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Magnetic resonance imaging (MRI) can have a good diagnostic function for important
organs and parts of the body. MRI technology has become a common and important
disease detection technology. At the same time, medical imaging data is increasing at
an explosive rate. Retrieving similar medical images from a huge database is of great
significance to doctors’ auxiliary diagnosis and treatment. In this paper, combining the
advantages of sparse representation and metric learning, a sparse representation-based
discriminative metric learning (SRDML) approach is proposed for medical image retrieval
of brain MRI. The SRDML approach uses a sparse representation framework to learn
robust feature representation of brain MRI, and uses metric learning to project new
features into the metric space with matching discrimination. In such a metric space,
the optimal similarity measure is obtained by using the local constraints of atoms and
the pairwise constraints of coding coefficients, so that the distance between similar
images is less than the given threshold, and the distance between dissimilar images
is greater than another given threshold. The experiments are designed and tested on
the brain MRI dataset created by Chang. Experimental results show that the SRDML
approach can obtain satisfactory retrieval performance and achieve accurate brain MRI
image retrieval.

Keywords: medical image retrieval, magnetic resonance imaging, brain images, sparse representation, metric
learning

INTRODUCTION

The number of tumor patients has increased rapidly in recent years. Tumors have become one of the
most common diseases in the world. The prevention, early diagnosis, and treatment of tumors have
aroused widespread concern and discussion in the medical community and the public. Pathological
examination is still the gold standard for tumor detection in the medical field. Medical imaging
is a common method for diagnosing tumors, such as X-ray, magnetic resonance imaging (MRI),
and computed tomography (CT) scans (Zhang et al., 2019; Chahal et al., 2020; Jiang et al., 2021).
At present, early cancer screening mainly depends on the experience of doctors. The accuracy of
decision-making largely depends on the knowledge and experience of doctors and the quality and
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quantity of information available. At the same time, the
development of digital imaging technology and artificial
intelligence has jointly promoted the emergence of digital
pathology. Digital pathology aims to use computers to
automatically analyze the characteristics of digital histopathology
images to serve different tasks such as detection, segmentation,
and retrieval. Digital pathology can provide physicians
with knowledge-supported assistive technology in their
decision-making process, which is of great practical significance.

With the popularization of Internet technology, the scale
of medical imaging databases is getting larger and larger,
and more and more past cases can be provided to doctors.
Content-based image retrieval (CBIR) has technical advantages
in medical diagnosis (Müller and Unay, 2017; Zheng et al., 2018).
CBIR not only provides doctors with a prediction, but also
improves the efficiency and accuracy of diagnosis by retrieving
similar historical cases. Therefore, CBIR is essentially consistent
with the physician’s diagnostic decision-making process. In
addition, the use of CBIR can develop knowledge-based medical
diagnosis decision support systems and case interpretation
systems. Medical image retrieval is the core technology of the
CBIR system, which can retrieve medical images similar to the
image to be diagnosed from the medical database. We know that
medical images are very different from natural images. First, the
resolution of medical images is relatively high, but most of them
are grayscale images. Secondly, the important information of
medical images is mostly concentrated in small areas. Thirdly, the
semantic content of visually similar medical images may be very
different. Therefore, the retrieval effect is often unsatisfactory
when the conventional natural image processing method is
directly applied to medical imaging. Especially for brain tumor
images, the shape, size, and texture of the same type of brain
tumor are different due to the severity of the patient’s condition,
age, and other factors. Therefore, different pathological types may
show similar appearances, which make the recognition of brain
tumor images very challenging.

Medical image retrieval is to retrieve images similar to the
histopathological images to be diagnosed from the database, to
provide references for doctors’ diagnoses. The histopathological
image retrieval algorithm generally includes two stages: feature
extraction and similarity measurement model construction
(Zhang et al., 2015). The tumor boundary in brain tumor
images is usually unclear, so the shape information cannot
provide a clear tumor contour area. Therefore, it is important to
determine the intensity and texture features. Huang et al. (2012)
combined the spatial pyramid model and the Bow model and
used the bag-of-words (BoW) histogram with spatial information
to describe the characteristics of brain tumor regions, which
improved the retrieval performance of brain tumor images.
Huang et al. (2014) regarded the boundary of the brain tumor
as the region of interest (ROI), used the region division
learning method, and expressed the features with the original
image pixel intensity. Finally, the authors aggregated the local
features of each subregion and spatialized them, to improve
the discriminative ability of image features. Cheng et al. (2016)
adopted adaptive space pool and fisher vector method for brain
tumor image retrieval.

