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Abstract Background Predicting annualized bleeding rate (ABR) during factor VIII (FVIII)
prophylaxis for severe hemophilia A (SHA) is important for long-term outcomes.
This study used supervised machine learning-based predictive modeling to identify
predictors of long-term ABR during prophylaxis with an extended half-life FVIII.
Methods Data were from 166 SHA patients who received N8-GP prophylaxis (50 IU/kg
every 4 days) in the pathfinder 2 study. Predictive models were developed to identify
variables associated with an ABR of�1 versus>1 during the trial’s main phase (median
follow-up of 469 days). Model performance was assessed using area under the receiver
operator characteristic curve (AUROC). Pre-N8-GP prophylaxis models learned from
data collected at baseline; post-N8-GP prophylaxis models learned from data collected
up to 12-weeks postswitch to N8-GP, and predicted ABR at the end of the outcome
period (final year of treatment in the main phase).
Results The predictive model using baseline variables had moderate performance
(AUROC¼0.64) for predicting observed ABR. The most performant model used data
collected at 12-weeks postswitch (AUROC¼0.79) with cumulative bleed count up to
12 weeks as the most informative variable, followed by baseline von Willebrand factor
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Introduction

Prophylaxis is considered the standard of care for the pre-
vention and management of bleeding in patients with he-
mophilia A.1,2 Extended half-life (EHL) recombinant factor
VIII (rFVIII) molecules were developed to offer reduced
dosing frequency and higher factor activity levels than
standard half-life FVIII molecules.1 Switching patients to
prophylaxis with an EHL rFVIII molecule can provide mean-
ingful improvements in health-related quality of life.3 How-
ever, there is significant interpatient variability in response
to rFVIII treatments, which may relate to the patient’s age,
body mass, bleeding phenotype, genotypic variation, ABO
blood group, physical activity, and joint status, among other
variables.1,4–6

Identifying patient characteristics that predict long-term
outcomes could help to inform clinical decisions for prophy-
laxis optimization. Annualized bleeding rate (ABR) is an
established outcome measure of prophylaxis efficacy as it
correlates with long-term joint destruction.7,8 Previous
attempts to predict and improve ABR have been focused
on the use of FVIII pharmacokinetic (PK) parameters. Collins
et al established that time per week spent at FVIII activity
below 1 IU/dL was associated with increased total bleeds.9

Valentino et al showed that peak FVIII levels, area under the
curve, and time spent per week with FVIII levels >20 IU/dL
were linked to bleeding risk.4 More recently, Tiede et al
demonstrated that bleeding risk can change over time and
is influenced by factors independent to PK parameters,
suggesting that other demographic and clinical character-
istics are required to predict long-term treatment re-
sponse.10 Notably, the aforementioned approaches to
predict ABR relate to evidence using standard half-life FVIII
molecules for prophylaxis. Since then, guidelines have sug-
gested to target higher trough levels,2 which is achievable
with EHL rFVIII molecules. It is reasonable to reassess
predictors of long-term clinical response, as these may
have changed with improvements in prophylaxis.

Predictive modeling involves the use of analytic techni-
ques to predict clinical outcomes. Machine learning is a
powerful computational approach used to recognize pat-
terns in complex, multivariate datasets that include clinical
variables and outcomes, enabling the development of pre-
dictive modeling. A significant advantage of machine learn-
ing techniques is their ability to handle highly variable
datasets, collinearity, and missing data. Importantly, they
can be used to identify how much a variable contributes to
predicting a subsequent outcome. Rapid advances in ma-

chine learning techniques have enabled the application of
predictive modeling to data from randomized controlled
trials, showing significant promise in using patient and
clinical characteristics to identify variables that are strongly
associated with a chosen treatment outcome across a range
of indications.11–13

N8-GP is an EHL human rFVIII product that has the
potential to provide a simplified prophylaxis treatment for
patients with hemophilia A due to its fixed, body-weight-
based dosing regimen (50 IU/kg every 4 days [Q4D]).14 The
mean trough level observed during prophylaxis with N8-GP
(turoctocog alfa pegol; Esperoct, Novo Nordisk A/S, Bags-
vaerd, Denmark) at 50 IU/kg every 4 days was 3 IU/dL.15 The
long-term safety and efficacy of N8-GP were demonstrated
in the pivotal pathfinder 2 trial (NCT01480180), which is the
only clinical trial of an EHL rFVIII molecule where most
patients received a fixed dosing regimen for prophylaxis to
date. In most other studies of EHL rFVIII molecules, patients
received prophylaxis that was individualized by investiga-
tors, or patients were stratified to receive different regimens
based on bleeding rate during a run-in phase.16,17 For these
studies, the application of machine learning techniques to
identify predictive patterns is difficult, because the intensity
of therapy was, at least to some extent, influenced by clinical
outcomes. Due to its unique design, pathfinder 2 provides for
the first time an opportunity to identify predictive patterns
in the setting of prophylaxis with an EHL rFVIII molecule.

The purpose of this posthoc analysis was to develop a
predictive model to identify pre- and post-N8-GP prophy-
laxis variables that can act as predictors of clinical response
to fixed-dose prophylaxis by applying a machine learning
framework to data from the pathfinder clinical trial program.

