initial estimate for the proposal covariance. In addition,
this "learning" period was used to correct for starting val-
ues of the chain that may correspond to samples from the
tail of P(Θ|Y, M). Following the "learning" period, ∏(·)
was adjusted to correspond to the covariance of the cumu-
lative target distribution P(Θ|Y, M). The trace of the
acceptance fraction (Panel A in Figure 2) demonstrate that
the scaling factor was adjusted at regular intervals (see
Panel B in Figure 2) to maintain the acceptance fraction
around 0.2. The trace of the conditional probability for
each of the three chains, shown in Figure 3, suggests that
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Markov chains were no longer sampling from the tails of
the posterior distributions, as may occur during the
"learning" period. One of the chains (see black chain in
Figure 3) entered a stiff region of parameter space whereby
numerical difficulties in selecting an appropriate integra-
tion step size retained the Markov chain within this
region. The Gelman-Rubin potential scale reduction fac-
tor (PSRF) was applied to the model predictions to assess
the convergence of the cumulative Markov Chains
obtained following the "learning" period. The Gelman-
Rubin PSRF statistics were calculated for the species
observed experimentally as a function of time and
AMCMC step and shown graphically as a contour plot in
Figure 4. The colored contours correspond to values of the
PSRF. Many of the model predictions exhibited a poten-
tial scale reduction factor of below 1.2 immediately after
the "learning" period (e.g., ErbB1 expression, phosphor-
ylated ErbB1, Grb2 bound to ErbB1, and phosphorylated
Shc) while other predictions were unable to converge for
the entire prediction window (e.g., phosphorylated PLC-γ
at times greater than 2 minutes). Given the variability in
convergence, the entire chains, following the initial learn-
ing period, were used in the final analysis of the Markov

chains. The maximum expectation values determined
using the AMCMC algorithm are also reported (see Addi-
tional file 1: Table S3). In addition, the PSRF applied to
the parameters are also shown for comparison (see Addi-
tional file 1: Table S3).

A common feature seen in the different subplots of Figure
4 (e.g., subpanels B, D, and E) was that the variability
among chains, as represented by an increase in PSFR,
increased as a function of simulation time (i.e., the verti-
cal axis). This behavior was due to undersampling at
longer times relative to earlier times. Oversampling of a
region implicitly applies a higher relative weight in esti-
mating P(Y|θN, M). For comparison, the 95th percentile,
5th percentile, and median responses for each of the three
chains are overlaid upon the experimental data in Figure
5. Traces for each of the parameters are shown in Figure 6.

Discussion
In this study, an empirical Bayesian approach was devel-
oped to quantify the uncertainty in the estimated param-
eters, given the available data, and to estimate the
uncertainty in the model predictions, given the range of

Evolution in the proposal covariance scaling factor and the acceptance fraction as a function of AMCMC stepFigure 2
Evolution in the proposal covariance scaling factor and the acceptance fraction as a function of AMCMC step. 
The proposal density is scaled dynamically to achieve an acceptance fraction of 0.2. (A) The trace of the acceptance fraction is 
shown as a function of AMCMC step. (B) The trace of the covariance scaling factor is shown as a function of AMCMC step. 
The results for each of the three parallel chains are shown in different colors: Chain 1 (Blue), Chain 2 (Black), and Chain 3 
(Red).
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plausible parameter values. In contrast to recent efforts
that use proposal distributions that have fixed structures
(e.g., [11-15,43]), the empirical Bayesian approach used
in this study was based upon an adaptive Markov chain
Monte Carlo algorithm that adjusts the structure of the
proposal distribution based upon the covariance of the
cumulative Markov chain. In another recent publication,
we used this algorithm to infer the relative strength of con-
trol mechanisms in the Interleukin-12 signaling pathway
observed in naïve CD4+ T cells by our own hands (Finley
SD, Gupta D, Cheng N, Klinke DJ: Inferring Relevant Con-
trol Mechanisms for Interleukin-12 Signaling in Naïve
CD4+ T Cells, submitted). In this study, an AMCMC algo-
rithm was used to help interpret measurements of Epider-
mal Growth Factor signaling observed in rat hepatocytes
by others using signaling mechanisms postulated from
the literature.