In the field of medical image retrieval, similarity measurement
refers to using a given medical image pair to calculate the
distance between the feature vectors of medical image pairs,
and it is often used to judge the type of medical image. For
medical images, similarity measures include semantic correlation
and visual similarity. The semantic correlation measure depends
on the class labels of medical images. For example, the labels
of two brain MRI images are healthy, which means that the
two brain MRI images are semantically related. The visual
similarity measure describes the similarity of features, which
usually describes the similarity of medical images from a visual
perspective. The definition of similarity measures generally
considers the use of distance measures. The commonly used
distance measurement methods include Euclidean distance, angle
cosine distance, Mahalanobis distance, and Minkowski distance,
etc., Yang et al. (2012) extracted local features based on pixel
intensity information along the brain tumor boundary and
used BoW to generate global features. At the same time, the
authors designed a distance metric learning method to improve
retrieval accuracy. Verma and Jawahar (2017) proposed a two-
pass k-nearest neighbor model. Firstly, a more balanced training
data set was designed for each image to reduce the label imbalance
problem. Then, the large interval nearest neighbor algorithm
was extended to the case of multi-label classification for metric
learning, and the optimal weights of combined basis distance and
features were obtained for semantic label prediction. Gu et al.
(2017) proposed a distance measurement method of weighted
heterogeneous values for tumor diagnosis.

Inspired by the sparse mechanism of the human visual system,
sparse representation has been widely used in the field of
computer vision. Sparse representation succinctly represents the
image to be labeled as a linear combination of a few atoms
in the dictionary. These sparse representation coefficients and
corresponding atoms fully reveal the internal essence of the image
and also adapted to human visual perception. Dictionary learning
is a common method in sparse representation research. The
dictionary learned from a large number of samples can adaptively
sparse represent various feature information in the image, which
greatly improves the sparse representation performance. Sparse
representation methods can be divided into two categories.
The first is methods based on predefined dictionaries. Srinivas
et al. (2014) used the correlation between the RGB three-
channels of color images to construct a dictionary and applied
it to histopathological image representation and classification.
However, this method based on the predefined dictionary may
not be able to make full use of the discriminative information
hidden in the training samples. The second type of method
learns the dictionaries from training samples. For example,
Gao et al. (2014) regarded the samples of each subclass as a
subgroup and used the multi-layer group sparsity to classify
and annotate images. Tang et al. proposed a semi-supervised
learning method based on a sparse graph for image classification.
By using the multi-scale and spatial information of the
image, Tang et al. (2010) proposed a multi-scale representation
learning algorithm for breast image classification. Zhang et al.
(2015) proposed a heterogeneous feature fusion method and
applied it to the image classification of pathological tissues.
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The above methods mainly focus on the reconstruction of
histopathological images, so their classification performances
are not optimal. The dictionary learning method based on
supervised learning uses robust feature representation from
the original visual information through mining supervised or
semi-supervised features and coding coefficients. Cao et al.
(2015) used the group sparse reconstruction method to learn
the semantic correlation of symbiotic labels for optimizing the
dictionary. The authors used the group sparse framework to
reconstruct the test image for label prediction and realized
weakly supervised image annotation. Lu et al. (2015) studied
the semantic sparse recording method of visual content to
generate a more descriptive and robust bow representation for
image classification.

This paper proposes sparse representation-based
discriminative metric learning (SRDML) approach for brain
MRI image retrieval. SRDML integrates sparse representation
and metric learning into a discriminative model. On the one
hand, the model uses the sparse representation to learn the
robust feature representation of brain MRI images. On the other
hand, the model learns a metric space with discriminative ability,
so that similar brain MRI images are closely projected in the
metric space, and dissimilar brain MRI images are separated
from each other as much as possible. The advantages of SRDML
are as follows: (1) the local information retention term of
coding coefficients maintains the semantic correlation and
visual similarity of brain MRI images in the projection space.
(2) Our approach finds an appropriate metric matrix under the
constraints of similarity, so that the distance between similar
images’ coding coefficients is less than the given threshold,
and the distance between dissimilar images’ coding coefficients
is greater than the given threshold. Its goal is to achieve the
dispersion of “maximum inter-class” and “minimum intra-class”.
(3) The learning of sparse representation and metric learning is
optimized through alternate iterations. This learning strategy
allows the model parameters to reach the optimal solution at
the same time. (4) The experimental results show that SRDML
has achieved good performance on the brain MRI image dataset,
which shows the feasibility of our retrieval approach in the brain
tumors diagnosis.

The rest of this paper is organized as follows: first,
related works of metric learning and sparse representation are
introduced. Second, the proposed sparse representation-based
discriminative metric learning approach is formulated in section
“Sparse Representation-Based Discriminative Metric Learning”.
Third, experiments are presented to verify our approach. Finally,
a summary of our approach is presented, and its future
work is discussed.

BACKGROUNDS

Metric Learning
The traditional metric learning is based on labeled samples of
medical image data sets and the label information appears in
the form of paired constraints of samples. Assuming that the
medical image data set is expressed as {xi}Ni=1 ∈ Rd, where xi

is the ith sample, taking Mahalanobis distance as an example,
the distance measurement between two images xi and xj can be
written as,

d2
M(xi, xj) = ||xi − xj||

2
M = (xi − xj)

TM(xi − xj). (1)

The positive semi-definite matrix M can be decomposed
into M =WTW, and the matrix W ∈ Rd×m(m ≤ d)is called the
metric matrix. Therefore, Eq. 1 can be expressed as,

d2
M(xi, xj) = (Wxi −Wxj)

T(Wxi −Wxj). (2)

Therefore, the essence of the Mahalanobis metric is to learn
a projection space, in which that similar image pairs output
a positive value close to zero, and dissimilar image pairs
output a larger value.