Methods

Research Objectives
The objectives of this exercise included the following: (1) to
identify pre-N8-GP prophylaxis variables (including baseline
characteristics) associated with an ABR of �1 or >1
bleed/year at the end of the pathfinder 2 main phase; (2)
to identify post-N8-GP prophylaxis variables (including
treatment-related variables, and patient characteristics) as-
sociatedwith an ABR of�1 or>1 bleed/year at the end of the
pathfinder 2 main phase. For the purposes of this analysis,
the ABR threshold of 1 (rather than “0”) was chosen as the
outcome of interest, as the ability to identify and distinguish
early bleeds varies between patients, and it is not uncommon
for some patients to treat pain as an early bleed.

and mean FVIII at 30minutes postdose. Univariate cumulative bleed count at 12 weeks
performed equally well to the 12-weeks postswitch model (AUROC¼ 0.75). Pharma-
cokinetic measures were indicative, but not essential, to predict ABR.
Conclusion Cumulative bleed count up to 12-weeks postswitch was as informative as
the 12-week post-switch predictive model for predicting long-term ABR, supporting
alterations in prophylaxis based on treatment response.
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Data Source
Data from the pathfinder trials (pathfinder 1, NCT01205724;
pathfinder 2, NCT01480180; pathfinder 3, NCT01489111;
pathfinder 5, NCT01731600; pathfinder 7, NCT02920398)
were investigated for the application of supervised machine
learning for predictive modeling. Of these, the pivotal path-
finder 2 trial18–20 was selected for analysis due to the
comprehensive array of variables from a sufficient sample
size of patients. Pathfinder 2 was a phase III, open-label trial
investigating long-term safety, PK, and efficacy of N8-GP
used for prophylaxis (50 IU/kg Q4D) or on-demand treat-
ment in 186 previously treated patients (aged �12 years)
with severe hemophilia A. The full details of pathfinder 2
have been reported previously.18–20

Model Overview
Predictive modeling typically includes a predictive model
learning phase, where data are collected for input into the
model, and a predictive model outcome period, where the
outcome of interest (ABR) is measured. The chosen clinical
outcome of interest for prediction was ABR of �1 versus >1
at the end of the outcome period. Multiple predictivemodels
using data from different time points in the study period
were developed to identify variables pre- and post-N8-GP
prophylaxis that were associated with patients achieving an
ABR of �1 versus >1.

Each predictive model learning phase used data collected
from one of five separate time points in pathfinder 2. Pre-N8-
GP prophylaxis models learned from data collected at
screening visit (“baseline model”) or Visit 2 (prophylaxis
initiation; “baseline and PK model”). Post-N8-GP prophylaxis
models learned from data collected between Visit 2 and 3
(i.e., up to 4 weeks postprophylaxis switch; “post-N8-GP 4-
week prophylaxis model”), Visit 4 (i.e., up to 8 weeks post-
prophylaxis switch; “post-N8-GP 8-week prophylaxismodel”),
or Visit 5 (i.e., up to 12 weeks postprophylaxis switch; “post-
N8-GP 12-week prophylaxis model”), as well as the data
collected at baseline (►Fig. 1). The 12-week post-N8-GP
prophylaxis time window was chosen as the maximum
duration of the predictive model learning phase as patients
tend to be followed more closely during this period by
clinicians, where initial treatment response becomes appar-
ent, and this is often the earliest time that a change in
treatment is considered.

Within each model cohort, patients were classified by
observed clinical response at the end of the predictive model
outcome period: ABR �1 versus >1. The predictive model
outcome period was the time between the end of the
learning phase of each model’s time frame and the end of
the pathfinder 2 main phase (►Fig. 1). As individual ABRs
were not reported at the end of the main phase, ABR values
were calculated based on the number of bleeds reported
after each model’s time point, and during the final 365 days
of the predictive model outcome period prior to the last
recorded site visit during the main phase for each patient.
ABR values were calculated for each patient for each model’s
outcome period, which varied between each predictive
model; patients received prophylaxis in the predictivemodel
outcome period for approximately 15 months (median
[min.–max. range]: 469 [107–747] days) between the base-
line visit and end of the main phase, and approximately
13months (median [min.–max. range]: 385 [100–654] days)
of prophylaxis between the Visit 5 time point and end of the
main phase. In patients where a complete 1-year outcome
period was unavailable (n¼44/166 [baseline model];
n¼70/161 [post-N8-GP 12-week prophylaxis model]), ABR
was calculated by scaling the number of bleeds during the
available predictive model outcome period. Patients on Q4D
prophylaxis who switched to twice-weekly during the trial
due to insufficient treatment response were included in the
“ABR >1” group, irrespective of their ABR outcome. For
patients who did not complete the main phase, ABR was
calculated at the time of withdrawal.

Each predictive model included a cohort of patients from
pathfinder 2 who received consistent N8-GP prophylaxis (50
IU/kg Q4D). Data were excluded if the patient received on-
demand treatment or did not receive at least 90 days of
prophylaxis exposure beyond themodel’s learning time point.
As such, the number of patients in each model varied by time
point, ranging from166patients in thepre-N8-GPprophylaxis
models to 161 in the post-N8-GP 12-week prophylaxis model.

Variable Selection
Standardized predictor variables for predictive modeling
were selected from the range of patient and treatment
characteristics collected at screening visit and after the
switch to N8-GP prophylaxis. Variables that were expected
to have clinical relevance were identified and reviewed by

Fig. 1 Predictive modeling methodology. aMultiple predictive models using data from different time points in the main phase were developed
to identify which variables were associated with patients achieving an ABR of �1 versus >1 during the final stage of the outcome period. bABR
values were calculated for each model’s outcome period, which varied between each predictive model. ABR, annualized bleeding rate.
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two clinicians before being selected for inclusion in the
predictive analyses (►Supplementary Table S1, available in
the online version). Variable selection was based on clinical
experience and availability of patient data; no additional
criteria for variable selection were applied. Patient-reported
outcomes such as EQ-5D were selected initially; however,
preliminary model analyses did not support their retention
for predictive modeling and hence these variables were
excluded.

