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Abstract: Background: Neurodegenerative disorders (NDs) are diverse group of disorders charac-
terized by escalating loss of neurons (structural and functional). The development of potential 
therapeutics for NDs presents an important challenge, as traditional treatments are inefficient and 
usually are unable to stop or retard the process of neurodegeneration. Computer-Aided Drug Design 
(CADD) has emerged as an efficient means of developing candidate drugs for the treatment of 
many disease types. Applications of CADD approach to drug discovery are progressing day by day. 
The recent tendency in drug design is to rationally design potent therapeutics with multi-targeting 
effects, higher efficacies, and fewer side effects, especially in terms of toxicity. 

Methods: A wide literature search was performed for writing this review. An updated view on dif-
ferent types of NDs, their effect on human population and a brief introduction to CADD, various 
approaches involved in this technique, ranging from structural-based to ligand-based drug design 
has been discussed. The successful application of CADD approaches for the treatment of neurode-
generative disorders is also included in this review. 

Results: In this review, we have briefly described about CADD and its use in the development of 
the therapeutic drug candidates against NDs. The successful applications, limitations and future 
prospects of this approach have also been discussed. 

Conclusion: CADD can assist researchers studying interactions between drugs and receptors. We 
believe this review will be helpful for better understanding of CADD and its applications towards 
the discovery of new drug candidates against various fatal NDs. 
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1. BACKGROUND 

 The development of novel potential therapies for the 
treatment of NDs represents an important means of extend-
ing life span and quality of life in the elderly [1]. The devel-
opment of potential therapeutics for NDs presents an impor-
tant challenge, as traditional treatments are inefficient and 
usually are unable to stop or retard the process of neurode-
generation [2], which is highly complex and includes many 
neuropathological conditions and cognitive function losses, 
such as, memory and learning losses. NDs cause neuron loss 
and brain aging, which eventually lead to death. In fact, it 
has been estimated that more than 25% of global deaths and 
disabilities are caused by brain-associated disorders [3], such 
as, Alzheimer’s disease (AD), Parkinson’s disease (PD), 
Huntington’s disease (HD) and amyotrophic lateral sclerosis 
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(ALS) [4, 5]. Available treatments are limited, and no truly 
effective drug is available for many NDs. Furthermore, the  
number of drugs approved is limited by the high failure rates 
of lead compounds in clinical trials [6]. 

 Identifying novel, potential drugs for NDs is difficult 
using traditional approaches of drug discovery [7]. However, 
during the last decade, computers have been used to aid and 
accelerate the process of drug discovery, and this process is 
now referred to as computer-aided drug design (CADD) or 
computer-assisted molecular design (CAMD). 

 Computer-Aided Drug Design (CADD) emerged as an 
efficient means of identifying potential lead compounds and 
for aiding the developments of possible drugs for a wide 
range of diseases [8, 9]. Today, a number of computational 
approaches are being used to identify potential lead mole-
cules from huge compound libraries. 

 Applications of CADD approach to drug discovery  
are progressing on a daily basis. The recent tendency in  
drug design is to rationally design potent therapeutics with  
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multi-targeting effects, higher efficacies, and fewer side  
effects, especially in terms of toxicity. In this review, we 
provide a brief introduction to CADD and include details of 
structure-based drug design (SBDD) and ligand-based drug 
design (LBDD), and their uses to identify potential drug 
candidates for NDs. In addition, we provide an up-to-date 
summary of the successes and limitations of CADD against 
NDs and discuss its future prospects. 

2. COMPUTER AIDED DRUG DESIGN (CADD) 

 To introduce a new drug to the market is a costly affair 
that involves considerable time and money. The average time 
taken to discover/develop a drug is around 10-15 years and 
the cost stands at around US$ 800 million [10-12]. Not sur-
prisingly, pharmaceutical companies focus on reducing de-
velopment times and budgets without adversely affecting 
quality. In the 1990’s, a large number of developments were 
undertaken using combinatorial and high-throughput screen-
ing technologies, which accelerated drug discovery [13-15]. 
These technologies were widely adopted because they en-
abled the rapid synthesis and screening of large libraries, but 
unfortunately, no significant success was achieved and little 
progress toward the development of new molecular entities 
was made [16, 17]. 