A type of famous metric learning algorithm is large-margin
distance metric learning (Weinberger and Saul, 2009; Nguyen
et al., 2020). Let S and D be two datasets of pairwise constraints:
S = {(xi, xj) | xi and xj are similar}, and D = {(xi, xj) | xi and xj
are dissimilar}. The large-margin distance metric learning takes
the paired similar or dissimilar data sets as model input and
constructs the metric learning as a convex optimization problem,

min
M

∑
(xi−xj)∈S ||xi − xj||2M,

s.t.
∑
(xi−xj)∈D ||xi − xj||2M ≥ c,

M ≥ 0,

(3)

where c is a positive. It can be seen from Eq. 3 that the
distance between dissimilar pair samples is greater than the
constant c, while the distance between similar pair samples is as
small as possible.

Sparse Representation
The goal of sparse representation is to use the linear combination
of dictionary atoms to represent the observation data, and to use
sparsity constraints on the combination coefficients, so that each
observation data is only represented by a subset of all dictionary
atoms (Gu et al., 2021a,b). The traditional sparse representation
framework is,

min
B,Y
||X-BY||2F + λφ(Y),

s.t. ||bi||2 ≤ 1, ∀i,
(4)

where B and Y are the dictionary matrix and sparse coding
coefficient matrix, respectively. ||||2F is F-norm.

In order to avoid that the value of B is too large and
the sparse coefficient Y is too small, the dictionary column
vector is usually set to satisfy the constraint ||bi||2 ≤ 1. φ(Y) is
the regularization term controlling the sparsity of Y. λ is the
regularization parameter. The objective function is not a joint
convex function of (B, Y), but when one variable is fixed, the
objective function is convex for the other variable. Therefore,
Eq. 4 can be solved by a turn-by-turn optimization method.
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SPARSE REPRESENTATION-BASED
DISCRIMINATIVE METRIC LEARNING

In order to better explain the proposed model, first, we
introduce some important terms: (1) a labeled training image
set X = [x1, x2, ..., xn] ∈ Rd×n; (2) the testing image set contains
images available for the retrieval of the target brain MRI
images; (3) each image in testing image set is considered as the
query image.

The Pairwise Constraint of Sparse
Coding Coefficients
From the perspective of image retrieval, similar images should
have similar coding coefficients, and dissimilar images should
have different coding coefficients. In other words, in the learned
metric space, the smaller the better the distance between
similar images, at the same time, the greater the better the
distance between dissimilar images, to reduce the uncertainty of
misjudging the coding coefficient of dissimilar images as similar
images. Based on this idea, two thresholds σ1 and σ2 are set for
calculating the metric distances of similar images and dissimilar
images in the metric space as,{

d2
M(yi − yj) < σ1, if {xi, xj} ∈ S

d2
M(yi − yj) > σ2, if {xi, xj} ∈ D

(5)

where σ1 < σ 2.
To unify the Eq. 5 into an inequality, a common threshold is

introduced, i.e., σ1 = τ− 1 and σ2 = τ+ 1, then Eq. 5 can be
written as,

`ij(τ− d2
M(yi − yj)) > 1, (6)

where if xi and xj are similar images, `ij = 1; otherwise, xi and xj
are dissimilar images, ` ij = −1.

With the pairwise constraint of coding coefficients, it is
expected to have a large margin between each similar and
dissimilar pairs in the learned metric space. By introducing the
generalized logistic loss function g(y) = 1

θ
log(1+ exp(θy)) with

the sharpness parameter θ, the pairwise constraint of coding
coefficients can be defined as,

min
Y

g
(
1− `ij(τ− d2

M(yi − yj))
)
. (7)

The Locality Constraint of Atoms
First, to exploit the local structure information in the sparse
representation learning, the local manifold of the dictionary
atoms is built on the nearest neighbor graph P of dictionary
B ∈ Rd×K . The element Pij of P is defined as,

Pij =

{
exp

(
−
||bi−bj||22

µ

)
, if bj ∈ KNN(bi)

0, else
(8)

where KNN( ) is the k-nearest neighbor function, and µ is
the KNN parameter.

In the learned metric space, we assume that the similar images
will keep close to each other, thus it is expected the similar

dictionary atoms will keep close to each other as well. A Laplacian
matrix L is constructed based on the matrix P,

L =W − P, (9)

where W = diag(W1, ...,WK), and Wi =
∑K

j Pij. K is the
number of atoms in B.