Predictive Modeling Methodology
Two machine learning techniques were used for predictive
modeling: penalized logistic regression and random forests
(see the Supplementary Material, available in the online
version). Additionally, interpretation methods for the tree-
based models were used to elucidate the underlying drivers
of treatment response. For explanation of predictions at the
individual patient level, SHapley Additive exPlanations
(SHAP) was used to quantify the contribution that each
variable brought to the prediction made by the model.
SHAP estimated how important each variable was by evalu-
ating how well the model performed with and without that
variable.21 In this analysis, SHAP values greater than zero
implied an increased associationwith an ABR�1; values less
than zero implied an increased association with an ABR >1.
Global ranking of how each variable contributed to the
predicted clinical outcome at the group level was derived
from mean absolute SHAP values.

Model Validation
To validate the predictive potential of this approach, a
repeated nested cross-validation strategy was implemented
to alleviate “overfitting” and ensure the models could
generalize well to new data.22 In this, each patient could
contribute to the learning (training set) phase of model
development or act as a test patient (testing dataset or
validation dataset), i.e., each patient was assigned a predic-
tion from a corresponding predictive model. To facilitate
interpretation, the association between variables and sub-
sequent clinical outcome was described at the model level
and individual patient level. A further description of
model validation is provided in the Supplementary

Material (available in the online version).

Performance Metrics
The performance metrics of each predictive model were
assessed using the area under the receiver operator curve
(AUROC) to indicate how well variables collected at the
model’s time point could be used to predict the patients’
observed ABR outcome at the end of the model outcome
period. An AUROC of 1 indicated a perfect model and an
AUROC of 0.5 indicated a model that performs equivalent-
ly to random chance. The predictive models were com-
pared against a univariate benchmark to reference their
performance. The univariate benchmark was historical
ABR for pre-N8-GP prophylaxis models and total bleed
count up to the model’s time point for post-N8-GP pro-
phylaxis models.

Results

Patient Characteristics
Of 175 patients initiated with N8-GP prophylaxis (50 IU/kg
Q4D) in the pathfinder 2main phase, a total of 166 received a
consistent regimen and had sufficient follow-up for inclusion
in the baseline model. Patient demographics and baseline
characteristics for this cohort and the cohort of patients
included in the post-N8-GP 12-week prophylaxis model are
reported in ►Table 1.

ABR Outcome
Patients were classified by ABR at the end of the model
outcome period (which ended at approximately 15 months
after the model’s time point). In the baseline model’s cohort,
87 patients had an ABR �1, and 79 patients had an ABR >1.
Details regarding the duration of the predictive model
learning phase and outcome period are reported
in►Table 2. The majority (n¼122) of patients were exposed
to prophylaxis for >1 year in the predictive model outcome
period.

Performance of Predictive Models
The performance of the predictive models and single-vari-
able benchmarks are reported in►Table 2. Univariate bench-
mark models were included to compare minimum
performance against performance of the pre- and post-N8-
GP prophylaxis models developed by supervised learning
methods.

For the baseline model, an AUROC of 0.636 and 0.608 was
reported for the penalized logistic regression and random
forests, respectively, indicating “moderate” performance of
this model for predicting the observed ABR outcome at the
end of the outcome period. Model performance was im-
proved in the baseline and PK model with the addition of PK
measures, as indicated by higher AUROC values (0.672 and
0.622, respectively). Both pre-N8-GP prophylaxis models
demonstrated improved performance compared with the
single-variable benchmark (AUROC¼0.5821).

The post-N8-GP 12-week prophylaxismodelwas themost
performant, with AUROC values of 0.724 and 0.785 for the
penalized logistic regression and random forests, respective-
ly, indicating “good” performance of this model for predict-
ing the observed ABR outcomes. This model demonstrated
marginally better performance to the single-variable bench-
mark of total bleed count until the model’s time point
(AUROC¼0.748). Model performance increased incremen-
tally over time from the post-N8-GP 4-week prophylaxis
model to the post-N8-GP 12-week prophylaxis model.

Model Interpretability and SHAP Values
SHAP values were used to quantify the contribution of each
variable to the predictionmade by themodel.►Fig. 2 depicts
individual predictions from three patient cases in the base-
linemodel. The overall prediction for a patient (model output
value) and the confidence in that prediction are related to the
sum of the underlying contributions made by each of their
variables.23
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Predictive Variables in the pre-N8-GP Prophylaxis
Models
The local interpretability for each predictor was grouped to
interpret the overall effect of each variable on the model,
which facilitates insight into associations, but not causality.
When ranked by importance, SHAP analysis for global in-
terpretability identified that the von Willebrand factor
(vWF) level and historical ABR were the most impactful
clinically relevant baseline variables for predicting observed
ABR (►Fig. 3A). Mean absolute SHAP values in ►Fig. 4A

illustrate the global importance of the variable
and ►Fig. 3A demonstrates the local explanation summary,
demonstrating the direction of relationship between the
variable and outcome. Baseline vWF had an asymmetric
distribution of SHAP values, with extreme negative variable
values influencing model predictions more than extreme
positive values.

SHAP analysis of variables at a patient level identified that
patients with a threshold vWF level <0.8 IU/mL or historical
ABR >5 demonstrated negative SHAP values, indicating an
increased associationwith an ABR>1. Patients with a higher
vWF level >0.8 IU/mL or lower historical ABR <5 demon-
strated positive SHAP values, indicating an increased associ-
ationwith an ABR�1 (►Fig. 3B). An increase in the vWF level
beyond 0.8 IU/mL was not associated with increasing odds of
the patient having an ABR �1, as indicated by the plateauing
SHAP values; however, decreasing levels of vWF below the
0.8 IU/mL threshold correlated with decreasing SHAP values,
indicating a stronger association with patients reporting an

ABR >1. The impact of height on predictions was most
pronounced for the tallest patients (>1.8 m), who demon-
strated positive SHAP values, indicating an increased associ-
ation with an ABR �1.