 A combination of advanced computational techniques, 
biological science, and chemical synthesis was introduced to 
facilitate the discovery process, and this combinational ap-
proach enhanced the scale of discovery. Eventually, the term 
computer-aided drug design (CADD) was adopted for the 
use of computers in drug discovery [17, 18]. Advanced com-
putational applications have been shown to be effective tools 
and notable successes have been achieved using these tech-
niques. CADD is a specialized discipline, whereby different 
computational methods are used to simulate interactions be-
tween receptors and drugs in order to determine binding af-
finities [19]. However, the technique is not limited to studies 
of chemical interactions and binding affinity predictions, as 
it has many more applications ranging from the design of 
compounds with desired physiochemical properties to the 
management of digital repositories of compounds. An over-
view of CADD is provided in Fig. (1). CADD may be broadly 
categorized embracing both structure- and ligand-based drug 
design. Fig. (2) illustrates various approaches applied in CADD. 

 Virtual screening (VS) is a computational technique 
used for screening large datasets of molecules, and has been 
successfully used to complement High Throughput Screen-
ing (HTS) for drug discovery [8, 20, 21]. The major aim of 
VS is to enable the rapid, cost-effective evaluation of huge 

 

Fig. (1). Overview of CADD process. 
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virtual compound databases to screen for effective leads for 
synthesis and further study [22]. Virtual database screening 
can be applied to screen large libraries of compounds using 
various computational approaches to identify those entities 
likely to bind to a molecular target of interest [23, 24]. To a 
large extent, VS mitigates the problem of drug synthesis be-
cause it utilizes large libraries of pre-synthesized compounds. 

2.1. Structure-based Drug Design (SBDD) 

 Structure-based drug design utilizes protein three-
dimensional (3D) structural information to design new bio-
logically active molecules [25]. Thus, the identification of a 
target molecule and the determination of its structure is the 
main, initial step of SBDD [23, 26]. The identified target 
may be an enzyme associated with a disease of interest. 
Based on binding affinity determinations, potential com-
pounds are determined which attenuates the activity of target 
by its inhibition. Thus, SBDD utilizes information about a 
biological target and identifies potentially new medications. 
As such SBDD constitutes a marked advancement in the 
computational techniques used in the biophysics, medicinal 
chemistry, statistics, biochemistry, and other fields [27]. Sci-
entific advancements have resulted in a large number of 
techniques for predicting protein structures. These state-of-
the-art technologies enable the determination of the struc-
tures of large numbers of proteins by using cryo-electron 
microscopy (EM), nuclear magnetic resonance (NMR), X-
ray crystallography and computational methods like homol-
ogy modeling and molecular dynamic (MD) simulation [28]. 

2.1.1. Homology Modeling 

 Determining the structure of a target molecule follows 
the identification of a specific drug target [29]. Despite the 

availability of advanced techniques, the structures of a large 
number of proteins have not been identified [30]. Homology 
modelling helps in this situation because it can be used to 
generate the structures of proteins on information available 
for similar proteins [31]. 

 Structural information about an identified target is a pre-
requisite for SBDD, but the structures of several identified 
neurodegenerative drug targets have yet not been determined 
[32, 33]. A large number of studies have been conducted 
using the homology modelling approach to generate struc-
tures of identified target molecules. Structural information is 
also required to gain insights of protein activities. Dha-
navade et al. generated the structure of cysteine protease, 
which degrades amyloid beta peptide, an important causative 
agent of Alzheimer’s disease [34]. Several in silico experi-
ments have been conducted using the modeled structure of 
cysteine protease to investigate the nature of its binding site. 

2.1.2. Molecular Docking 

 Molecular docking is a computational process widely 
used for rapidly predicting the binding modes and affinities 
of small molecules against their target molecules (usually 
proteins) [35, 36]. This in silico process has achieved a posi-
tion of great importance in the drug discovery field [21, 36-
38]. Molecular docking has emerged over the last two dec-
ades and is now considered an indispensable tool for CADD 
and in the structural biology field, and has been shown to be 
more efficient than traditional drug discovery methods. Mo-
lecular docking has been greatly facilitated by dramatic 
growth in computer power and the increasing availability of 
small molecule and protein databases. Fig. (3) illustrates the 
basic principle of molecular docking. Recent advancements 
in computer methods and access to 3D structural information 

 