Using the Laplacian matrix L, the locality constraint of atoms
is represented as,

min
Y

1
2

K∑
i

K∑
j

(yi − yj)2Pij = Tr(YTLY). (10)

The Objective Function of SRDML and
Its Optimization
Now we have the two terms needed to be embedded into
the sparse representation framework and compose the SRDML
objective function. SRDML combines the sparse representation,
pairwise constraint of coding coefficients, and locality constraint
of atoms together to yield an image retrieval approach. The
SRDML approach takes advantage of pairwise metric constraints
and local structure knowledge preserved provided by the coding
coefficients. The objective function of SRDML is,

min
M,B,Y

||X-BY||22 + αTr(YLY)+β
∑

i,j g
(
1− `ij

(
τ− d2

M(yi − yj)
))

+γ ||Y||22,

s.t. M ≥ 0,

||bi||2 = 1, ∀i
(11)

where α, β , and γ are regularization parameters.
There are three variables {M,B,Y} needed to be tuned in the

SRDML approach. An alternating optimization method is used
to solve Eq. 11.

Tune B. With fixed M and Y, the objective function of B can
be written as,

min
B
||X-BY||22,

s.t. ||bi||2 = 1, ∀i,
(12)

Obviously, it is a least square problem with quadratic
constrains. The Lagrange dual function is used, and we have,

h(B, τ) =

(
||X-BY||22 +

K∑
i

τi(||bi||2 − 1)

)
, (13)

where τ is the Lagrange vector. A diagonal matrix 1 ∈ RK×K is
introduced, where 1ii = τi for all i. We can obtain the following
problem,

h(B, τ) =
(
||X-BY||22 + Tr(BTB1)− Tr(1)

)
. (14)

Taking the first-order partial derivatives of B in Eq. 14, we can
obtain the close-solution of B as,

B∗ = XYT(YYT
+1)−1. (15)
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FIGURE 1 | The example samples in the Cheng dataset, (A) Meningioma, (B) Glioma, and (C) Pituitary.

Tune Y. With fixed M and B, the objective function of Y can
be written as,

min
Y
||X-BY||22 + αTr(YLY)+β

∑
i,j

g
(
1− `ij

(
τ− d2

M(yi − yj)
))

+ γ ||Y||22, (16)

Taking the first-order partial derivatives of yi in Eq. 16, we can
obtain the close-solution of yi as,

y∗i = (B
TB+ γ I + αL+ β

∑
i,j

g′(3)M)−1(BTY

+ βM
∑

g′(3)yj), (17)

where3 = 1− `ij
(
τ− d2

M(yi − yj)
)
.

TABLE 1 | Retrieval performance of SRDML for the query image Meningioma on
5-fold test set.

mAP prec@10 prec@20

Fold 1 92.12 89.93 89.93

Fold 2 92.13 89.95 89.93

Fold 3 92.14 89.92 89.88

Fold 4 92.19 89.97 89.96

Fold 5 92.19 89.95 89.92

Mean (standard deviation) 92.15 (0.030) 89.94 (0.017) 89.92 (0.026)

Tune M. With fixed Y and B, the objective function of M can
be written as,

min
M
β
∑

i,j g
(
1− `ij

(
τ− d2

M(yi − yj)
))
,

s.t. M ≥ 0,
(18)

TABLE 2 | Retrieval performance of SRDML for the query image Glioma on
5-fold test set.

mAP prec@10 prec@20

Fold 1 97.87 95.75 95.74

Fold 2 97.86 95.71 95.72

Fold 3 97.81 95.68 95.70

Fold 4 97.80 95.70 95.70

Fold 5 97.75 95.68 95.67

Mean (standard deviation) 97.82 (0.044) 95.70 (0.026) 95.70 (0.023)

TABLE 3 | Retrieval performance of SRDML for the query image Pituitary on
5-fold test set.

mAP prec@10 prec@20

Fold 1 97.87 96.45 96.44

Fold 2 97.93 96.43 96.46

Fold 3 97.94 96.50 96.50

Fold 4 97.96 96.51 96.47

Fold 5 97.87 96.46 96.54

Mean (standard deviation) 97.92 (0.037) 96.47 (0.030) 96.48 (0.035)

Frontiers in Neuroscience | www.frontiersin.org 5 January 2022 | Volume 15 | Article 829040

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-829040 January 10, 2022 Time: 14:19 # 6

Zhou et al. Sparse Representation-Based Discriminative Metric

The Lagrange dual function is used, and we have,

h(M,λ) = β
∑
i,j

g
(
1− `ij

(
τ− d2

M(yi − yj)
))
+ λ||M-I||22,

(19)
where λ is the Lagrange parameter.

Let sij = (yi − yj)T(yi − yj), taking the first-order partial
derivatives of M in Eq. 19, we obtain,

∂h
∂M
= β

∑
{xi,xj}∈Aset

g′(3)Cij + 2γ (M − I). (20)

Then we can obtain M by Mt = Mt−1 − ξ
∂h

∂Mt−1
, where ξ is

the learning rate in gradient descent method.
The proposed SRDML approach is

shown in algorithm 1.

Algorithm 1 SRDML approach
Input: Similar image pair subset and dissimilar image pair subset
in X, parameters α, β , and γ ;
Output: coding coefficient matrix Y, dictionary B, and metric
matrix M;
1: Initializing B and Y with the K-SVD algorithm, M with the
identity matrix;
2: Calculating graph Laplacian matrix L using Eqs 8 and 9;
3: while t ≤maximum number of iterations Tmax

Calculating dictionary B using Eq. 15;
Calculating graph Laplacian matrix L using Eqs 8 and 9;
Calculating coding coefficient matrix Y using Eq. 17;
Calculating metric matrix M using Eq. 20;

4: Obtaining B∗ = BTmax , Y∗ = YTmax , and M∗ = MTmax .