Predictive Variables in the Post-N8-GP Prophylaxis
Models
Computation of SHAP values for global interpretability of the
predictive model demonstrated that cumulative count of
treated bleeds (i.e., “total bleed count”) up to 12 weeks
post-prophylaxis switch, baseline vWF level, and mean FVIII
at 30minutes (Visit 5) were the most important clinically
relevant variables for predicting observed ABR (►Fig. 5A).
Total bleed count up to 12weeks postprophylaxis switchwas
the most informative variable for predicting observed ABR,
and markedly more informative than baseline vWF level and
mean FVIII at 30minutes (Visit 5), as demonstrated by higher
mean absolute SHAP values (0.089, 0.033, and 0.030,
respectively;►Fig. 4B). The performance of cumulative bleed
count up to 12 weeks was “good” (AUROC¼0.748) when
assessed in isolation as a single-variable benchmark.

SHAP analysis for individual patient-level variable impor-
tance ranking identified that a higher mean trough level
(>3%) and a higher FVIII at 30minutes postdose (>125%)
were associated with a patient achieving an ABR �1
(►Fig. 5B). FVIII at 30minutes postdose demonstrated a
wider distribution of SHAP values comparedwith the trough
level, indicating that FVIII at 30minutes was more informa-
tive for predicting ABR in the model. At the patient level,

Table 1 Patient demographics and characteristics for the pathfinder 2 main phase cohort at screening visit (baseline) and Visit 5

Screening visit (baseline) Visit 5

Total
(N¼166)a

ABR �1
(n¼ 87)

ABR> 1
(n¼79)

Total
(N¼ 161)

ABR �1
(n¼85)

ABR>1
(n¼ 76)

Age in years, mean
(�SD)

30.5 (12.3) 31.3 (13.0) 29.7 (11.5) 30.5 (12.4) 31.0 (13.2) 29.8 (11.6)

Height in meters,
mean (�SD)

1.76 (0.077) 1.77 (0.079) 1.74 (0.072) 1.76 (0.078) 1.77 (0.082) 1.74 (0.071)

BMI in kg/m2, mean
(�SD)

24.4 (3.9) 24.4 (3.8) 24.4 (4.0) 24.4 (3.8) 24.5 (3.8) 24.4 (3.9)

Historical ABR,
mean (�SD)

12.9 (27.7) 7.3 (12.2) 19.0 (37.2) 13.1 (28.1) 8.8 (15.2) 17.9 (36.9)

von Willebrand fac-
tor in IU/mL, mean
(�SD)

1.00 (0.40) 1.09 (0.42) 0.90 (0.35) 1.00 (0.41) 1.08 (0.43) 0.91 (0.36)

Previous prophylax-
is regimen, n

141 78 63 136 76 60

Previous on-de-
mand regimen, n

25 9 16 25 9 16

Treatment history
(months on previ-
ous prophylaxis/on-
demand regimen),
mean (�SD)

117.8 (108.7) 113.7 (106.6) 122.4 (111.4) 119.5 (109.7) 121.4 (114.1) 117.4 (105.4)

Abbreviations: ABR, annualized bleeding rate; BMI, body mass index; SD, standard deviation; vWF, von Willebrand factor.
a14 of the 166 patients in this cohort switched to twice-weekly treatment and were classified in the “ABR> 1” group.

Thrombosis and Haemostasis Vol. 122 No. 6/2022 © 2021. The Author(s).

Predicting Long-Term Response to N8-GP Prophylaxis Chowdary et al. 917



Ta
b
le

2
D
ur
at
io
n
an

d
va

ri
ab

le
s
of

th
e
pr
ed

ic
ti
ve

m
od

el
le
ar
ni
ng

ph
as
e
an

d
pr
ed

ic
ti
ve

m
od

el
ou

tc
om

e
pe

ri
od

,a
nd

pe
rf
or
m
an

ce
of

th
e
pr
e-
N
8-
G
P
pr
o
ph

yl
ax
is
an

d
po

st
-N
8-
G
P
pr
op

hy
la
xi
s

pr
ed

ic
ti
ve

m
od

el
s

Pr
ed

ic
ti
ve

m
od

el
Pr
e-
N
8-
G
P
p
ro
p
hy

la
xi
s
m
od

el
s

Po
st
-N
8-
G
P
p
ro
p
hy

la
xi
s
m
od

el
s

Ba
se
lin

e
m
od

el
Ba

se
lin

e
an

d
PK

m
o
d
el

Po
st
-N
8-
G
P

4-
w
ee

k
pr
op

hy
la
xi
s
m
od

el
Po

st
-N
8-
G
P

8-
w
ee

k
pr
op

hy
la
xi
s
m
od

el
Po

st
-N
8-
G
P

12
-w

ee
k
p
ro
p
hy

la
xi
s

m
od

el

Pa
ti
en

t
co

un
t,
n

16
6

16
6

16
5

16
2

16
1

Pr
ed
ic
tiv

e
m
od

el
le
ar
ni
ng

ph
as
e

Ti
m
e
po

in
ts

of
th
e
pr
ed

ic
-

ti
ve

m
od

el
le
ar
ni
ng

ph
as
e

Ba
se
lin

e
Ba

se
lin

e
Ba

se
lin

e
an

d
up

to
4
w
ee

ks
po

st
sw

it
ch

Ba
se
lin

e
an

d
up

to
8
w
ee

ks
po

st
sw

it
ch

Ba
se
lin

e
an

d
up

to
12

w
ee

ks
po

st
sw

it
ch

V
ar
ia
b
le
s
in
cl
ud

ed
fo
r

m
ul
ti
va
ri
ab

le
m
od

el
s

•
33

ba
se
lin

e
va
ri
ab

le
s

•
33

ba
se
lin

e
va
ri
ab

le
s

•
2
PK

va
ri
ab

le
s
(t
ro
ug

h,
FV

III
at

30
m
in
ut
es
)