Fig. (2). Various approaches applied in CADD. 
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of biological targets are set to increase the effectiveness of 
this technique and facilitate its large-scale application to 
studies of molecular interactions involved in ligand-protein 
binding. Generally, small molecules can be docked in three 
different ways, that is; (a) by rigid docking, where both tar-
get and ligands are treated as rigid entities; (b) by flexible 
docking, where both ligand and target are considered to be 
flexible; and (c) by flexible ligand docking, where the ligand 
is considered to be flexible and the target is considered rigid 
[39]. Many molecular docking programs have been devel-
oped during recent years, such as, AutoDock [40], Dock 
[41], FlexX [42], Glide [43], Gold [44], Surflex [45], ICM, 
and LigandFit [46], and been used successfully in many 
computer based drug discovery projects. Table 1 provides a 
list of major molecular docking tools in practice. Typically, 
the major goal of molecular docking is to identify ligands 
that bind most favorably within receptor binding sites and to 
determine its most energetically favored binding orientations 
(poses). The term “binding pose” is the orientation/confirmation 
of a ligand relative to its receptor. A binding pose either re-
fers to a conformation of a ligand molecule within the bind-

ing site of its target protein which has been confirmed ex-
perimentally, or a computationally modelled hypothetical 
conformation. The search algorithm and the scoring function 
are two important components for determining protein-
ligand interactions [47]. The search algorithm is responsible 
for searching different poses and conformations of a ligand 
within a given target protein and the scoring function esti-
mates the binding affinities of generated poses, ranks them, 
and identifies the most favorable receptor/ligand binding 
modes [47, 48]. An ideal search algorithm should be fast and 
effective, and the scoring function must be capable of deter-
mining the physicochemical properties of molecules and the 
thermodynamics of interactions. 

 A large number of trials are being conducted to identify 
binding modes of ligands and selection of the most energeti-
cally favored poses. In order to achieve this, molecular dock-
ing tools are used to generate a set of different ligand bind-
ing poses and a scoring function is used to estimate the bind-
ing affinities of generated poses to identify the best binding 
mode. The energy change caused by ligand/receptor complex 
formation, is given by the Gibbs free energy (ΔG) and the 
binding constant (Kd) [49, 50]. The binding energy of a 
complex is predicted by evaluating physicochemical features 
involved in ligand-receptor binding, which include desolva-
tion, intermolecular interactions, and entropic effects [51]. 
Sehgal et al. identified a number of compounds active 
against HSPB8 based on molecular docking results [52]. 

2.2. Ligand Based Drug Design (LBDD) 

 LBDD offers a general approach for elucidating relation-
ships between the structural and physicochemical properties 
of compounds/ligands and their biological activities. This 
approach is applied when 3D structural information of a tar-
get protein is unavailable. In this process the available in-
formation of ligands and their biological activity is used for 
the development of new potential drug candidates. LBDD is 
widely used in pharmaceutical research, as more than 50% of 
approved drugs targeting membrane proteins (for which 3D 
structures are often not available, such as, GPCR). It is based 
on the assumption that compounds with similar structural 
features share common biological activities and inter-
act/inhibit common target molecules [36, 37]. 

 The representation of molecules is the basis of LBDD 
approach. Molecular descriptors are numerical values used to 
represent the structural and physicochemical properties of 
molecules [53, 54]. The molecular descriptor field is strik-
ingly interdisciplinary and includes a number of different 
theories [55]. Active molecules are represented by the 0D-
4D class of molecular descriptors [56]. Constitutional and 
count descriptors are 0D molecular descriptors, chemical 
fingerprints or lists of structural fragments, such as, SMILES 
and SLN, are 1D descriptors, graph invariants in which atoms 
are denoted as nodes and bonds as edges are 2D-descriptors, 
geometrical, WHIM and others are 3D descriptors, and those 
derived from CoMFA or DRID methods are classified as 4D 
descriptors [57]. Similarity searching is a key aspect of the 
LBDD method. This technique uses a known active com-
pound as a query compound to find similar compounds and 
then rank compounds identified in a database. Based on this 
belief, structurally similar molecules exhibit similar biologi-

 

Fig. (3). Basic principle of molecular docking. 
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cal activities and physicochemical properties. Numerical 
descriptors are applied and similarity coefficient is defined to 
quantify the degree of similarity (similarity/ dissimilarity). 
Fingerprint-based similarity or 2D similarity measures are 
widely used for similarity searching. A number of coeffi-
cients are applied in similarity searching with different fin-
gerprint molecular databases (Cosine, Euclidian distance, 
Forbes, Tanimoto coefficients etc.). 

 The Tanimoto coefficient is most popular and widely 
accepted similarity index for binary variables, despite its 
well-documented size bias. It may be defined as: 
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where overlapab, overlapaa, and overlapbb are the volume 
overlaps of molecule a with molecule b, of molecule a with 
itself, and of molecule b with itself, respectively. Values of 
Tc range from 0 (no similarity) to 1 (a perfect match). 

