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Fuzzy inference systems have been widely applied in robotic control. Previous studies

proposed various methods to tune the fuzzy rules and the parameters of the membership

functions (MFs). Training the systems with only supervised learning requires a large

amount of input-output data, and the performance of the trained system is confined

by that of the target system. Training the systems with only reinforcement learning (RL)

does not require prior knowledge but is time-consuming, and the initialization of the

system remains a problem. In this paper, a supervised-reinforced successive training

framework is proposed for a multi-continuous-output fuzzy inference system (MCOFIS).

The parameters of the fuzzy inference system are first tuned by a limited number of

input-output data from an existing controller with supervised training and then are utilized

to initialize the system in the reinforcement training stage. The proposed framework is

applied in a robotic odor source searching task and the evaluation results demonstrate

that the performance of the fuzzy inference system trained by the successive framework

is superior to the systems trained by only supervised learning or RL. The system trained

by the proposed framework can achieve around a 10% higher success rate compared

to the systems trained by only supervised learning or RL.

Keywords: supervised learner, reinforcement learning, fuzzy inference system, robotic odor source searching,

Monte Carlo test

1. INTRODUCTION

Fuzzy inference systems have been applied in various classification and regression problems in
machine learning (Nguyen et al., 2019; Wu et al., 2019; Cui et al., 2020) and have also been
widely used in control and optimization in robotics (Chen C. et al., 2022; Su et al., 2022). Previous
studies have proposed several methods to learn and tune the fuzzy rules and the parameters of the
membership functions (MFs) to achieve the expected performance. Some widely applied methods
design the fuzzy systems from (1) a manually-built fuzzy rule look-up table (Chen and Huang,
2020b); (2) learning from collected input-output data (Wang et al., 2020) through evolutionary
algorithms (Wu and Tan, 2006) and gradient descent (Wang and Mendel, 1992).

Unfortunately, in unknown environments, prior knowledge may not be sufficient
to build well-designed fuzzy rules, and the parameters of the system can hardly
be tuned to an optimal solution (Dai et al., 2005). In terms of learning from
collected data, a typical work is that Wang and Pang (2020) proposed to train
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adaptive neural fuzzy inference systems (ANFIS) to mimic
existing bio-inspired controllers and probabilistic controllers
for odor source searching utilizing collected input-output data
and realize behavior patterns similar to the target controller.
The performance of the trained fuzzy inference system-based
controller can be further improved by fusing the input-output
data of two different controllers.

The above learning process is in the scope of supervised
training, in which a large amount of training data is required.
Data collection can be time-consuming and the data collected
from limited environmental settings may not include boundary
conditions. In addition, for some complex environments, existing
controllers may not be optimal. Learning from them cannot
necessarily achieve the desired performance.

Reinforcement learning (RL) has attracted researchers’
attention in the past decades because it provides an effective
solution to robotic control and decision-making problems for
which analytically optimal solutions are hard to obtain. RL is
based on a human-inspired “trial-and-error” learning process
that action will be reinforced if it is followed by a desired state
of the robot. Since RL can tune the controllers in real-time,
correct action or trajectory data is not required. Therefore, RL is
especially suitable to operate in a knowledge-poor environment.

In previous studies, the fuzzy inference system has been
integrated into RL in various application scenarios because of its
high interpretability and flexibility. Kumar et al. (2020) used a
fuzzy inference system to switch between three working modes
for the traffic light control system, while a deep RL model
was designed to switch the traffic lights. The fuzzy inference
system and the RL model worked in a hierarchical framework.
Wang et al. (2021) integrated a fuzzy inference system into the
reward function of the RL model to balance the exploitation and
exploration during odor source searching. Er and Deng (2004)
proposed a fuzzy Q learning method to tune a fuzzy inference
system-based actor model by RL, and similar methods have been
applied in autonomous vehicle control (Dai et al., 2005) and
robotic odor source searching (Chen and Huang, 2019; Chen X.
et al., 2022).