Following an assessment of the convergence of the paral-
lel Markov chains, pairwise scatter plots were used to illus-
trate the structure in the posterior distributions of the
parameter values (see Figure 7). Pairwise comparisons of
the expected parameter values showed that a subset of the
parameter values were not independent but exhibited
interdependence, as illustrated by diagonal structure in
the scatter plots (see subplot for RasGDP versus kf33 in Fig-
ure 7). Pairwise correlation coefficients are shown above
the diagonal. Analysis of the covariance of the thinned
Markov chains, shown in Figure 7, suggests that parame-
ters RasGDP and kf33 are not identifiable as they exhibit a
negative correlation coefficient of 0.95. This was expected
as increase in the rate of RasGTP hydrolysis (i.e., an

increase in kf33) can compensate for low levels of RasGDP.
The density plots, shown to the right of the diagonal in
Figure 7, suggest that the initial concentrations of Grb2,
Shc, and Sos are tightly constrained given the available
data. In addition, kdeg5 and kf15 were two of the kinetic
parameters that were tightly constrained. In contrast,
many of the parameters (e.g., kf3 and kf17) exhibited a
much larger uncertainty range (i.e., greater than O(1010)).
It is also interesting to note that - even though Shc, Sos,
and Grb2 were constrained by the data - the initial con-
centrations of PLCγ and RasGTP/RasGDP were not tightly
constrained. This difference can be attributed to the cali-
bration data for PLCγ and RasGTP/RasGDP were reported
in terms of relative amounts instead of absolute quantities
and these species were specified as terminal species in the
model. The broad range in posterior distribution of PLCγ
expression reflects the inability of the Markov chain to
converge in predicting the phosphorylation state of PLCγ
at longer times. Future simulations that include an estima-
tion of initial concentration of PLCγ within this cell type
may aid in convergence.

Estimated values of the PSRF applied to the parameters
(see Additional file 1: Table S3) are consistent with the
pairwise scatter plots where parameters with low variance
converge first (e.g., kf15 and kdeg5) while parameters with

high variance require a long chain to converge (e.g., kf6,

kf23, and kf38). In general, the model results were sensitive

to the initial concentrations of Grb2, Shc, and Sos as the
posterior distributions were narrower than many of the
other parameters shown in Figure 7. A similar observation
was reported by Kholodenko et al. [18] and highlights
how variations in protein expression influence cellular
response. The rate of degradation of phosphorylated
ErbB1 (kdeg5) and the rate of PTP binding to phosphor-

ylated ErbB1 (kf15) exhibited the narrowest distributions

of all of the parameters. Despite the uncertainty in the
parameter values, the model predictions are confined
within a relatively narrow region (see Figure 5). By mar-

ginalizing the predicted responses over P(Θ|Y), this range

in model predictions provided an estimate of P( |M).

Efficiency of sampling parameter space
High dimensional problems are particularly challenging
for MCMC algorithms due to the large volume of param-
eter space that must be searched. The existence of correla-
tion among the parameters and different timescales
inherent in the problem compound this challenge. The
contours of the proposal density distribution of Θ enclose
an P-dimensional hyperellipsoid. The volume of this
ellipsoid (VolP) is proportional to the determinant of the
proposal density by:

Ŷ

Evolution in the likelihood, P(Y |Θ, M), as a function of AMCMC stepFigure 3
Evolution in the likelihood, P(Y |Θ, M), as a function 
of AMCMC step. The normalized likelihood value shown as 
a function of AMCMC step for all three parallel chain. The 
results for each of the three parallel chains are shown in dif-
ferent colors: Chain 1 (Blue), Chain 2 (Black), and Chain 3 
(Red).
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A plot of the right hand side of Equation 18 shown as a
function of AMCMC step is shown in Figure 8A. Follow-
ing the "learning" period, the proposal distribution rap-
idly expanded to reflect the structure of the cumulative
Markov chain and established a stationary proposal distri-
bution after an additional 200,000 steps. The structure of
the proposal distribution was slightly different for each of
the three parallel chains, as shown in Figure 8A. In the
AMCMC algorithm, ∏(·) is obtained from the covariance
of P(Θ|M, Y). Conceptually, an eigenvector/eigenvalue
decomposition of the covariance of P(Θ|M, Y) provides a
convenient framework to rationalize about the structure

of the parameter space. In a well-posed problem, the unit
orthogonal vectors (i.e., eigenvectors) of the parameter
space exhibit finite length (i.e., non-zero eigenvalues).
High correlation between model parameters effectively
reduce the dimension of the parameter space and reduce
the length of one or more of the orthogonal vectors to
zero. This dimensional reduction implies that the hyper-
ellipsoid lies wholly in a (P - 1+)-dimensional subspace
and the volume in P-space is zero. The efficiency of the
AMCMC algorithm is that it samples from the (P - 1+)-
dimensional subspace rather than P-space. The expansion
and contraction of parameter space in the different
orthogonal parameter directions, as shown by the change
in eigenvalues as a function of AMCMC step, is shown in

VolP ∝ ⋅| ( ) | ./Π 1 2 (18)

Convergence of AMCMC algorithmFigure 4
Convergence of AMCMC algorithm. A contour plot of the Gelman-Rubin statistic (i.e., the z-axis equals the potential 

scale reduction factor - ) of the model predictions as a function of time (i.e., the y-axis) calculated as a function of the cumu-
lative chain up to a specific AMCMC step (i.e., the x-axis). Three parallel chains were used to calculate the Gelman-Rubin sta-
tistics for the simulated (A) total ErbB1 expression, (B) phosphorylated form of ErbB1, (C) total cellular Grb2 bound to 
activated ErbB1, (D) percentage of total Grb2 bound to activated Shc, (E) percentage of total Sos bound to activated ErbB1, (F) 
phosphorylated form of Shc, (G) phosphorylated PLCγ-1, and (H) active Ras (RasGTP). Values less than 1.2 suggest conver-
gence of the chains.
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Figure 8B. As specified in the AMCMC algorithm, the unit
dimensions are constant during the "learning" period and
adapt following this initial period.

Model-based inference of cell signaling pathways

Rationalizing about the biological mechanisms that
underpin biological response can be aided using mathe-
matical models. A mathematical model allows for the pre-

diction of a series of response variables, , given a model

topology, M, and a set of parameter values, Θ, determined
from some calibration data, Y. Biological responses can be
explained using mathematical models with finite accu-
racy. This accuracy is in part limited by uncertainty associ-
ated with measured data. The uncertainty in experimental
measurement can be attributed to technical variation
(e.g., intrinsic error associated with a particular assay) or
biological variation (e.g., cellular heterogeneity, asyn-