EXPERIMENTS

Experimental Settings
We use the Cheng brain MRI dataset (Cheng et al., 2016) to
evaluate the effectiveness of the proposed SRDML approach.

This brain MRI dataset contains a total of 3064 slices from
233 patients. The brain MRI images contain three types of
tumor images Meningioma, Glioma, and Pituitary. The numbers
of the three types of tumor images are 708, 1426, and 930,
respectively. The size of each image is 512 × 512 pixels.
600 images of each type of brain tumor are selected in the
experiment. Figure 1 depicts the example samples of the
Cheng dataset.

We use the GIST descriptor implemented by Gumaei et al.
(2018, 2019) in this study. GIST descriptor extracts the image
features based on the spatial envelope. In the experiment, we
obtain 512 dimensional features of each image. We randomly
divide brain MRI images into five subgroups of the same size.
It is ensured that the different types of tumors in the five
subgroups do not overlap and had equal proportions. We use
5-fold cross-validation to evaluate performance. Each image in
the test data set is regarded as a query image. We adopt the
mean average precision (mAP) and top-n retrieval precision
(named as Prec@n) (Cheng et al., 2016). mAP and Prec@n can
be calculated as

mAP =

∑n
i=1

i
rank(i)

n
, (21)

where n represents the number of retrieved images of the same
type of brain tumor in the dataset, rank(i) represents the ranking
number of the i-th retrieved image of the same type of brain
tumor in the search results.

Prec@n =
1
s

s∑
i=1

k∑
j=1

j
Position(j)

, (22)

where s is the number of queries, and Position(j) refers to the
position of the j-th relevant sample in the search results.

The retrieval performance of SRDML is compared with
various matrix learning algorithms LMNN (Weinberger and Saul,
2009), RCA (Bar-Hillel et al., 2005), MPP (Yang et al., 2012),
TFFHD (Sun et al., 2018), and RDML-CCPVL (Ni et al., 2018).
The parameter setting of the comparison algorithm refers to

FIGURE 2 | Retrieval result examples of SRDML in Meningioma.

FIGURE 3 | Retrieval result examples of SRDML in Glioma.
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FIGURE 4 | Retrieval result examples of SRDML in Pituitary.

the setting of the original literature. The parameters of SRDML
are set as follows. The size of the dictionary is equal to the
number of the training set. The regularization parameters are
set in the grid {10−3, 10−2, ..., 10}. The dimension of metric
matrix is set in the grid {50, 100, 200, ..., 500}. The sharpness
parameter in generalized logistic loss function is set to be 1.
The KNN parameter is set in the grid {3, 5, ..., 13}. The running
environment of all algorithms is CPU i7-8700k, 3.2 GHZ, 32GB
RAM, and the running software is Matlab 2019.

Performance Evaluation
Tables 1–3 list the retrieval performance of SRDML for the query
image Meningioma, Glioma, Pituitary, respectively. These tables
show the results of the 5-fold cross validation test set. We can see
that the results obtained by the SRDML approach are consistent
on the 5-fold test set, which verifies that the retrieval performance
of our approach is stable. We conduct further case analysis on
the SRDML. Figures 2–4 depict the retrieval result examples
of SRDML in Meningioma, Glioma, Pituitary, respectively. The
first column of images in Figures 2–4 are the query images.
The second to sixth images are five retrieved images. We can
see that the retrieved images are all highly related to the query
images. The results show that SRDML can give full play to
its advantages in brain MRI sets. The SRDML approach uses
sparse representation and metric learning to mine the structural
features and discrimination information of the data. The local
information term and similarity constraints based on coding
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rm

an
ce

mAP(%)
Prec@10
Prec@20

mAP(%) 85.54 87.35 88.48 90.43 91.34 92.15 

Prec@10 81.38 84.02 85.37 85.81 87.66 89.94 

Prec@20 81.16 84.01 85.28 85.24 87.23 89.92 

LMNN RCA MPP TFFHD RDML-
CCPVL SRDML

FIGURE 5 | Retrieval performance comparisons in Meningioma.

coefficients ensure the “maximum inter-class dispersion” and
“minimum intra-class dispersion” of the extracted brain MRI
features. Thus, the SRDML approach has the important practical
value in assisting clinical diagnosis.

Performance Comparison
We use the SRDML approach to compare the performance with
LMNN, RCA, MPP, TFFHD, and RDML-CCPVL. Figures 5–7
show the retrieval performance of various comparison algorithms
in Meningioma, Glioma, and Pituitary. The results show these
methods in retrieval performance of mAP, Prec@10, as well as
Prec@20. According to the results in Figures 5–7, the following
results are obtained:

(1) In the Meningioma, the SRDML approach is compared
with the second-best in mAP, Prec@10, as well as Prec@20
by 0.81, 1.28, and 2.69%, respectively. SRDML has excellent
retrieval performance, especially in Prec@20. This shows
that the proposed approach has high retrieval performance.
In the Glioma, the SRDML approach is compared with
the second-best approach in mAP, Prec@10 as well as
Prec@20 increased by 1.80, 1.81, and 1.87%, respectively.
In the Pituitary, the SRDML approach is compared with the
second-best approach in mAP, Prec@10, as well as Prec@20
increased by 1.37, 2.20, and 2.26%, respectively.