Previous studies usually initialized the parameter of the fuzzy
inference system with conventional clustering methods (Cui
et al., 2020; Wang et al., 2020) or arbitrarily manual settings.
Although RL can tune a fuzzy inference system to achieve a good
performance, it remains an interesting problem to investigate
whether the initial parameter setting of the fuzzy inference
system will affect the performance of the system after numerous
training epochs. To the best of our knowledge, no previous
studies focused on this problem and provided a good solution to
initialize the fuzzy inference system so that it can achieve better
performance after training.

In this paper, a supervised-reinforced successive training
framework for a multi-continuous-output fuzzy inference system
(MCOFIS) was proposed. In this framework, the MCOFIS was
first trained with input-output data from an existing state-
action model. The input-output data was collected in multiple
robotic tasks, in which the robot was running a pre-designed
controller. The measured state of the environment and the
resulting actions of the robot at each time step were recorded

as the input-output data. After this supervised training stage,
the trained MCOFIS model was utilized as the initial model in
the process of reinforcement training and further trained with
the deep deterministic policy gradient (DDPG) RL algorithm
(Lillicrap et al., 2015). The proposed training framework was
applied in a robotic odor source searching problem, which was
usually solved by bio-inspired reactive algorithms (Shigaki et al.,
2019), probabilistic algorithms (Vergassola et al., 2007; Chen
and Huang, 2020a; Chen et al., 2020), and learning algorithms
(Wang and Pang, 2020; Chen et al., 2021a) in previous studies.
The performance of the trained MCOFIS-based odor source
searching controller was compared with the MCOFIS-based
controller trained with RL only. The results showed that the
MCOFIS trained with the proposed successive framework can
promote the success rate of odor source searching to around 95%,
while the success rate of the model trained with only RL was
around 85%.

The rest of the paper is organized as follows: Section 2
presents the structure of theMCOTSKmodel, how the successive
training framework is utilized to tune the system, and the
application of the proposed method in odor source searching.
Section 3 compares the controller trained with the proposed
method and the controller trained with only supervised training
or reinforcement training and analyzes the results. Section 4
presents some discussions. Section 5 concludes the paper.

2. METHODS

In this section, the proposed supervised-reinforced successive
training framework for an MCOTSK is introduced. The
MCOTSK serves as an “Actor” mapping the state s to the
action a of the robot. The state means the observed state of
the environment, which is measured by the sensing system
of the robot. The action means estimated control commands
for the robot. As illustrated in Figure 1, the proposed training
framework consists of two parts: in the supervised training
part, the MCOTSK is trained offline with numerous state-action
pairs collected from robot-environment interactions when the
robot is driven by a pre-designed controller; in the reinforced
training part, the MCOTSK is trained online by maximizing the
expected future cumulative reward when the robot’s action is
estimated by the MCOTSK Actor. The structure of the MCOTSK
model and two successive training parts are introduced in the
following subsections.

2.1. The Structure of the MCOTSK Model
The MCOTSK model is a variation of the general TSK fuzzy
inference system (Chen X. et al., 2022). As depicted in Figure 1,
the MCOTSK model consists of five layers, in which the
adjustable nodes are represented by rectangles, and the fixed
nodes are represented by circles. An,m(n = 1, . . . ,N; m =

1, . . . ,M) are fuzzy sets.
Assuming the MCOTSKmodel hasM inputs: x1, . . . , xM ∈ R,

the inputs are fuzzified by N fuzzy rules in the first layer, which
is called the fuzzification layer. The outputs of this layer are
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FIGURE 1 | Illustration of the supervised-reinforced successive training framework for the multi-continuous-output TSK fuzzy inference system (MCOTSK).

formulated as follows:

θ1n,m = µAn,m (xm) = e
−

(xm−cn,m)2

2a2n,m , (1)

where µAn,m represents the membership function of the fuzzy set
An,m(n = 1, . . . ,N; m = 1, . . . ,M) and is set to be a Gaussian
membership function (MF) in this paper. ar,m and cr,m are
hyper-parameters adjusting the distribution of the GaussianMFs.