Ŷ

Model calibration simulationsFigure 5
Model calibration simulations. The mathematical model for early signaling events reproduces the early dynamics for activa-
tion of selected pathways downstream from ErbB1. Simulated results (lines) are compared against the experimental observa-
tions (symbols) used to calibrate the mathematical model. The uncertainty in the model predictions obtained from each are 
represented by three lines of the same color: the most likely prediction is represented by the solid lines and the dashed lines 
represent the 95th and 5th percentile of the predicted response. The results for each of the three parallel chains are shown in 
different colors: Chain 1 (Blue), Chain 2 (Black), and Chain 3 (Red). (A) Simulated response (lines) versus measured total ErbB1 
expression in 184A1 cells (Ќ[20]). (B) Comparison to the phosphorylated form of ErbB1 was reported as a percentage of the 
total ErbB1 expression (❍ [18], � [30], and � [31]). (C) The simulated fraction of total cellular Grb2 bound to activated 
ErbB1 (line) is compared against experimental values (❍ [18]). (D) Simulated (line) and measured (circles) [18]) percentage of 
total Grb2 bound to activated Shc. (E) Simulated (line) and measured (� [30]) percentage of total Sos bound to activated 
ErbB1. (F) The phosphorylated form of Shc, reported as a percentage of total Shc (❍ [18], �[31],  [22]), is compared against 
the simulated value (line). (G) Comparison of simulated (line) versus the phosphorylated form of PLCγ-1, reported as a per-
centage of total PLCγ-1 (� [31]). (H) The active form of Ras (RasGTP), reported as a percentage of total Ras (� [30]), is com-
pared against the simulated values (line). The initial conditions used in the simulation are tabulated (see Additional file 1: Table 
S3). With the exception of p-Shc observed by [22], all observations were made following exposure to 20 nM EGF in primary 
rat hepatocytes. In panel F, the measurements by [22] were obtained following exposure to 10 nM EGF in MCF-7 cells.
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chrony, or stochasticity). The variance may vary between
experimental assays of the same biological system and
limit observing significant trends in the response variables
(e.g., [29]). Mathematically, the relationship between
experimental observations, mathematical predictions,
and uncertainty can be related by:

where δ(Y) are systematic differences between the model
and data and  is a random error component that reflects
the inherent uncertainty of a particular assay to probe
biology. In analyzing measured data using mathematical
models, it is typically assumed that  is independently and

identically distributed with a mean of zero and δ(Y) is
negligible. These assumptions provide the basis for likeli-
hood functions, such as Equation 3, and some cost func-
tions, such as root mean squared error, used in

P Y P Y M Y Y( ) ( | , ) ( ) ,= + +d ε (19)

AMCMC summary plots for each of the model parametersFigure 6
AMCMC summary plots for each of the model parameters. The trace of each of the model parameters is shown as a 
function of MCMC step. The traces for three parallel chains are shown in different colors: Chain 1 (Blue), Chain 2 (Black), and 
Chain 3 (Red).
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>Covariance structure of P(Θ| Y)Figure 7
Covariance structure of P(Θ| Y). The pairwise correlation coefficients of the parameters derived from all three thinned 
(Kthin = 200) Markov chains are shown above the diagonal. A high value for the correlation coefficient suggests that the param-
eters are unidentifiable given the calibration data. Below the diagonal, pairwise projections of the marginalized probability den-
sity for P(Θ|Y) are shown. The parameter names are shown on the diagonal. Each scatter plot axis spans a range of 1012 (i.e., 
(log - mean - 6.0 to log - mean + 6.0). The values in each scatter plot are centered at the log-mean values (i.e., the expectation 
maximum) determined from three parallel Markov Chains each containing 800,000 MCMC steps.



BMC Bioinformatics 2009, 10:371 http://www.biomedcentral.com/1471-2105/10/371
optimization algorithms. Optimization focuses on find-
ing the best solution to a problem given a set of con-

straints, such as finding P( |M, Y) such that  is a
minimum. Optimization and other aspect related to fit-
ting a model to data was recently reviewed with respect to
systems biology [44]. However, there are two aspects of
analyzing data using mathematical models that deserve
further clarification with respect to the empirical Bayesian
approach described herein.

The first aspect is related to the model predictions,

P( |M, Y). A single point estimate for P( |M, Y) (i.e.,

the maximum likelihood estimate: MLE( |M, Y)) is the
most commonly used approach to generate model predic-
tions [7]. However, the model predictions are also
dependent on the particular parameter values used in the
prediction. A better estimate of model adequacy can be
obtained by reporting the uncertainty associated with the
predictions of the model given a range in plausible param-
eter values (i.e., the posterior distribution of the parame-
ters). The uncertainty in the predictions can be obtained

by integrating over the posterior distribution in the
parameter values:

In practice, marginalizing the predicted response variables
over the converged Markov chain provided a numerical
integration of Equation 20.