(2) The SRDML approach has significantly improved the
retrieval performance compared with the traditional
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mAP(%) 90.72 92.14 93.55 94.79 96.02 97.82 

Prec@10 88.57 90.06 91.24 93.10 93.89 95.70 

Prec@20 88.50 90.01 91.20 93.04 93.83 95.70 
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FIGURE 6 | Retrieval performance comparisons in Glioma.
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mAP(%) 90.87 92.49 93.82 94.96 96.55 97.92 

Prec@10 89.23 91.36 92.77 93.63 94.27 96.47 

Prec@20 89.19 91.32 92.77 93.57 94.22 96.48 
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FIGURE 7 | Retrieval performance comparisons in Pituitary.

TABLE 4 | mAP(%) of the SRDML approach with different k.

k = 3 k = 5 k = 7 k = 9 k = 11 k = 13

Meningioma 90.53 91.77 92.15 92.15 92.00 91.42

Glioma 96.50 97.08 97.69 97.82 97.47 96.99

Pituitary 97.09 97.51 97.92 97.89 97.44 97.01

The bold values represent the best results in comparison experiments.

TABLE 5 | mAP(%) of the SRDML approach with different m.

m = 50 m = 100 m = 200 m = 300 m = 400 m = 500

Meningioma 89.98 91.43 92.15 92.10 92.12 91.58

Glioma 96.90 97.82 97.82 97.59 97.60 97.01

Pituitary 96.86 97.92 97.90 97.80 97.33 97.02

The bold values represent the best results in comparison experiments.

approaches. The SRDML approach uses the sparse
representation to learn the robust feature representation
of brain MRI images, and learns the metric space with
discrimination ability, so that the similar brain MRI
pairs are closely mapped in the metric space and the
dissimilar brain MRI pairs are separated from each other
as much as possible.

Parameter Analysis
The parameters of the SRDML approach are obtained by the grid
optimization method. Here we mainly evaluate the influence of
KNN parameter k and the dimension of metric matrix m. Table 4
lists the mAP(%) of the SRDML approach with different k. The
parameter k is set in the grid {3, 5, ..., 13}. The value of k increases
from 3 to 7, and the mAP value increases significantly. It is
verified that the local information item is an important part in the
SRDML approach. Extracting the appropriate local information
can be helpful to describe the image features and improve
retrieval accuracy. When the value of k increases from 9 to 13,
the retrieval performance begins to decrease, indicating that too
large the value of k will cause useless information of the local

information and too much useless information, which affects the
retrieval performance of SRDML. Table 5 lists the mAP(%) of
the SRDML approach with different m. The parameter m is set
in the grid {50, 100, 200, ..., 500}. It can be seen from the results
in Table 5 that when m is set as 100 or 200, mAP(%) of the
SRDML approach can reach the optimal retrieval performance.
If the value of m is too large or too small, the metric space
cannot properly represent the internal data structure of brain
MRI images. Therefore, it is feasible to use the grid search method
to determine the optimal values of k and m.

CONCLUSION

The purpose of medical image retrieval is to retrieve similar
image data from a huge imaging database. The retrieval results
should not only be similar in image feature measurement, but
also fit in image semantics as much as possible, to help doctors
retrieve images with the same pathology. This paper proposes
a similarity retrieval approach for brain MRI images based on
sparse representation and metric learning. The characteristics of
this approach are using sparse representation to extract the robust
features of brain MRI image, which can more effectively represent
the information of brain MRI image. The relative similarity
constraint and local preserving information are used to project
the low dimensional metric matrix, which improves the retrieval
accuracy. The experiments are carried out on public data sets. The
experiments show the effectiveness and accuracy of our approach
in brain MRI image retrieval. The future work will be considered
from the following aspects: (1) while improving the retrieval
accuracy of brain MRI images, ensure the retrieval speed, to
further provide assistance and support for doctors in diagnosing
brain tumor lesions. (2) The experimental data scale of this paper
is not large enough. During the retrieval process, several images
with the highest similarity are returned by comparing the feature
vector similarity of the data set in turn. When dealing with large-
scale data, we will consider how to combine the technologies
such as hash sorting of retrieval results to realize the real-time
performance of retrieval results. (3) For different images and
images with different principles, the feature algorithms involved
are different. Forming a more general medical image retrieval
system is the next research direction.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: The Cheng dataset analyzed for this study can
be found in this link [https://figshare.com/articles/dataset/brain_
tumor_dataset/1512427].

AUTHOR CONTRIBUTIONS

GZ and TN conceived and designed the proposed model
and wrote the manuscript. BL and XH ran the experiment
and analyzed the results. All authors read and approved
the manuscript.

