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ABSTRACT

Summary: The great variety of human cell types in morphology
and function is due to the diverse gene expression profiles that
are governed by the distinctive regulatory networks in different cell
types. It is still a challenging task to explain how the regulatory
networks achieve the diversity of different cell types. Here, we report
on our studies of the design principles of the tissue regulatory system
by constructing the regulatory networks of eight human tissues,
which subsume the regulatory interactions between transcription
factors (TFs), microRNAs (miRNAs) and non-TF target genes. The
results show that there are in-/out-hubs of high in-/out-degrees in
tissue networks. Some hubs (strong hubs) maintain the hub status
in all the tissues where they are expressed, whereas others (weak
hubs), in spite of their ubiquitous expression, are hubs only in
some tissues. The network motifs are mostly feed-forward loops.
Some of them having no miRNAs are the common motifs shared by
all tissues, whereas the others containing miRNAs are the tissue-
specific ones owned by one or several tissues, indicating that the
transcriptional regulation is more conserved across tissues than
the post-transcriptional regulation. In particular, a common bow-tie
framework was found that underlies the motif instances and shows
diverse patterns in different tissues. Such bow-tie framework reflects
the utilization efficiency of the regulatory system as well as its high
variability in different tissues, and could serve as the model to further
understand the structural adaptation of the regulatory system to the
specific requirements of different cell functions.
Contact: edgar.wingender@bioinf.med.uni-goettingen.de;
jwang@nju.edu.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
There are some hundred of cell types in the human body
harboring the same genome, but showing quite diverse behaviors
in morphology and biological functions. This suggests that the
cells of different types are developed by eliciting different gene
regulatory networks, all encoded in the human genome (Ben-Tabou
de-Leon and Davidson, 2007). This raises a number of questions:
what is the mechanism that governs the activation of different gene
regulatory networks? Are the gene regulatory networks accounting
for the different types of cells designed under a same principle or
architectural framework? What kinds of differences in regulatory
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networks contribute to the diversity of cell types? These are key
questions in understanding the mechanisms underlying the specific
functions of different cell types and are essential for cell regeneration
that closely relates to the treatment of tissue damage and injury
involved in various diseases.

The gene regulatory network of a cell is supposed to contain
the comprehensive regulatory information governing the gene
expression in this cell. In previous works, the gene regulatory
network mainly referred to the transcriptional network which depicts
the regulations at transcriptional level (Babu et al., 2004; Cosentino
Lagomarsino et al., 2007; Yu et al., 2003). Nevertheless, the
microRNA (miRNA), a small RNA that negatively regulates the
gene expression at post-transcriptional level by binding to the
mRNA sequences of its target gene, was found at the end of
the 20th century (Lee et al., 1993; Wightman et al., 1993). So
far, >20 000 microRNAs of different species have been identified
(Griffiths-Jones et al., 2008), and many useful databases and
effective tools that are used to predict the targets of miRNAs
have been developed (Krek et al., 2005; Lewis et al., 2003;
Sethupathy et al., 2006). This gives the possibility to construct a
more comprehensive map of gene regulatory networks for certain
cell types by integrating transcriptional and post-transcriptional
regulations of gene expression.

Nowadays, there are several studies on the gene regulatory
networks covering both the transcriptional and post-transcriptional
regulation of genes. For example, Pilpel and co-workers constructed
a global miRNA–TF regulatory network for mammalian and studied
the combinatory regulations between TFs and miRNAs according
to the local and global architecture of the network (Shalgi et al.,
2007). Qian et al. investigated the biological functions of miRNAs
by pursuing the miRNA motif profiles in the miRNA-TF regulatory
network (Yu et al., 2008). Gersten et al. developed an integrated
strategy to construct and analyze the gene regulatory network from
high-throughput sequencing data (Cheng et al., 2011). However, all
of these works are focused on the genome-wide level. Studies about
the regulatory networks of specific tissues and their design principles
are largely missing.

Here, we constructed the large-scale gene regulatory networks of
eight human tissues and investigated their design principles from
the perspective of three levels, i.e. the local structure of vertices (i.e.
degrees), the small circuits (i.e. network motifs) and the assembly
of small circuits. Our results show that the tissue-specific regulatory
networks (TRNs) constructed and analyzed here contain hub nodes,
the specific features of which may vary considerably among the
tissues investigated. The different TRNs also vary significantly with
regard to the composition of topological motifs, the instances of
which are organized in a bow-tie structure. The bow-tie structures
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of the eight TRNs investigated classify them into symmetric, input-
oriented and output-oriented networks.