•
33

ba
se
lin

e
va

ri
ab

le
s

•
2
PK

va
ri
ab

le
s:

m
ea

n
at

V
is
it
3
(t
ro
ug

h,
FV

III
at

30
m
in
ut
es
)

•
C
um

ul
at
iv
e
bl
ee

d
co

un
t

up
to

V
is
it
3
(u
p
to

4
w
ee

ks
po

st
pr
op

hy
la
xi
s

sw
it
ch

)

•
33

ba
se
lin

e
va
ri
ab

le
s

•
2
PK

va
ri
ab

le
s:

m
ea

n
at

V
is
it
4
(t
ro
ug

h,
FV

III
at

30
m
in
ut
es
)

•
C
um

ul
at
iv
e
bl
ee

d
co

un
t

up
to

V
is
it
4
(u
p
to

8
w
ee

ks
po

st
p
ro
p
hy

la
xi
s

sw
it
ch

)

•
33

ba
se
lin

e
va
ri
ab

le
s

•
2
PK

va
ri
ab

le
s:

m
ea

n
at

V
is
it
5
(t
ro
ug

h,
FV

III
at

30
m
in
ut
es
)

•
C
um

ul
at
iv
e
bl
ee

d
co

un
t

up
to

V
is
it
5
(u
p
to

12
w
ee

ks
po

st
pr
op

hy
-

la
xi
s
sw

it
ch

)

Pr
ed
ic
tiv

e
m
od

el
ou

tc
om

e
pe

rio
d

D
ur
at
io
n
of

th
e
pr
ed

ic
-

ti
ve

m
od

el
ou

tc
om

e
pe

ri
o
d,

m
ed

ia
n
(m

in
.–

m
ax
.)
da

ys

46
9
(1
07

–7
47

)
47

0
(1
07

–7
47

)
44

1
(9
4–

71
4)

41
3
(1
15

–6
86

)
38

5
(1
00

–6
54

)

Pa
ti
en

ts
w
it
h
A
BR

�1
at

th
e
en

d
of

th
e
ou

tc
om

e
pe

ri
o
d,

n

87
87

85
80

85

Pa
ti
en

ts
w
it
h
A
BR

>
1
at

th
e
en

d
of

th
e
ou

tc
om

e
pe

ri
o
d,

n

79
79

80
82

76

M
od

el
pe

rf
or
m
an

ce
:
si
ng

le
-v
ar
ia
bl
e
be

nc
hm

ar
k

A
U
RO

C
fo
rh

is
to
ri
ca
lA

BR
0.
58

21
0.
58

21
–

–
–

A
U
RO

C
fo
r
cu

m
ul
at
iv
e

bl
ee

d
co

un
t
un

ti
lv

is
it

–
–

0.
65

88
0.
70

59
0.
74

80

M
od

el
pe

rf
or
m
an

ce
:
m
ul
ti
va
ri
ab

le
m
od

el
s

Pe
na

liz
ed

lo
g
is
ti
c

re
g
re
ss
io
n,

A
U
RO

C
(9
5%

C
I)

0.
63

6
(0
.6
28

–0
.6
44

)
0.
67

2
(0
.6
64

–0
.6
81

)
0.
68

9
(0
.6
80

–0
.6
98

)
0.
70

7
(0
.7
00

–0
.7
15

)
0.
72

4
(0
.7
16

–0
.7
31

)

Ra
nd

o
m

fo
re
st
,A

U
RO

C
(9
5%

C
I)

0.
60

8
(0
.5
97

–0
.6
19

)
0.
62

2
(0
.6
12

–0
.6
31

)
0.
69

0
(0
.6
84

–0
.6
97

)
0.
75

8
(0
.7
50

–0
.7
66

)
0.
78

5
(0
.7
78

–0
.7
92

)

A
b
br
ev

ia
ti
on

s:
A
BR

,
an

nu
al
iz
ed

bl
ee

di
ng

ra
te
;
A
U
RO

C
,
ar
ea

un
de

r
th
e
re
ce

iv
er

op
er
at
or

cu
rv
e;

C
I,
co

nfi
de

nc
e
in
te
rv
al
;
FV

III
,
fa
ct
or

V
III
;
PK

,
ph

ar
m
ac
ok

in
et
ic
.

N
ot
e:

Pe
rf
or
m
an

ce
ev

al
ua

ti
on

of
th
e
pr
ed

ic
ti
ve

m
od

el
s
w
as

as
se
ss
ed

us
in
g
A
U
RO

C
.A

U
RO

C
va
lu
es

w
er
e
ra
te
d
as

th
e
fo
llo

w
in
g
:A

U
RO

C
of

0.
5:

m
o
de

lp
er
fo
rm

s
no

be
tt
er

th
an

ra
nd

om
;A

U
RO

C
0.
5
to

<
0.
6:

po
o
r

pe
rf
or
m
an

ce
;A

U
RO

C
0.
6
to

<
0.
7
:m

o
de

ra
te

pe
rf
or
m
an

ce
;A

U
RO

C
0.
7
to

<
0.
8:

go
od

pe
rf
or
m
an

ce
;A

U
RO

C
0.
8
to

<
0.
9:

ex
ce
lle

nt
pe

rf
or
m
an

ce
;A

U
RO

C
0.
9
to

<
1.
0:

ou
ts
ta
nd

in
g
pe

rf
or
m
an

ce
;A

U
RO

C
of

1.
0:

pe
rf
ec

tp
er
fo
rm

an
ce

;i
nt
er
pr
et
at
io
n
of

A
U
RO

C
va

lu
es

is
su
bj
ec

ti
ve

an
d
in
fl
ue

nc
ed

by
cl
in
ic
al
co

nt
ex

t.
Th

e
si
ng

le
-v
ar
ia
bl
e
be

nc
hm

ar
k
fo
rs
cr
ee

ni
ng

an
d
V
is
it
2
is
ba

se
d
on

th
re
sh
o
ld
in
g
hi
st
or
ic
al
A
BR

re
po

rt
ed

at
th
e

sc
re
en

in
g
vi
si
ts
.T

he
be

nc
hm

ar
k
fo
r
V
is
it
3
to

V
is
it
5
is
ba

se
d
on

th
re
sh
o
ld
in
g
th
e
co

un
t
of

bl
ee

d
ev

en
ts

ob
se
rv
ed

si
nc

e
th
e
sc
re
en

in
g
vi
si
ts
.