The section layer is a fixed layer, in which all the nodes are
marked as π . The outputs are the firing level of the rules, and are
formulated as follows:

θ2n =

M
∏

m=1

µAn,m (xm) (n = 1, . . . ,N). (2)

The third layer is the normalization layer. It normalizes the
outputs of the second layer to represent the contribution of the
nth fuzzy rule to the sum of the firing level of all rules. The output
of this layer can be expressed as follows:

θ3n =
θ2n

∑N
k=1 θ2

k

. (3)

The fourth layer is an adaptive layer, of which the output is the
product of the normalized firing level calculated by the third layer

and a linear polynomial of the inputs of the MCOTSK model:

θ4n = θ3nyn(x1, . . . , xM) = θ3n (bn,0 +

M
∑

m=1

bn,mxm), (4)

where yn is the linear polynomial of Rule n, and bn,0 and bn,m are
adjustable weight parameters.

The last layer is the output layer. It calculates the weighted sum
of θ4n . Assuming the MCOTSK model has P outputs, they can be
expressed as follows:

θ5p =

N
∑

n=1

ωp,nθ
4
n , (5)

where ωp,n are adaptive weight parameters (p = 1, . . . , P; n =
1, . . .N).

In order to make the MCOTSK model estimate optimal
actions from the input states of the environment, the adaptive
parameters an,m, bn,m, bn,0, cn,m, and ωp,n (n = 1, . . . ,N; m =
1, . . . ,M; p = 1, . . . , P) need to be tuned.

2.2. The Supervised Training Part
In the supervised training part, the proposed MCOTSK model
learns from an existing suboptimal Actor, which was designed
with prior knowledge. By running a robotic task with the
suboptimal Actor for multiple trails, the state of the environment
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and the action the robot takes can be recorded. Numerous
collected state-action pairs are utilized as input-output samples
to train the MCOTSK model.

The centers of the MFs cn,m are initialized using a
conventional K-means clustering method, which is the same as
Cui et al. (2020) andWang et al. (2020). The SDs of the MFs an,m
are initialized to be 1.

At each training epoch, a batch of state-action pairs
(ai, si), (i = 1, . . . ,BSs) (batch size BSs = 32 in this paper)
are randomly selected from all the collected samples to tune the
parameters of MCOTSK by minimizing the mean squared error
between the estimated actions and the collected actions:

φ∗ = argmin
φ

BSs
∑

i=1

[

MCOTSK(si|φ)− ai
]2
, (6)

where φ∗ = {an,m, bn,m, bn,0, cn,m,ωp,n}
∗ is the optimal parameter

set for the supervised-trained MCOTSK model.
The training process will terminate when the recorded

minimum mean squared error on the evaluation set keeps
unchanged for 40 training epochs. The optimal MCOTSK model
is further used as the initial model in the reinforced training part.

2.3. The Reinforced Training Part
In the reinforced training part, the DDPGRL algorithm (Lillicrap
et al., 2015) is applied to further train the MCOTSK model
through the “trial-and-error” process.

A “Target actor” is initialized the same as the MCOTSK
Actor optimized in the supervised training part. A “Critic”
model and its twin “Target critic” model are two artificial neural
networks initialized with the same structure and parameters and
serve as the action-value functions q(s, a) and qtarg(s, a), which
calculated the expected cumulative future reward of the current
state-action pair.

At each step t during the robot’s task, an action command at
is estimated from the input state st with the MCOTSK model,
and the robot takes the corresponding action. Then an updated
state st+1 of the environment is perceived by the robot and serves
as the input of MCOTSK at the next step. The experience of the
robot (st , at , rt , st+1) is stored in an experience replay buffer D

(buffer size = 5,000 in this paper). A batch of stored experience in
D was randomly selected to tune the Actor and Critic model in
each training epoch (batch size BSr = 32 in this paper).