2 METHODS

2.1 Network construction
We constructed the TRN for each tissue in the following two steps. First, a
reference network was constructed by predicting the gene regulatory relations
between TFs, miRNAs and non-TF protein genes throughout the whole
human genome. Then, the TRN for a certain tissue was built by extracting
the TFs, miRNAs and non-TF protein genes that are known to be expressed
in the respective tissue as well as regulatory relationships between them from
the reference network.

TF targets were predicted by identifying conserved potential TF-binding
sites (TFBSs) within the 1-kb upstream regions of all human genes (RefSeq
annotation). This was done using the position weight matrix library of
the TRANSFAC database (version 2009.4) (Wingender, 2008) and the
associated program Match (Kel et al., 2003). The highest default thresholds
(‘minFP’) were used to minimize false positives. These predicted TFBSs
were filtered for those conserved across five mammalian species (human,
mouse, dog, cow and opossum), based on RefSeq annotation of UCSC hg18
(http://genome.ucsc.edu/index.html), which reduced further the number of
false positives. As for miRNA clusters, potential TFBSs were searched for
in the 10-kb upstream to the start point of the first miRNA in the cluster.
In addition, we predicted the interactions starting from miRNAs by the
three tools of Targetscan (Lewis et al., 2003), Pictar (Krek et al., 2005)
and Tarbase (Sethupathy et al., 2006). The union of the results predicted
by these three tools was taken to give a comprehensive regulatory network.
Replacing the union of the results with the results of Tarbase, which are
verified by experiments, did not affect our conclusion.

The gene expression data for TF and non-TF protein genes that we used to
build the different TRNs were collected from UniGene (Sayers et al., 2012)
and CGAP (Lash et al., 2000), whereas the miRNA expression data were
obtained from a report published in 2007 (Landgraf et al., 2007).

2.2 In-/out-hubs and specificity index
The in-/out-hubs are defined in a statistical way. We firstly generated 2000
equivalent random networks, where the number of vertices and arcs are kept
but the arcs are randomly distributed among distinct vertex pairs. The in-/out-
hubs are defined as those vertices whose in-/out-degrees are significantly
higher (P<0.01) than that of the same vertices in the random networks.

The tissue specificity of an in-/out-hub is characterized by the specificity
index (SI), written as

SI =1− n−1

N −1
, (1)

where N is the total number of tissues, and n is the number of tissues where
the gene acts as hub. Obviously, SI varies within the range of 0 to 1. It equals
to 1 when the gene is a hub in only one TRN, whereas it equals to 0 when
the gene is the hub in all of the TRNs.

2.3 Standard deviation of hubs (σRF )
The 2000 random cases were generated by firstly collecting all the in-/out-
degree values of a certain type of genes and then randomly redistributing
these degree values to the genes of the type. Each random case contained
a set of eight TRNs where the in-/out-degree values of each type of genes
are redistributed. The in-/out-hubs in each random case were identified (see
above), and the specificity indices of the hubs are calculated in the same way
as in the real case.

The standard deviation of hubs pertaining to a certain specificity index
was calculated in the following way:

σRF = RFreal−<RFrand >

RFreal
(2)

where RFreal is the relative frequency of hubs in the real case, and
<RFrand > is the average frequency in the random cases.

2.4 Motif scanning
The three-vertex motifs were computed with the tool FANMOD (Wernicke
and Rasche, 2006). The equivalent random network that was used to calculate
the over-represented significance of motifs was constructed by keeping the
in-/out-degree of every vertex but switching the connected vertices. For every
TRN, 1000 random networks were generated. Three criteria are used to
identify a motif: (i) the occurrence should be >5; (ii) the P-value should
be <0.05 and (iii) the Z-score value should be >2.2.

2.5 Statistical testing on genes in CM and
TS motif instances

2.5.1 Molecular component The mean percentages of TF, miRNA and
non-TF in the non-core TS/core/non-core CM gene sets were calculated by
averaging the corresponding values through eight TRNs.