 LBDD is generally categorized as Quantitative Structure 
Activity Relationship (QSAR) or pharmacophore modeling. 

2.2.1. QSAR and its Role in Drug Discovery 

 The QSAR method and pharmacophore modeling are the 
most popular approaches to ligand-based drug design [58, 
59]. QSAR methods are based on the belief that molecular 
structures are directly associated with biological activities, 
and thus, that molecular or structural variations alter biologi-
cal activities. QSAR is defined as a process involving the 
construction of computational or mathematical models using 
chemometric techniques to identify significant correlations 
between a series of structures and functions [60]. For QSAR, 
the primary hypothesis is that “compounds with similar 
structural or physiochemical properties show similar activi-
ties”. To identify potential leads, a library of lead com-
pounds with the desired biological activities is produced. A 
model is then developed to predict the quantitative relation 

between the structural and physico-chemical features of 
these compounds and their biological activities. A statistical 
model generated using such relations is then used to mathe-
matically optimize the biological properties of sets of com-
pounds and maximize relevant biological activities. QSAR is 
used to modify existing compounds and improve their activi-
ties, and has been widely used in drug discovery to improve 
existing drugs for NDs. A study conducted by Dong et al. 
successfully designed a new series of PDE-4 inhibitors using 
the QSAR approach [61]. Bhadoriya et al. successfully im-
plemented QSAR to the discovery of more potent anti-
Alzheimer’s agents [62]. In latter, QSAR studies were car-
ried out on a series of 34 fused 5,6-bicyclic heterocycles to 
identify the structural characteristics needed to inhibit Aβ42. 

2.3. Pharmacophore Modelling 

 A pharmacophore is an assembly (3D arrangement) of 
'steric' and 'electronic' features required for optimal su-
pramolecular interaction with a specific biological target 
structure and to prompt/block its biological response [63]. 
Ligand-based pharmacophore model generation is based on 
available information on the biological activities of com-
pounds/ligands. A pharmacophore does not symbolize an 
actual molecule/ligand or real connection between functional 
groups, but rather provides an abstract description of mo-
lecular features that are vital for molecular interactions be-
tween molecules and macromolecular ligands. 

 Pharmacophore modeling is widely used to identify po-
tential lead molecules quickly. During the recent era of drug 
design, many therapeutically potent and well accepted drug 
targets with unknown active site geometries have been iden-
tified. Pharmacophore modeling provides an efficient means 
of rapidly screening huge databases of compounds. The  
elucidation of common pharmacophore features is conducted 
by aligning conformational models and active compounds 
three dimensionally. A superimposition algorithm assembles 
training set compounds (3D structure) in the same position/ 
arrangement of their respective chemical properties/features. 
Pharmacophoric features are positioned such that all/ 

Table 1. List of major available molecular docking tools. 

S.No. Program Availability Search Method Refs. 

1. AutoDock Freely available Genetic Algorithm/Monte Carlo [40] 

2. Gold Paid Genetic Algorithm [44] 

3. Glide Paid Monte Carlo [43] 

4. FlexX Paid Incremental construction [42] 

5. Dock Freely available Shape fitting (sphere sets) [41] 

6. LigandFit Paid Monte Carlo [46] 

7. FRED Freely available Shape fitting (Gaussian) [91] 

8. ICM Paid Monte Carlo [92] 

9. eHiTS Paid Incremental construction [93] 

10. Surflex-Dock Paid Incremental construction [45] 
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maximum compounds share a common chemical functional-
ity. To refine a shared pharmacophore feature, information 
regarding inactive compounds can be included in the model 
generation process. A number of tools and software have 
been developed for pharmacophore development, such as, 
Phase, Catalyst/Discovery Studio, MOE, and LigandScout 
[64]. 

3. SUCCESSFUL CADD APPROACHES TO THE 
TREATMENT OF NEURODEGENERATIVE DISORDERS 

 The success of CADD has resulted in its being recog-
nized as an important technique in the research and pharma-
ceutical fields. There are many examples of the successful 
application of CADD, but here we describe its successes 
with respect to the design of drugs for the treatment of NDs. 
Amyloid-β is an important therapeutic target in Alzheimer’s 
disease [65]. Chen et al. used an in silico approach to study a 
series of peptides against the fibrillar form of Aβ, and re-
ported two highly active compounds [66]. These peptides 
were subsequently found to inhibit the neurotoxic effects of 
Aβ on neuroblastoma cells. 