The second aspect is the uncertainty associated with what
the model is unable to predict:

The absence of systematic trends instills confidence in
both the model predictions and the experimental data.
Variance that exhibits systematic trends (i.e., δ(Y)) implies
that features of the biological system are not represented
in the mathematical model or that inconsistencies exist
within the experimental data. When systematic trends are
observed, it may be tempting to discard the model as
inadequate. However, a closer examination of δ(Y) may

Ŷ

Ŷ Ŷ

Ŷ

P Y M Y P Y M P M Y d( | , ) ( | , ) ( | , ) .= ⋅
−∞

+∞

∫ Θ Θ Θ

(20)

d( ) ( ) ( | , ).Y P Y P Y M Y+ = −ε (21)

Evolution in the proposal density distribution as a function of AMCMC stepFigure 8
Evolution in the proposal density distribution as a function of AMCMC step. (A) A value proportional to the volume 
of the P-dimensional hyperellipsoid that encloses the proposal density distribution (∏(·)) for the AMCMC algorithm shown as 
a function of MCMC step for Chain 1. (B) The change in the eigenvalues of ∏(·) as a function of MCMC step indicate the con-
traction and expansion along different orthogonal directions of the hyperellipsoid, shown for one of the parallel chains.
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provide insight into aspects of the underlying biology as
trends identify gaps in knowledge. These gaps in knowl-
edge are also opportunities for discovery. For the EGF
model analyzed using the empirical Bayesian approach,
the normalized error, shown in Figure 9, provided an esti-
mate of δ(Y) for each measurement used in calibrating the
model. The distributions in δ(Y) for Total ErbB1, Total
Grb2 on ErbB1, Total Grb2 on Shc, and Total Sos on
ErbB1 were distributed around zero, suggesting the
absence of systematic trends. However, a common
approach in the field is to collect calibration data from a
variety of sources and systems due to the lack of data on a
specific system. In that case, systematic trends may reflect
inherent variation in response among systems. A more
detailed analysis of the calibration data identified incon-
sistencies within the experimental data. The comparison
among the different reported measurements of Total pY-
ErbB1 was interesting. The model predictions largely cap-
ture the values reported by Markevich et al. (i.e., δ(Y) is
centered around zero), consistently underpredict the val-
ues reported by Moehren et al. (i.e., δ(Y) is greater than
zero), and consistently overpredict the values reported by
Kholodenko et al. The earlier time points for ErbB1 phos-
phorylation was reported by Moehren et al. compared to
the other studies while the data reported by Kholodenko
appears to exhibit a more rapid decline than observed by
Markevich et al. (see panel B in Figure 5). It may seem that
an increase in the EGF binding rate may provide better
agreement with the Moehren et al. data. However, the rate
constant for EGF binding was obtained from the literature
[45] and is a factor of 105 slower than the other steps that
lead to ErbB1 phosphorylation. Additional studies may be
needed to rectify these seemingly conflicting observa-
tions.

Differences between the expected behaviors and new data
identify areas where our understanding of the system is
inadequate and reveal novel aspects of biology [6]. In the
case of signal transduction models, systematic differences
may be used to discriminate between competing mecha-
nistic descriptions, such as between recent bench experi-
ments that report aspects of Ras activation [26] or of dose-
dependent aspects of EGF stimulation [46] and those rep-
resented in current models [47]. While developing an
empirical Bayesian approach was the primary focus of this
work, two additional points deserve mention in analyzing
the EGF signaling data. First, the lack of convergence for
the Ras predictions suggests that additional information,
such as a more quantitative estimate for Ras expression
levels within rat primary hepatocytes, are required before
a level of belief can be stated regarding the agreement
between the new mechanistic aspect of Ras activation and
the observed dynamics. Second, an underlying assump-
tion is this model is that all of the reactants are in the same
compartment (i.e., localized nearby the plasma mem-