In a reinforced training epoch, st+1 is sent to the Target actor
to estimate an action command atarg,t+1 for the next state. The
reward rt the robot obtains at step t and the action value qtarg
calculated with the Target critic were used to calculate the target
action value r + γ qtarg(st+1, atarg,t+1). The Temporal-Difference
error between the action value q(st , at) estimated by the Critic
model and the target action value estimated by the Target critic
model are used to optimize the Critic model by minimizing the
following loss with stochastic gradient descent:

L(φc,D) = E
(st ,at ,rt ,st+1)∼D

[(

q (st , at|φc)

−
(

r + γ qtarg
(

st+1, atarg,t+1|φc,targ

)))2
]

, (7)

where φc is the parameters of the Critic model, and φc,targ is the
parameters of the Target critic model. The MCOTSK Actor is
tuned by maximizing the estimated action value from the Critic
model. Therefore, the loss function for gradient descent is set
as follows:

L(φa,D) = − E
(st ,at ,rt ,st+1)∼D

[

q (st , at|φc)
]

= − E
(st ,at ,rt ,st+1)∼D

[

q
(

st ,MCOTSK(st|φa)|φc

)]

, (8)

where φa is the parameters of the Actor model, and φa,targ is the
parameters of the Target actor model.

The parameters φa,targ and φc,targ are updated through a soft
updating policy at each training epoch:

φc,targ← ρφc,targ + (1− ρ)φc, (9)

φa,targ← ρφa,targ + (1− ρ)φa, (10)

where ρ is 0.9 in this paper.
In order to reduce overfitting and increase generalization in

training the MCOFIS, the DropRule technique (Wu et al., 2019)
is applied in the training process. DropRule randomly drops
some fuzzy rules (sets the firing level to zero) during the training
process with probability P ∈ (0, 1) and remains the firing level
unchanged with probability 1 − P. DropRule can promote the
robustness of each individual rule. The Layer Normalization (LN)
technique is used to normalize the firing level of the rules. The
LN layer added in the MCOTSK model is expected to mitigate
the gradient vanishing issues (Cui, 2022).

2.4. Application of the Training Framework
in Odor Source Searching
In this paper, the proposed successive training framework is
applied to an odor source searching problem to demonstrate its
feasibility and superiority.

The odor source searching problem in this paper is defined
as follows: in an outdoor environment in which the wind field
is changing over time, the robot starts from a position away
from the odor source and tracks dynamic odor plumes and
reaches within 2m from the odor releasing source. The searching
area is set to be 40 m × 10 m, and the coordinate system is
shown in Figure 2. The odor leakage source can be regarded
as a point and is located at (5, 0). The wind velocity is set as
1 m/s in the searching space. The wind direction is aligned to
X-axis at t = 0. The noise gain on the wind direction is 5.
The odor plumes (illustrated as the red puffs in Figure 2) are
released from the odor source and dispersed by the wind. The
plumes aremodeled by the filament-based odor plume dispersion
model (Farrell et al., 2002) to simulate an intermittent 2D odor
concentration distribution.

The robot runs a Lévy Taxis-based odor plume tracking
algorithm, which is a variation of Fuzzy Lévy Taxis (Chen and
Huang, 2020b), integrating the proposedMCOTSK Actor model.
At each searching step, the robot turns its heading θa to an
angle Ta and moves forward for a length Ml. Ta and Ml follow
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FIGURE 2 | Illustration of a snapshot of the searching area in the odor source searching problem. The odor source is represented by the star. The yellow patches

represent the area within 2 m from the odor source. The wind field is illustrated by the black arrows. The red puffs are the simulated odor plumes, which resemble the

real-world plumes well as shown in Figure 1.

the probability distribution presented in Equations (11), (12),
and (13):

Ta =

[

2 · arctan

(

1− α

1+ α
tan(π(rnd − 0.5))

)]

+ bias, (11)