 BACE-1 is an enzyme that has been reported to be essen-
tial for β-amyloid generation [67]. Research suggests inhibi-
tion of this enzyme stops the production of β-amyloid, and 
thus, prevents NDs like Alzheimer's disease [68]. This find-
ing has made BACE-1 an important therapeutic target for 
NDs. During the last few years, several computational ap-
proaches have been used to study the structural behavior of 
BACE-1 and to design their inhibitors [69-71]. 

 ROCK-I and NOX2 are among the most attractive poten-
tial therapeutic targets for several NDs [72-75]. Inhibition of 
these two enzymes constitutes treatment for neurological 
diseases like autism spectral disorder, Alzheimer, and fragile 
X syndrome. Alokam et al. reported the successful use of 
CADD to design dual inhibitors for these enzymes [76], by 
employing a combination of pharmacophores and using a 
molecular docking approach to identify chemical entities. In 
vitro validation of selected chemical entities demonstrated 
their inhibitory potentials against ROCK-I and NOX2. 

 HDAC6 is a member of the class IIb Histone deacety-
lases (HDACs) family and is usually found in cytosol in as-
sociation with non-histone proteins [77, 78]. HDAC6 has 
been widely reported to be a crucial therapeutic drug target 
for several NDs [79-81]. The implementation of CADD has 
been reported to result in the design of a potential inhibitor 
of this enzyme. In one study conducted by Goracci et al., a 
virtual screening approach was used to identify potential 
inhibitors for HDAC6, and these were then subjected to in 
vitro testing. The results obtained showed inhibitors had low 
cytotoxicities, suggesting potential for drug development 
[82]. Several other reports have described the successful use 
of CADD in the NDs. 

4. LIMITATIONS 

 Despite a number of successful applications of CADD to 
modern drug design, it has its limitations. In particular, like 
any computer assisted hypothetical system results must be 
validated in actual systems, and many lead molecules identi-
fied using CADD have failed to exhibit desired activities in 

biological systems [83, 84]. Several parameters must be met 
before potential compound to be approved as potent 
lead/drug, as it has to pass several pharmacological criteria. 
In fact, an average of only 40% of lead/drug candidates 
passes the different phases of clinical trials and obtains ap-
proval for clinical use. 

 Any computational tool based on pre-defined algorithms 
and scripts has its limitations, and the computational 
tools/methods used in CADD, such as, molecular docking, 
virtual screening, QSAR, pharmacophore modeling, and 
molecular dynamics, have their own limitations [49, 85-88]. 
Furthermore, ADME and many toxicity prediction tools are 
not supported by solid experimental data, and many exam-
ples of the failure of these computational approaches can be 
found in the literature [89, 90]. 

 To overcome limitations and improve accuracy in terms 
of predicting potent leads, regular updates of tools and algo-
rithms are needed. Database reliability and high quality vali-
dated experimental molecules is to be developed and updated 
because many pharmacophores do not pass biological activ-
ity process due to non-availability of good quality data sets. 
Databases should contain detail data on genomics and pro-
teomics, high quality sequence information, physicochemical 
properties, and structures. 

CONCLUSION 

 In the present era of drug discovery, the application of 
CADD counts up the most important accountability, and 
provides computational tools and algorithms that save time, 
costs, and reduce the risk of detecting non-viable develop-
mental leads. The discovery of a new lead/drug using recent 
CADD paradigms requires a systematic understanding of the 
molecular and pathological conditions induced by diseases. 
Early diagnosis of NDs remains a huge challenge for re-
searchers and clinicians. However, CADD can assist re-
searchers studying interactions between drugs and receptors. 
The pharmacoinformatic approach is being applied to mod-
ern drug discovery and is providing much basic knowledge 
regarding drug-receptor interactions. Novel technologies and 
computational algorithms are required to move the CADD 
approach forward, as new developments are likely to lead to 
tools for disease identification and the screening of potential 
lead compounds. The emerging field of neurological studies, 
which includes neuroproteomics and neurogenomics, may 
aid understanding of the neuronal alterations associated with 
NDs. Furthermore, the application of technologies associated 
with neuroproteomics, neurogenomics, and next generation 
sequencing, and genome wide association studies may result 
in the identification of novel therapeutic targets and ulti-
mately improve our ability to treat NDs. 

LIST OF ABBREVIATIONS 

CADD = Computer-aided drug design 

QSAR = Quantitative structure activity relationship 

SBDD = Structure based drug design 

LBDD = Ligand based drug design 

NDs = Neurodegenerative diseases 
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