Thrombosis and Haemostasis Vol. 122 No. 6/2022 © 2021. The Author(s).

Predicting Long-Term Response to N8-GP Prophylaxis Chowdary et al.918



SHAP analysis demonstrated that patientswith a bleed count
of zero universally had positive SHAP values (associatedwith
a patient achieving an ABR �1), whereas patients with a
bleed count greater than zero were universally shown to
have negative SHAP values (i.e., encourage a prediction of
ABR >1).

Discussion

This posthoc analysis applied supervised machine learning
techniques to data from pathfinder 2 to develop predictive
models to identify which pre- and post-N8-GP prophylaxis
variables act as predictors of clinical response to fixed-dose
N8-GP prophylaxis. The most performant predictive model
was the post-N8-GP 12-week prophylaxis model, which
demonstrated that total bleed count during the initial 12-
week period postswitch to N8-GP prophylaxis was the
most informative variable in the model for predicting
ABR at the end of the outcome period (which ended a
median of approximately 13 months after the model’s time
point, i.e., long-term response to N8-GP prophylaxis), fol-
lowed by baseline vWF level and mean FVIII at 30minutes
postdose. When assessed as a univariate benchmark, total
bleed count up to 12 weeks was as performant as the post-
N8-GP 12-week prophylaxis model, demonstrating the
importance of clinical observation for predicting long-
term outcomes.

The performance of the baseline model was “moderate”
(AUROC¼0.636), and only marginally improved compared

with the single-variable benchmark (historical ABR; AUROC
¼0.5821). The model indicated that the vWF level was the
most impactful baseline variable for predicting observed
ABR. Patients who respondedwell to prophylaxis were those
with higher baseline vWF levels (>0.8 IU/mL), which is
consistent with previous studies demonstrating that higher
vWF levels correlate with longer FVIII half-life and higher
FVIII activity between doses that may subsequently lead to a
reduced ABR.16,24 The model identified a linear relationship
between low vWF and higher bleeds, which plateaued be-
yond 0.8 IU/mL. The models identified that patients with
greater height (>1.8 m) reported positive SHAP values that
were associated with an ABR �1. Although taller patients
may report lower body mass index (BMI) values, which is
associated with reduced clearance,25 BMI and body weight
were included as variables in the analysis and not found to be
informative predictors of ABR. Taller patients in this cohort
may instead represent a group of patients whowere possibly
more athletic, or had different levels of activity; the associa-
tion between a taller height and lower ABR is currently
unclear. Overall, the “moderate” performance (AUROC
¼0.636) of the baseline model indicated that baseline var-
iables were limited in their performance to accurately pre-
dict ABR; as such, the association between a taller height
and lower ABR may be a spurious finding. The limited
performance of the baseline model confirms the dominant
influence of the prophylaxis regimen on ABR outcomes.

The post-N8-GP 12-week prophylaxis model was the most
performant and assessed by AUROC as “good” (AUROC

Fig. 2 Individual predictions in the baseline model for (A) a patient with a strong negative outcome prediction, (B) a patient with an uncertain
prediction, and (C) a patient with a strong positive outcome prediction. This plot reports local interpretability of individual patient predictions
from three patient cases in the baseline model. The model outputs a score between 0 and 1. The “base value” of 0.524 is the percentage of
patients with outcome ABR�1. The “model output value” for an individual patient is the sum of the base value and the SHAP value contributions
of all individual variables. A model output value of less than the base value results in a prediction of ABR >1, and greater than the base value
results in a prediction of ABR�1. Variables that increase the base value and predict ABR�1 are in pink, and visual size shows the magnitude of the
effect. Variables that decrease the base value and predict ABR>1 are in blue. ABR, annualized bleeding rate; SHAP, Shapley Additive Explanations.
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¼0.785). The “good” (AUROC¼0.785) performance of this
model indicates that the 12-week observationwindow (learn-
ing phase) postswitch to N8-GP prophylaxis is a sufficient
period of time to monitor patients and determine whether a
change in treatment or regimen may be required, or inves-
tigations for other causative factors. The post-N8-GP 12-week
prophylaxis model included total bleed count; as a single-
variable benchmark, total bleed count up to 12 weeks was
more performant than all variables included in the baseline
model (AUROC of 0.75 vs. 0.64, respectively). The post-N8-GP

12-week prophylaxis model and total bleed count univariate
benchmark model demonstrate the importance of bleeding
phenotype-adjusted tailoring of prophylaxis over baseline
characteristics for predicting long-term ABR.