Ml = Lmin · rnd
1

1−µ , (12)

bias = βθu + (1− β)θa. (13)

rnd is a random value uniformly distributed in [0, 1] and is
resampled in each searching step. The key parameters α, β , and
µ of the Fuzzy Lévy Taxis algorithm are determined by the
proposedMCOTSKmodel. The inputs ofMCOTSK are the states
of the environment: the odor concentration Ct measured by the
robot at its current position at time t and the concentration
gradient∇Ct = Ct−Ct−1. The outputs ofMCOTSK go through a
Tanh activation layer limiting the outputs in the range of [−1,1].
After a further rescale process, the range of the outputs can be
adjusted suitable for the key parameters α, β , andµ. The rescaled
outputs are the estimated action commands and are utilized to
drive the robot.

To apply the proposed successive training framework, 50 trails
of odor source searching tasks are conducted, during which the
robot runs the Fuzzy Lévy Taxis algorithm, and the state-action
pair {Ct ,∇Ct ,α,β ,µ} is recorded at each time step t. A total
number of 1,816 state-action pairs are collected in this study to
train the MCOTSK model firstly with supervised learning. The

FIGURE 3 | The mean squared errors on the evaluation set during the

supervised training stage.

learning rate of the supervised learning part is 0.01. The number
of rules is set to be 10. The DropRule rate is 0.2. The mean
squared errors on the evaluation set between the collected actions
and the outputs of MCOTSK at each epoch are recorded during
the supervised training and are shown in Figure 3.

The trained model is used as an initial model in the reinforced
training stage. Every odor source searching task is a training
episode. An episode will stop when the robots arrive within 2 m
from the odor source, exceeds the boundaries of the searching
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FIGURE 4 | The average reward in each episode in the reinforced training

stage.

area, or the number of searching steps exceeds a limit, which is
60 steps in this paper. The learning rate of Actor is 0.0001 and
that of Critic is 0.002. The reward of the robot obtained in step t
is as follows:

rt =































20 if the robot arrives within 2 m

from the odor source,

−10 the robot exceeds the boundaries

of the searching area,

−1+ Cc
C0

cos(θu − θa) otherwise.

(14)
where C0 is a constant and set to 30 in this paper. This reward
setting is designed to let the robot learn bio-inspired anemotaxis
and chemotaxis behaviors. The models were trained for 360
episodes. During the process of training, we recorded the reward
the robot obtained in each episode. Figure 4 presents the average
reward for every 20 episodes during the reinforced training. It
can be seen that the average reward started from around −22
because a large variation was added to the estimated action
for exploration. With the added variation decayed, the average
reward increased and converged to around 10. From the average
reward curves, we can know that the robot can learn to track
the dynamic plumes and find the odor source with the MCOTSK
model trained by the proposed method.

3. PERFORMANCE EVALUATION

In order to demonstrate the advantages of the proposed training
framework, Monte Carlo tests were conducted in a testing
environment that is different from the training environment.
The robots started from random positions in the rectangle area
shown in Figure 2 and searched the odor source with 21 different
action models—1: the Fuzzy Lévy Taxis algorithm used in the
supervised training; 2 ∼ 20: the trained MCOTSK model after
every 20 reinforced training episodes (from 0 to 360 episodes);
21: the MCOTSK model trained with RL only. For each model,
200 trials were conducted.

The controllers were evaluated with three metrics. The first
metric was the success rate: the proportion of trials in which the
robot reached<2m from the odor source. The secondmetric was
the number of searching steps in all successful trials. The third
metric was the distance overhead, which is the traveled distance
from the starting position to the stopping position divided by the
straight distance in all successful trails. The latter two metrics
reflect the efficiency of the searching process. The results of the
Monte Carlo tests were shown in Figure 5.