2.5.2 Average degree The average degree within any set of genes in motif
instances is defined in the following way:

<Kii >=

Ni∑

m

Nj∑

n
Amn

Ni
, (3)

where Ni is the total number of genes in set i, and Amn is the element of
the adjacency matrix that represents the regulation from gene m to gene n in
section i. It equals 1 when there is a regulation from gene m to n, otherwise
it equals 0. The average degree from set i to j is written as

<Kij >=2×

Ni∑

m

Nj∑

n
Amn

Ni +Nj
, (4)

2.5.3 Statistical testing The statistical testing on the percentages of
molecular components and average degrees were made by firstly generating
5000 random cases where the genes were randomly re-distributed into gene
sets with the gene number in each gene set and the connections between
genes being kept. The significance of the percent/average degree in the real
case was evaluated by counting the probability where the real value was
larger/smaller than the value in random cases.

3 RESULTS

3.1 TRN and the general property
The TRNs for the eight tissues, i.e. brain, testis, ovary, liver, spleen,
heart, kidney and prostate, were constructed on the basis of a
‘reference’ network. The reference network comprises all possible
regulatory interactions of TFs and miRNAs with their target genes,
which may be TF, miRNA and non-TF genes. These interactions
were predicted by sequence analyses throughout the human genome,
in order to identify potential TFBSs and miRNA target sequences
(see Section 2). During the construction of the reference network,
the information whether the interacting genes are expressed in the
same tissue is ignored. In contrast, the TRNs take into account
the expression of genes in different tissues. They are built by
extracting the TFs, miRNAs and non-TF protein-coding genes that
are expressed in the tissue as well as their regulatory relationships
from the reference network (see Section 2). The size of the eight
TRNs varies in a broad range of <3000 to >8000 vertices (genes),
and from 16 666 to 63 371 edges (interactions) (Supplementary
Table 1.1)
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Fig. 1. Standard deviation of relative frequency (σRF ) of hubs in real relative
to random networks versus SI; (a) for in-hubs; (b) for out-hubs

3.2 Degree distribution and switches of in-/out- hubs
For an initial characterization of the reconstructed networks, we
studied the inverse cumulative in-/out-degree distributions of TFs,
miRNAs and non-TFs separately in every TRN. In nearly all
degree distributions examined (Supplementary Figs. 2.1–2.5), it
was obvious that most of the vertices had a very low degree,
whereas there were a few highly connected nodes. This suggested
the presence of in-/out-hubs. They could be identified by selecting
those vertices with significantly higher degree than they received in
the equivalent random networks (see Section 2). There are totally
47 (or 226) miRNAs, 323 (or 180) TFs and 3631 (or 0) non-TFs that
act as the in- (or out-) hubs at least in one TRN. A parameter SI (see
Section 2) has been defined to scale the tissue-specificity of hubs.
The closer the SI is to 1, the higher the tissue specificity of the hub
is. The standard variations of the relative frequency (Swirski et al.,
2009) of hubs (σRF ) compared to that of the random cases where
the relations between the genes and their degrees are disassociated
(see Section 2) are plotted against the SI in Figure 1. The σRF for in-
hubs decreases monotonically from the positive area to the negative
area with increasing SI (Fig. 1a). This suggests that in-hubs tend to
be shared by several tissues. TF out-hubs also have the tendency to
be shared by multiple tissues because the σRF of TF out-hubs turns
from the positive to the negative as the increase of SI (Fig. 1b).
However, the σRF of miRNA out-hubs fluctuates around zero.

The majority of in-/out-hubs (90%/90% for TF in-/out-hubs,
81%/32% for miRNA in-/out-hubs, and 95% for non-TF in-hubs)
are expressed in multiple TRNs. However, they are not always hubs
in every tissue they are expressed in. Some hubs (strong hubs)
maintain a high ratio of the active connections among all the possible
connections pertaining to them in the reference network (i.e. active
ratio), and therefore keep their hub status in all the tissues where
they are expressed (Fig. 2a and b). The others (weak hubs) decrease
their active ratio in some tissues (see the negative cases of weak
hubs comparing to the positive cases in Fig. 2a and b) and switch
off their hub status in some of the tissues.