Previous studies investigating predictors of ABR identified
that endogenous factor levels, adherence, BMI, primary
dosing regimen, inhibitor development, presence of arthrop-
athy, and intensity of physical activity as variables that can
influence bleeding rates.1,4,26–30 In the present analysis, the
post-N8-GP 12-week prophylaxis model demonstrated that

Fig. 3 Global interpretability of (A) the baseline model and (B) the post-N8-GP 12-week prophylaxis model. Plot (A) reports variable importance
and variable effect. The three highest performing clinically relevant variables in the baseline model are ranked according to mean absolute SHAP
values, and shown as distributions across individual patients. Each dot indicates a single patient’s SHAP value; the rank on the y-axis is
determined by the mean absolute contribution of the variable to the model’s output; the position on the x-axis indicates the SHAP value; the
coloring indicates the value of the variable (e.g., high vWF level in red, low vWF level in blue). Mean absolute SHAP values for global interpretation
of variable importance in the baseline model are reported in ►Fig. 4. Plot (B) reports SHAP values for each patient extracted from the random
forest model using data collected at baseline/screening visit. Each dot indicates a single patient’s SHAP value; coloring indicates ABR outcome
during the end of the outcome period for each patient-level SHAP value. The red line indicates the variable threshold for positive and negative
SHAP values. For both plots, instances with SHAP values greater than zero correspond to patients with variable values that influence the model
toward predictions of ABR �1, whereas instances with SHAP values less than zero correspond to patients with variable values that influence the
model toward predictions of ABR >1. ABR, annualized bleeding rate; SHAP, Shapley Additive Explanations; vWF, von Willebrand factor.
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total bleed count up to 12 weeks postprophylaxis switch,
baseline vWF level, and mean FVIII at 30minutes postdose
were the most important variables for predicting observed
ABR with N8-GP prophylaxis. The mean absolute SHAP
values demonstrated that the total bleed count was substan-
tiallymore informative than all other baseline characteristics
(vWF level) and PK measures (mean FVIII at 30minutes and
mean trough level), demonstrating the importance of clinical
observation for predicting long-term outcomes. The “good”
performance (AUROC¼0.748) of cumulative bleed count as a
univariate benchmark model is in line with clinical observa-
tions, whereby patients who bleed less in the initial prophy-
laxis period of a trial are more likely to have fewer bleeds

later in the trial. These results suggest that bleeding events
following prophylaxis initiation are indicative of long-term
outcomes and should prompt a review of the prophylactic
regimen or investigation for local pathology that may be
contributing to an excess of bleeds. In routine clinical prac-
tice, while prophylaxis tends to be adjusted based on treat-
ment response, there is no agreed period for review or an
agreed cut-off for number of bleeds before deciding on a
treatment change. For the first time, this posthoc analysis
confirms that a 12-week treatment period is adequate to
initiate treatment review in the event of bleeds, for intensi-
fication of prophylaxis or investigation into other contribut-
ing factors.

Fig. 4 Mean absolute SHAP values for global interpretation of variable importance in the (A) baseline model and (B) the post-N8-GP 12-week
prophylaxis model. The figure depicts mean absolute SHAP values for the 10 most informative variables in (A) the baseline model and (B) the
post-N8-GP 12-week prophylaxis model for predicting observed ABR outcomes during the end of the outcome period. The SHAP value represents
the amount a variable contributes to the model output. Error bars report standard error of the mean. ABR, annualized bleeding rate; SHAP,
Shapley Additive Explanations.
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The post-N8-GP 12-week prophylaxis model recognized
that a higher trough level (>3%) and FVIII at 30minutes
(representing peak FVIII activity of N8-GP15; >125%) were
both associated with an ABR �1. Similarly, the literature
reports that maintaining a higher FVIII trough level and
achieving a higher FVIII peak provides increased protec-
tion from joint and nonjoint bleeding, and subsequent
improvements in ABR.4,10,30 FVIII at 30minutes and trough
level may act as surrogate markers for N8-GP PK area
under the curve and decay of the curve. SHAP analysis

indicated that the FVIII level at 30minutes postdose was
more informative than the trough level for predicting
observed ABR. This result suggests that achieving the
observed peak threshold of >125% is associated more
strongly with a higher PK area under the curve and an
ABR �1 than achieving a trough level >3%. However, this
result may also reflect the quality of data collected,
whereby values for FVIII level at 30minutes are less
anomalous than the trough level, and may therefore act
as a more informative measure.

Fig. 5 (A) Global interpretability of the post-N8-GP 12-week prophylaxis model and (B) SHAP values for pharmacokinetic variables in the post-
N8-GP 12-week prophylaxis model. aPost-N8-GP prophylaxis variables. bvon Willebrand factor level at baseline (pre-N8-GP prophylaxis). Plot (A)
reports variable importance and variable effect. The three highest performing clinically relevant variables in the post-N8-GP 12-week prophylaxis
model are ranked according to mean absolute SHAP values, and shown as distributions across individual patients. Each dot indicates a single
patient’s SHAP value; the rank on the y-axis is determined by the mean absolute contribution of the variable to the model’s output; the position
on the x-axis indicates the SHAP value (positive values are predictive of lower ABR, and negative values are predictive of ABR >1); the coloring
indicates the value of the variable (e.g., higher value in red, lower value in blue). Mean absolute SHAP values for global interpretation of variable
importance in the post-N8-GP 12-week prophylaxis model are reported in►Fig. 4. Plot (B) reports SHAP values for each patient extracted from
the random forest model using data collected at 12 weeks post-N8-GP prophylaxis switch (for the pharmacokinetic variables). Each dot indicates
a single patient’s SHAP value; coloring indicates ABR outcome during the end of the outcome period for each patient-level SHAP value. The red
line indicates the variable threshold for positive and negative SHAP values. For both plots, instances with SHAP values greater than zero
correspond to patients with variable values that influence the model toward predictions of ABR�1, whereas instances with SHAP values less than
zero correspond to patients with variable values that influence the model toward predictions of ABR >1. ABR, annualized bleeding rate; FVIII,
factor VIII; SHAP, Shapley Additive Explanations.
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Previous investigations intopredictingABRoutcomes using
standard half-life FVIII focused on the association of FVIII PK
measurements with ABR.4,9 In this analysis with an EHL FVIII
molecule, the inclusion of PK measurements improved model
performance, as demonstrated by higher AUROC values for the
baseline and PK model. However, the contribution of mean
FVIII at 30minutes and mean trough level to the predictive
power of the post-N8-GP 12-week prophylaxis model was
substantially lower than the total bleed count, as demonstrat-
ed by lower mean SHAP values (0.030 and 0.016 vs. 0.089,
respectively). Although PK data may be used to inform deci-
sions and individualize treatment in clinical practice (e.g., dose
adjustments),31 the results reported in the present analysis
suggest that using clinical observations of total bleed count
alone during the initial 12-week prophylaxis period (univari-
ate assessment) in thecontextoffixed-doseprophylaxiswitha
high trough level is as good and potentially more informative
topredict long-termprophylaxis response. The results confirm
the value of a simplified, fixed-dose prophylaxis regimen for
patients, with possible adaptation of treatment according to
bleed count in the initial weeks postinitiation, rather than
based on the residual clotting factor activity levels.32