It can be seen that the Fuzzy Lévy Taxis algorithm and the
model trained with only the supervised stage can achieve a
similar success rate (around 85%) and efficiency. It demonstrated
that the MCOTSK has been trained to a suboptimal action
model. When the reinforced training stage started, the success
rate first decreased and then increased fast and exceeded 95%.
The decrease at the early reinforce training stage is because
the Critic model was being tuned. Once the Critic model can
estimate the action value accurately, the performance of the
MCOTSK-based Actor returned to the desired condition. With
the proposed framework, the robot can learn some bio-inspired
searching behaviors in the supervised training stage and fine-tune
the parameters of the Actor model in the reinforcement training
stage, which can avoid too much random parameter exploration
and accelerate the reinforced training process. The performance
of the trained model can also benefit from the pre-designed
controller because it can provide correct guidance for the robot
at the early stage during RL and serve as a baseline behavior
pattern. Therefore, themodel trained by the proposed framework
can achieve better results compared with the model trained by
RL only. Compared with the MCOTSK model trained with RL
only (the last model in Figure 5), the success rate of the model
trained with the successive framework was 10% higher, and the
median searching steps and distance overhead were similar. This
result can demonstrate that the proposed training framework can
initialize the action model to a suboptimal parameter setting, and
amore robust model can be obtained through further RL training
compared with the model trained by RL only.

A typical odor source searching trajectory generated by the
MCOTSK model trained with the proposed framework was
shown in Figure 6. It can be seen that when the robot was in the
plumes, it went through an upwind surge path, which is a typical
anemotaxis behavior learned in the reinforced training process.
When it missed the plumes, it conducted a random walk, which
is a behavior inherited from the Fuzzy Lévy Taxis algorithm.

4. DISCUSSION

4.1. Limitations of the Proposed
Framework
Intuitively, the proposed framework can be more time-
consuming compared with tuning the controller by supervised
training only. In a scenario where edge cases can be ignored
and the manually-designed controllers can perform well enough
to achieve the goal, the successive training framework may be
redundant. Compared with training by RL only, the proposed
framework requires a pre-designed controller or some prior
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FIGURE 5 | Performance evaluation results of the three controllers in the Monte Carlo tests. (A) Success rate, (B) is the number of searching steps, and (C) is the

distance overhead. Model 1: the Fuzzy Lévy Taxis algorithm used in the supervised training; Models 2–20: the trained MCOTSK model after every 20 reinforced

training episodes (from 0 episodes to 360 episodes); Model 21: the MCOTSK model trained with RL only.

FIGURE 6 | A typical odor source searching trajectory with the MCOTSK model trained with the proposed successive training framework. The blue curves represent

the trajectories.

knowledge for supervised training, which can be hard in some
complex scenarios where existing controllers are not available.

4.2. Application Potentials
In this paper, the proposed framework was applied to search for
a single odor leakage source. When applied in a scenario where
there aremultiple odor sources, the proposed training framework
can be integrated with various multi-robot odor source searching
algorithms (Feng et al., 2019; Wiedemann et al., 2019), that is, to
train the robots with supervised learning using the state-action
data collected from the existing multi-robot searching algorithm
and then to further tune the Actor with RL to learn an optimal
action policy.

It is also promising to apply the proposed framework to
other robotic problems, e.g., controlling surgical robots (Zhou
et al., 2020), industrial manipulators (Su et al., 2020, 2022),

and robotic grasping (Deng et al., 2021). The controllers are
first initialized with a manually-designed suboptimal controller,
and then trained by RL to achieve better performance.
Human-robot interactions can also benefit from the proposed
framework. The monitored physiological signals (Qi and
Su, 2022) and motion signals (Chen et al., 2021b) can
serve as the input of the Actor model. The Actor model
may be initialized by a generic parameter setting in the
supervised training stage. After being trained by RL on each
individual user, the robot is expected to cooperate with the
user better.

5. CONCLUSION

In this paper, a supervised-reinforced successive training
framework for a fuzzy inference system was proposed and
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applied to a robotic odor source searching problem. The
performance evaluation results showed that the proposed
method can train the FIS to a suboptimal model through
supervised training, and the model trained with further
RL can perform better than the model trained with RL
only. The results of this paper can inspire researchers to
initialize the fuzzy actor model through supervised training
using some prior knowledge and then tune a better model
with RL.
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