Fig. 2. Box plots of active ratio (i.e. the active connections among all
the possible connections pertaining to them in the reference network)
(a) for in-hubs; (b) for out-hubs. STG_TF/STG_miRNA/STG_NTF refers
to strong TF/miRNA/non-TF hubs, POS_WK_TF/POS_WK_miRNA/POS_
WK_NTF to the positive case that a weak TF/miRNA/non-TF hub acts as
a hub, and NEG_WK_TF/NEG_WK_miRNA/NEG_WK_NTF the negative
case that a weak TF/miRNA/non-TF hub is not a hub anymore

3.3 Basic co-regulation circuits, CM and TS motifs
Network motifs are small connectivity patterns that are statistically
overrepresented in a network (Shen-Orr et al., 2002). We searched
for three-vertex motifs in all the TRNs to study the co-regulations
of and by TF and miRNA in tissues (see Table 1 and Section 2).
It is seen that most of the loop motifs are feed-forward loops
(Table 1). Three-vertex feedback loops, which are known to be
basically absent from transcription networks (Goemann et al., 2009;
Shen-Orr et al., 2002), were found here only as parts of complex
loops which contain both the feed-forward and feedback patterns due
bidirectional control (a ‘dyad’) between a miRNA and a TF vertex
(‘CMPLX’ in Table 1). The participation of miRNAs additionally
introduces some feedback into some motifs which helps with the
fine-tuning and stability of gene regulations.

Comparing the motifs of different TRNs, we can distinguish
between those that are shared by all the TRNs (common, or CM,
motifs) and those that specifically occur in few tissues [tissue-
specific (TS) motifs]. As shown in Table 1, there are two CM
and nine TS motifs. Both CM and the majority of the TS motifs
are feed-forward loops. There are no miRNAs included in the
CM motifs, whereas almost all TS motifs contain at least one
miRNA; the only exception is the FFL consisting of two TF and
one non-TF gene, which occurs in three of the eight tissues studied
(Table 1). This means that miRNAs greatly contribute to the tissue
specificity of combinatory regulations, which may be related to the
diversity of regulatory patterns across tissues. This is equivalent to
the suggestion that the combinatory regulations at the transcriptional
stage tend to be conserved across tissues, while the ones involved
in the post-transcriptional stage are switching.
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Table 1. Motifs in TRNs

3.4 Bow-tie structure of CM–TS assembly
To study potential higher order structures of our TRNs, we collected
all the instances of CM and TS motifs and traced the structural
organization of the CM part (i.e. the part formed by all the instances
of CM motifs) and the TS part (all the instances of TS motifs) in
every TRN Since there are no TS motifs in the liver TRN, we started
the study with the TRNs of the other seven tissues. In general, the
CM and TS instances together form a CM-TS block in each of the
seven TRNs, connected through genes that are shared by CM and
TS motifs (termed as core genes). These core genes together with
non-core CM genes and non-core TS genes constitute a tripartite
structure of each TRN, except of the liver TRN that only contains
non-core CM genes.

We found that >75% of core genes and 80% of non-core CM
genes, respectively, are TFs and non-TFs (Fig. 3a). Such high
population of TFs/non-TFs is statistically significant when compared
to the random case where the genes were randomly picked as core,
non-core CM and non-core TS genes (P<0.05, see Section 2),
suggesting TF and non-TF, respectively, are the dominating genes
of core and non-core CM gene set. No miRNAs are found in the
core and non-core CM gene sets. The miRNAs are significantly
enriched in the non-core TS set (P<0.05). In some TRNs (i.e. heart
and prostate), TFs are also enriched in the non-core TS gene set.
The sum of TF and miRNA percent is >80% on average (Fig. 3a).
This indicates that TF and miRNA are the major components of the
non-core TS gene set.

The average degrees within and between the three gene sets were
also calculated and compared to the random cases (Fig. 3b and
see Section 2). We found that the average degree from non-core
TS section to core section and that from core section to non-core
CM section are both significantly elevated. Of the ‘backwards’
connections, those from non-core CM to core are significantly
decreased, while those from core to non-core TF are also enhanced,
to but a lesser extent (about half) than the opposite direction.
These results suggest a regulation flow from non-core TS section

Fig. 3. Bow-tie structure of motif instances. (a) Distribution of TFs,
miRNAs and non-TFs; (b) sketch of bow-tie structure. In (a), significance
(P<0.05) compared with randomized networks is indicated by one or two
(significant in some or all tissues) asterisks; red asterisks: over-, green
asterisks under-representation. The horizontal arrow in (b) represents the
degrees between three gene sets. Its length is proportional to the value
of degree. The red/green coloring indicates that the degree is significantly
higher/lower than in the random cases

Fig. 4. Three patterns of bow-tie structure. (a) Size ratio of input, core and
output layer in eight tissues; (b) illustration of patterns

to non-core CM section through the core section and that the non-
core CM section is the terminal part of the regulation flow. The
CM-TS block in TRNs is thus organized as a bow-tie structure
(Fig. 3b), which is composed of an input (non-core TS), core and
output (non-core CM) layer (Csete and Doyle, 2004).