Frontiers in Neuroscience | www.frontiersin.org 8 January 2022 | Volume 15 | Article 829040

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-829040 January 10, 2022 Time: 14:19 # 9

Zhou et al. Sparse Representation-Based Discriminative Metric

FUNDING

This work was supported in part by the Natural Science
Foundation of Jiangsu Province under Grant BK 20211333,

the Science and Technology Project of Changzhou City
under Grant CE20215032, and Jiangsu Future Network
Scientific Research Fund Project under Grant FNSRFP-2021-
YB-36.

REFERENCES
Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D., and Ridgeway, G. (2005).

Learning a Mahalanobis metric from equivalence constraints. J. Mach. Learn.
Res. 612, 937–965. doi: 10.1115/1.1902843

Cao, X., Zhang, H., Guo, X., Liu, S., and Meng, D. (2015). SLED: semantic label
embedding dictionary representation for multilabel image annotation. IEEE
Trans. Image Process. 24, 2746–2759. doi: 10.1109/TIP.2015.2428055

Chahal, P. K., Pandey, S., and Goel, S. (2020). A survey on brain tumor detection
techniques for MR images. Multimed. Tools Appl. 79, 21771–21814. doi: 10.
1007/s11042-020-08898-3

Cheng, J., Yang, W., Huang, M., Huang, W., Jiang, J., Zhou, Y., et al.
(2016). Retrieval of brain tumors by adaptive spatial pooling and fisher
vector representation. PLoS One 11:e0157112. doi: 10.1371/journal.pone.01
57112

Gao, S., Chia, L., Tsang, I. W., and Ren, Z. (2014). Concurrent single-label image
classification and annotation via efficient multi-layer group sparse coding. IEEE
Trans. Multimedia 16, 762–771. doi: 10.1109/TMM.2014.2299516

Gu, D., Liang, C., and Zhao, H. (2017). A case-based reasoning system based on
weighted heterogeneous value distance metric for breast cancer diagnosis. Artif.
Intell. Med. 77, 31–47. doi: 10.1016/j.artmed.2017.02.003

Gu, X., Zhang, C., and Ni, T. (2021a). A hierarchical discriminative sparse
representation classifier for EEG signal detection. IEEE/ACM Trans. Comput.
Biol. Bioinform. 18, 1679–1687. doi: 10.1109/TCBB.2020.3006699

Gu, X., Shen, Z., Xue, J., Fan, Y., and Ni, T. (2021b). Brain tumor MR image
classification using convolutional dictionary learning with local constraint.
Front. Neurosci. 15:679847. doi: 10.3389/fnins.2021.679847

Gumaei, A., Sammouda, R., Malik, A., Al-Salman, S., and Alsanad, A. (2018). An
improved multispectral palmprint recognition system using autoencoder with
regularized extreme learning machine. Comput. Intell. Neurosci. 2018:8041609.
doi: 10.1155/2018/8041609

Gumaei, A., Sammouda, R., Malik, A., Al-Salman, S., and Alsanad, A. (2019).
Anti-spoofing cloud-based multi-spectral biometric identification system for
enterprise security and privacy-preservation. J. Parallel Distrib. Comput. 124,
27–40. doi: 10.1016/j.jpdc.2018.10.005

Huang, M., Yang, W., Wu, Y., Jiang, J., Gao, Y., Chen, Y., et al. (2014). Content-
based image retrieval using spatial layout information in brain tumor T1-
weighted contrast-enhanced MR images. PLoS One. 9:e102754. doi: 10.1371/
journal.pone.0102754

Huang, M., Yang, W., Yu, M., Lu, Z., Feng, Q., and Chen, W. (2012). Retrieval
of brain tumors with region-specific bag-of-visual-words representations in
contrast-enhanced MRI images. Comput. Math. Methods Med. 2012:280538.
doi: 10.1155/2012/280538

Jiang, Y., Gu, X., Wu, D., Hang, W., Xue, J., Qiu, S., et al. (2021). A novel negative-
transfer-resistant fuzzy clustering model with a shared cross-domain transfer
latent space and its application to brain CT image segmentation. IEEE/ACM
Trans. Comput. Biol. Bioinform. 18, 40–52. doi: 10.1109/TCBB.2019.29
63873

Lu, Z., Han, P., Wang, L., and Wen, J. (2015). Semantic sparse recoding of visual
content for image applications. IEEE Trans. Image Process. 24, 176–188. doi:
10.1109/TIP.2014.2375641

Müller, H., and Unay, D. (2017). Retrieval from and understanding of large-scale
multi-modal medical datasets: a review. IEEE Trans. Multimed. 19, 2093–2104.
doi: 10.1109/TMM.2017.2729400

Nguyen, B., Morell, C., and Baets, B. D. (2020). Scalable large-margin distance
metric learning using stochastic gradient descent. IEEE Trans. Cybern. 50,
1072–1083. doi: 10.1109/TCYB.2018.2881417