Limitations of this analysis included themodest sample size
of patients (n¼166), which was subject to selection bias,
whereby patients included were those who remained in the
study for longerandcouldhavebeenmorelikely tobecompliant
or be motivated to remain in the study due to observed
improvement. The analysis was based on main phase data
from pathfinder 2 only; the performance of the predictive
modelsmaybenefit fromalongerobservationtimewithrefined
outcomes of interest. Data were not available for joint status,
which is considereda clinically relevant variable for phenotypic
assessment prior to treatment initiation in hemophilia A
patients.33 Data included in the analyses were for patients
receiving N8-GP prophylaxis Q4D, and hence therewas limited
scope to compare findings against other regimens, doses, or
treatments. Due to the modest sample size of patients, valida-
tionwas performedusing nested cross-validation (i.e., “internal
validation”). Although nested cross-validation is an acceptable
method for validating a predictive model, the use of a separate
dataset for external validation is more robust for confirming
model performance. The dataset included anomalies in trough
leveldata, andaproportionof trough levelvalueswasbelow the
detection limit threshold (0.045 IU/mL). FVIII at 30minutes and
FVIII trough levelwere the only PK parameters frompathfinder
2 for which there were sufficient data for inclusion in the
predictive models. Machine learning for predictive modeling
was applied to an EHL PEGylated FVIII molecule; although the
association between clinically relevant variables and predicted
ABRoutcomes is unlikely to be specific to N8-GP, results cannot
be readily extrapolated to standard half-life FVIII molecules, or
those with different half-life extension technology.

To refine the performance and value of the predictive
models in future analyses, results should be replicated in
data from other hemophilia clinical trials, as well as the real-
world setting where patient behavior may be more variable,
andwhere a broader set of variables may be available. As the
performance of each predictive model improved with the

inclusion of more variables, the availability of additional
clinically relevant variables such as joint status, physical
activity, and intensity of previous prophylaxis regimen
may help to further increase model performance. Addition-
ally, the availability and inclusion of other PK parameters,
such as area under the curve, should be applied to future
machine learning analyses to further investigate the role of
PK. The ability to predict ABR as a continuous value or range
of values (rather than as a binary outcome of ABR �1 vs. ABR
>1) may affect the model, as the occurrence of a single bleed
event would have a large impact on the defined outcome.

Conclusion

Machine learning for predictivemodeling is a novel approach to
analyzing data from hemophilia clinical trials. In this posthoc
analysis, applying supervised machine learning techniques for
predictivemodeling to data from the pathfinder 2 trial demon-
strated that cumulative bleed count in the 12 weeks postpro-
phylaxis switch was the most informative variable for
predicting observed ABR at the end of the outcome period
(approximately 13 months later), and probably more informa-
tive than PK assessments and baseline characteristics. This
outcome confirms observations in clinical practice in which
patients who bleed less in the initial period posttreatment
switch aremore likely to have fewer long-termbleeding events.
Additionally, it places greater emphasis on phenotype-adjusted
tailoring of prophylaxis according to bleed response, as well as
investigations for other mechanisms of bleeding. The results
confirm the value of simplified fixed-dose prophylaxis with
adaptations based on both clinical outcomes and PK param-
eters. Furthermore, thisanalysis reports thefirst useofmachine
learning techniques applied to data from a hemophilia clinical
trial, with the aim to identify results that can be applied in the
clinic. The analysis should be highlighted as an example for the
use of artificial intelligence techniques applied to data from
future clinical trials inhemophilia for any therapeuticmodality.

What is known about this topic?

• The most recent iteration of the World Federation of
Hemophilia guidelines2 recommends a higher trough
level for prophylaxis, which can be achieved using
extended half-life (EHL) factor VIII (FVIII) molecules,
and the use of personalized prophylaxis plans.

• Previous studies have attempted to predict bleeding
risk and annualized bleeding rate (ABR) in people with
hemophilia A utilizing FVIII pharmacokinetic (PK)
parameters, and reported an association between
bleeding risk and peak FVIII level, area under the curve,
and time per week with FVIII activity below 1 IU/dL.

• However, bleeding risk can change over time and may
be influenced by factors independent to PK param-
eters, suggesting that other demographic and clinical
characteristics are required to predict long-term treat-
ment response to prophylaxis.
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What does this paper add?

• To our knowledge, this is the first analysis reporting
the application of supervised machine learning tech-
niques for predictive modeling to data from a hemo-
philia clinical trial (namely the pathfinder 2 trial in the
setting of prophylaxis with the EHL recombinant FVIII
molecule N8-GP).

• Predictive modeling in the present analysis identified
that cumulative bleed count up to 12weeks postswitch
to N8-GP prophylaxis, baseline von Willebrand factor,
and mean FVIII at 30minutes postdose were the most
informative variables for predicting ABR outcomes
during the final year of the main phase (median of
385 days after the model’s time point) in patients who
received fixed-dose prophylaxis with N8-GP.

• Bleed count at 12 weeks post-N8-GP prophylaxis
switch was more informative than PK measures
(trough level, mean FVIII at 30minutes postdose)
and baseline characteristics for predicting long-term
ABR, emphasizing the importance of bleeding pheno-
type-adjusted tailoring of prophylaxis.
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