3.5 Patterns of bow-tie structure
Although the bow-tie architecture of the CM-TS block exists
throughout the TRNs for various tissues, distinctive patterns are
found as considering the size ratio (SR) of the input, core and
output layer (Fig. 4a). In the order kidney–heart–spleen–prostate–
testis–brain–ovary–liver, the proportion of the miRNA-dominated
input layer decreases from 0.88 down to 0, whereas that of the
output layer where the non-TF genes are predominant increases
from 0.03 to 1.0. In this order, the core component with tions may
also found a grouping of the studied tissues into those (i) with
output-dominated TRNs (prostate, testis, brain, ovary and liver),
where SRinput < SRcore << SRoutput, (ii) with a symmetric TRN
(heart, spleen), where SRinput ∼= SRoutput > SRcore and (iii) with
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an input-dominated TRN (kidney), where SRinput >> SRcore >

SRoutput (Fig. 4b).

4 DISCUSSION
The networks constructed here comprise edges that, to the best of our
knowledge, are predicted by the most reliable approaches available.
As for the miRNA–target relations, we took the union of the results
of a number of predictors (see Section 2). Concerning the TF-target
connections, we are confident that we successfully minimized the
false-positive rate, since a high percentage of the predicted edges
could be recovered from available high-throughput datasets as well
(Haubrock et al., in preparation). The trade-off of this attempt,
however, certainly was a considerable false-negative rate. It should
thus be noted that the networks presented here are only based on the
subset of TFBS with highest affinity and conservativity, to which
we attribute the property of being ‘seed’ sites (in preparation). These
seed sites are assumed to play a particular role in flagging promoter
regions, and thus would nicely coincide with the recently published
concept of ‘pioneer factors’ (Zaret and Carroll, 2011).

As a first attempt to globally characterize a network, the degree
distribution is usually analyzed. The TRNs constructed here show a
kind of mixed power-law/exponential (or ‘broad-scale’ distribution,
or ‘truncated scale-free’, with their power-law exponents in the range
of 0.8–2.4) degree distribution, which may be more on the power-law
side in case of all in-degree distributions, or more on the exponential
side for the miRNA out-degree distribution. In any case, however,
we observed that most nodes of our TRNs exhibit a low connectivity,
while very few nodes show a very high degree. We therefore felt that
the concept of hub nodes is applicable to the networks constructed
and studied here.

Different functional types of hubs can be distinguished in the
TRNs, depending on the nature of the genes and whether they are
in- or out-hubs. The TF/miRNA in-hubs (e.g. E2F3 and SOX2 in
brain, testis and prostate, RUNX2 in heart and liver and hsa-miR-
124 in brain and prostate) act as the central processors, receiving
and integrating a great many of regulatory input from upstream
regulators and re-distribute it to the downstream genes, whereas
the TF/miRNA out-hubs (e.g. ATF6, MYC, hsa-miR-29A and hsa-
let-7B in all the eight tissues) act as central coordinators because
they regulate large numbers of targets. Interestingly, some TFs and
miRNAs are both in- and out-hubs (e.g. RUNX3 in testis, ovary,
spleen and prostate, BCL6 and hsa-miR-22 in all the eight tissues),
acting as the central processors as well as central coordinators. In
contrast, the non-TF in-hubs (e.g. MAPK4 in brain, prostate and
liver, AK2 in all of the eight tissues) may be central executors
in the downstream biological processes since they are the terminal
genes in regulation whose expression level is finely controlled by
complex regulation. In contrast to the majority of genes in the TRNs
(Supplementary Fig. 3.1), the in-/out-hubs show a clear tendency
to be shared by multiple tissues. This may relate to an efficient
utilization of the gene regulatory system.

There shows two kinds of hubs according to hub behaviors in
different tissues. One type preserves its hub status in all the tissues
they are expressed in (strong hubs), whereas hubs of the other type
switch into a non-hub in some of the tissues where they are expressed
(weak hubs). More miRNA than TF hubs, in particular almost all
miRNA out-hubs, are strong hubs (Supplementary Fig. 3.2). Thus,
the local structures around miRNA hubs are more conserved across

tissues than those of TF hubs. Since out-hubs are more frequently
strong hubs than in-hubs, central coordinators are more preserved
through different tissues than central processors, which account
for the integration of largely TS regulations. In contrast to non-
TF strong hubs, TF and miRNA strong hubs more often exhibit
different neighborhoods in the different tissues, underpinning again
the flexible re-usability of the regulatory machinery (Supplementary
Figs 3.3 and 3.4). Nevertheless, no distinctive difference in this
respect between TF and miRNA strong hubs is found.