Ni, T., Ding, Z., Chen, F., and Wang, H. (2018). Relative distance metric leaning
based on clustering centralization and projection vectors learning for person
re-identification. IEEE Access 6, 11405–11411. doi: 10.1109/ACCESS.2018.
2795020

Srinivas, U., Mousavi, H. S., Monga, V., Hattel, A., and Jayarao, B. (2014).
Simultaneous sparsity model for histopathological image representation and
classification. IEEE Trans.Med. Imaging 33, 1163–1179. doi: 10.1109/TMI.2014.
2306173

Sun, X., Zhang, N., Wu, H., Yu, X., Wu, X., and Yu, S. (2018). Medical image
retrieval approach by texture features fusion based on Hausdorff distance.Math.
Probl. Eng. 2018:7308328. doi: 10.1155/2018/7308328

Tang, J. H., Hong, R. C., Yan, S. C., and Chua, T. S. (2010). Image annotation by
kNN-sparse graph-based label propagation over noisily-tagged Web images.
ACM Trans. Intell. Syst. Technol. 2, 1–15. doi: 10.1145/1899412.1899418

Verma, Y., and Jawahar, C. V. (2017). Image annotation by propagating labels
from semantic neighbourhoods. Int. J. Comput. Vis. 121, 126–148. doi: 10.1007/
s11263-016-0927-0

Weinberger, K. Q., and Saul, L. K. (2009). Distance metric learning for large
margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244. doi:
10.1007/s10845-008-0108-2

Yang, W., Feng, Q., Yu, M., Lu, Z., Gao, Y., Xu, Y., et al. (2012). Content-
based retrieval of brain tumor in contrast-enhanced MRI images using tumor
margin information and learned distance metric. Med. Phys. 39, 6929–6942.
doi: 10.1118/1.4754305

Zhang, X., Dou, H., Ju, T., Xu, J., and Zhang, S. (2015). Fusing heterogeneous
features from stacked sparse autoencoder for histopathological image analysis.
IEEE J. Biomed. Health Inform. 20, 1377–1383. doi: 10.1109/JBHI.2015.2461671

Zhang, Y., Chen, C., Tian, Z., Feng, R., Cheng, Y., and Xu, J. (2019). The diagnostic
value of MRI-based texture analysis in discrimination of tumors located in
posterior fossa: a preliminary study. Front. Neurosci. 13:1113. doi: 10.3389/
fnins.2019.01113

Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Ma, Y., Shi, H., et al. (2018).
Histopathological whole slide image analysis using context-based CBIR. IEEE
Trans. Med. Imaging 37, 1641–1652. doi: 10.1109/TMI.2018.2796130

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, Lu, Hu and Ni. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 829040

https://doi.org/10.1115/1.1902843
https://doi.org/10.1109/TIP.2015.2428055
https://doi.org/10.1007/s11042-020-08898-3
https://doi.org/10.1007/s11042-020-08898-3
https://doi.org/10.1371/journal.pone.0157112
https://doi.org/10.1371/journal.pone.0157112
https://doi.org/10.1109/TMM.2014.2299516
https://doi.org/10.1016/j.artmed.2017.02.003
https://doi.org/10.1109/TCBB.2020.3006699
https://doi.org/10.3389/fnins.2021.679847
https://doi.org/10.1155/2018/8041609
https://doi.org/10.1016/j.jpdc.2018.10.005
https://doi.org/10.1371/journal.pone.0102754
https://doi.org/10.1371/journal.pone.0102754
https://doi.org/10.1155/2012/280538
https://doi.org/10.1109/TCBB.2019.2963873
https://doi.org/10.1109/TCBB.2019.2963873
https://doi.org/10.1109/TIP.2014.2375641
https://doi.org/10.1109/TIP.2014.2375641
https://doi.org/10.1109/TMM.2017.2729400
https://doi.org/10.1109/TCYB.2018.2881417
https://doi.org/10.1109/ACCESS.2018.2795020
https://doi.org/10.1109/ACCESS.2018.2795020
https://doi.org/10.1109/TMI.2014.2306173
https://doi.org/10.1109/TMI.2014.2306173
https://doi.org/10.1155/2018/7308328
https://doi.org/10.1145/1899412.1899418
https://doi.org/10.1007/s11263-016-0927-0
https://doi.org/10.1007/s11263-016-0927-0
https://doi.org/10.1007/s10845-008-0108-2
https://doi.org/10.1007/s10845-008-0108-2
https://doi.org/10.1118/1.4754305
https://doi.org/10.1109/JBHI.2015.2461671
https://doi.org/10.3389/fnins.2019.01113
https://doi.org/10.3389/fnins.2019.01113
https://doi.org/10.1109/TMI.2018.2796130
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Sparse Representation-Based Discriminative Metric Learning for Brain MRI Image Retrieval
	Introduction
	Backgrounds
	Metric Learning
	Sparse Representation

	Sparse Representation-Based Discriminative Metric Learning
	The Pairwise Constraint of Sparse Coding Coefficients
	The Locality Constraint of Atoms
	The Objective Function of SRDML and Its Optimization

	Experiments
	Experimental Settings
	Performance Evaluation
	Performance Comparison
	Parameter Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