brane). However, a common theme for a variety of signal-
ing receptors suggests that cellular response to receptor
stimulation is dependent on the receptor's subcellular
location (e.g., [48-50]). Regarding EGF signaling, Vieira et
al. reported that PLCγ exhibited an increase in phosphor-
ylation in cells with defective clathrin-mediated endocyto-
sis [51]. This underlying biology may contribute to the
inability for the PLCγ predictions to converge. Similar to
the Ras predictions, quantitative estimates for PLCγ
expression levels within rat primary hepatocytes may help
improve the model predictions for PLCγ. Finally, this
work helps set the framework for coupling empirical Baye-
sian techniques with information theory, such as the
Akaike Information Criterion [52-54] or Bayes Factor
(e.g., [12,16]), to establish a level of confidence with dis-
tinguishing between competing mechanisms of informa-
tion flow.

A recent study by Chen and coworkers elevates the stand-
ard for developing and testing mathematical models of
cell signaling networks [47]. In this paper, the uncertainty
associated a mathematical model of the canonical path-
ways associated with the EGF family of receptors, ErbB1 -
ErbB4, was estimated using a ensemble of parameter
point estimates obtained by simulated annealing. While
stochastic sampling of parameter space is an essential
requirement for an algorithm to navigate successfully
within a rugged landscape with multiple local minima,
using a model to make inferences about cell signaling net-
works requires that the observed samples are representa-
tive samples derived from the posterior distribution.

While the dimensionality of the model described by Chen
et al. may be too computationally expensive for a conven-
tional Bayesian approach, AMCMC techniques, as
described here, provide an attractive approach to sample
high-dimensional parameter space efficiently. Moreover,
demonstrating that Markov chain is a representative sam-
ple of the posterior distribution with a convergence crite-
rion applied to the parameters can make a conventional
Bayesian approach computationally intractable due to the
presence of different timescales. As described here, the
convergence criterion can be applied to the model predic-
tions thereby simplifying the computational burden of
the approach.

Conclusion
A common challenge in systems biology is to infer mech-
anistic descriptions of biological process given limited
observations of a biological system [55,56]. In the area of
signal transduction, mathematical models are frequently
used to represent a belief about the causal relationships
among proteins within a signaling network. The simu-
lated dynamics of these models are dependent on the
topology of the signaling network and the parameters
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associated with each protein-protein interaction. An out-
standing question is whether a specific topology can cap-
ture the observed biology given a range of plausible
parameter values. By integrating over the range of plausi-
ble parameter values, we may establish a level of confi-
dence with a specific topology. If the level of confidence is
low, we may learn that we have left out a critical link
within the signaling network. A Bayesian perspective may
be particularly helpful for determining aspects of the biol-

ogy that are inconsistent with the stated hypothesis about
how information flows within a network. As illustrated by
the example developed in this paper, models of signal
transduction frequently synthesize information derived
from a variety of experimental studies. Tools, such as the
AMCMC algorithm and Gelman-Rubin convergence met-
rics, that facilitate evaluating different sources for this
information may also be helpful. In summary, an empiri-
cal Bayesian approach was developed for inferring the

Normalized error of the model predictions stratified by studyFigure 9
Normalized error of the model predictions stratified by study. The distribution in the sum of the normalized error 
between the calibration data and the model predictions is shown for each study used in the analysis. (A) Total ErbB1 expres-
sion [20], (B) total phosphorylated ErbB1 [18], (C) total phosphorylated ErbB1 [31], (D) total phosphorylated ErbB1 [30], (E) 
total Grb2 attached to ErbB1 [18], (F) total Grb2 attached to Shc [18], (G) total Sos attached to ErbB1 [30], (H) phosphor-
ylated Shc [18], (I) phosphorylated Shc [31], (J) phosphorylated Shc [22], (K) phosphorylated PLC-γ [31], and (L) activated Ras 
(Ras-GTP) [30]. Distributions for the three chains are shown in different colors: Chain 1 (Blue), Chain 2 (Black), and Chain 3 
(Red).
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confidence in a particular model for describing signal
transduction mechanisms and for inferring inconsisten-
cies in experimental measurements.

Additional material
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