The network motifs give the basic co-regulation circuits of TFs
and miRNAs (Shalgi et al., 2007; Yu et al., 2008). Our study focuses
on three-vertex motifs since they have the minimal size to provide
an integrative regulation. The FFL, which is the dominating motif
in the transcriptional networks (Goemann et al., 2009; Shen-Orr
et al., 2002), is also the main type of combinatory regulations in our
regulatory networks covering the regulations of TFs and miRNAs.
This indicates the main task of the regulatory system is information-
processing performed by FFLs (Shen-Orr et al., 2002), and the
miRNAs mainly account for the fine-tuning and stability of gene
regulations.

The two common motifs shared by all tissues contain only TFs
and non-TFs. They are also the fundamental motifs which are widely
distributed in the transcriptional networks of various species (Milo
et al., 2004). The transcriptional regulation may be the more stable
part in the gene regulatory system, which is more conserved during
the development of tissues as well as the evolution of species.
The TS motifs are special for one or several tissues and almost
all of them contain a miRNA component, indicating that the post-
transcriptional regulations are mainly responsible for the diversity of
tissue specificities. Such diversity in the post-transcriptional stage
is not simply related to the high tissue specificity of miRNAs in
expression. It also relates to the connecting patterns that the co-
regulation of miRNA and TF shows in different tissues. This is
because motif is a structural concept which does not consider the
identities of specific genes that are involved in. There is the case that
a motif is conserved across tissues, while the genes that constitute
the motif are quite different in different tissues.

From the specific interactions between common (Krek et al.,
2005) and TS motif instances, we concluded that the motif instances
are organized in a bow-tie structure with specific enrichment of
miRNA, TF and non-TF genes in the input, core and output layer
(Supplementary Fig. 5.1). The bow-tie structure is an architecture
that is capable of adapting the highly fluctuating environment
of biological system and mediates trade-offs among efficiency,
robustness and evolvability (Csete and Doyle, 2004). Its three-
layer structure allows the fanning-in and fanning-out of large-scale
regulatory flow in a highly efficient and robust way. The variability
of input and output layers also provides high evolvability to satisfy
diverse functional requirements in different tissues. For example, the
bow-tie structures of spleen and heart represent a symmetric pattern
where the sizes of input and output layers are comparable, whereas
the structures of kidney (or prostate, testis, brain, ovary and liver)
behave in an input-oriented (or output-oriented) pattern where the
size of the input (or output) layer is distinctively larger than the other
two layers. The input layer of the liver TRN is not recognizable. The
bow-tie pattern of each tissue is generally related to its physiological
function, for instance, all of the three reproductive tissues (i.e.
prostate, testis and ovary) show the same pattern. This may be due to
the fact that the tissues performing relevant physiological functions
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are usually similar in the expression profile of mRNA and miRNA
(Liang et al., 2007; Shyamsundar et al., 2005), which consequently
results in the high similarity of their TRNs, and thus the similarity of
the bow-tie patterns. In particular, it is interesting that brain is also
clustered together with testis. This is probably related to the finding
that these two tissues are of similar mRNA and miRNA expression
profiles, although the reason for this similarity is still unclear (Liang
et al., 2007; Shyamsundar et al., 2005). Both tissues have also been
shown in rat to express the highest numbers of TS miRNAs (Linsen
et al., 2010). The mRNA and miRNA expression profiles of spleen
and heart are distinct. However, it is known that the spleen in mouse
serves as a reservoir for immune cells (monocytes) that function
in repairing the heart after myocardial infarction (Swirski et al.,
2009). Such connection implies that there could be some essential
regulators or genes shared by spleen and heart which contribute to
the similarity of their bow-tie pattern. Besides, the kidney TRN is
the only one that exhibits an input-oriented pattern, in which the
input layer enriching the combinatory regulations between TFs and
miRNAs is of a particularly large size. This may be related to the
fact that kidney is an organ that plays essential regulatory roles in
the urinary system, as well as in the homeostasis of the internal
environment (via adjusting the balance of the electrolytes and acid–
base etc.) and regulating blood pressure (via maintaining salt and
water balance).
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