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Abstract

Background: Bacterial sRNAs are a class of small regulatory RNAs involved in regulation of expression of a variety of genes.
Most sRNAs act in trans via base-pairing with target mRNAs, leading to repression or activation of translation or mRNA
degradation. To date, more than 1,000 sRNAs have been identified. However, direct targets have been identified for only
approximately 50 of these sRNAs. Computational predictions can provide candidates for target validation, thereby
increasing the speed of sRNA target identification. Although several methods have been developed, target prediction for
bacterial sRNAs remains challenging.

Results: Here, we propose a novel method for sRNA target prediction, termed sTarPicker, which was based on a two-step
model for hybridization between an sRNA and an mRNA target. This method first selects stable duplexes after screening all
possible duplexes between the sRNA and the potential mRNA target. Next, hybridization between the sRNA and the target
is extended to span the entire binding site. Finally, quantitative predictions are produced with an ensemble classifier
generated using machine-learning methods. In calculations to determine the hybridization energies of seed regions and
binding regions, both thermodynamic stability and site accessibility of the sRNAs and targets were considered. Comparisons
with the existing methods showed that sTarPicker performed best in both performance of target prediction and accuracy of
the predicted binding sites.

Conclusions: sTarPicker can predict bacterial sRNA targets with higher efficiency and determine the exact locations of the
interactions with a higher accuracy than competing programs. sTarPicker is available at http://ccb.bmi.ac.cn/starpicker/.
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Introduction

Bacterial sRNAs are a class of small regulatory RNAs 40–500 nt

in length. They are often encoded in the intergenic regions of

bacterial chromosomes and generally untranslated [1]. To date,

more than 1,000 sRNAs have been discovered in a variety of

bacterial species, including Escherichia coli, Salmonella, and Vibrio

cholerae [2]. These sRNAs play important roles in gene regulation,

including regulation of biogenesis of outer membrane proteins [3],

quorum sensing [4,5], and expression of virulence-related genes

[6,7]. sRNAs function through base-pairing with mRNAs, binding

proteins and altering their activity, and, in some cases, mimicking

the structures of other RNA or DNA molecules (reviewed in [8]).

Among these functional roles, base-pairing with mRNAs repre-

sents the major regulatory mechanism and can lead to

translational repression, translational activation or mRNA degra-

dation [9]. Regulation by a large number of base-pairing sRNAs

characterized thus far requires the RNA chaperone protein Hfq.

This protein is an Sm-like protein and conserved in a wide range

of bacteria [10,11].

In comparison to steady increases in the number of sRNAs

identified, the number of characterized sRNA targets has only

slowly increased. To our knowledge, distinct direct targets have

been experimentally validated for only approximately 50 sRNAs

[12]. The precise targets of most sRNAs remain elusive. Several

experimental approaches have been applied to identify mRNA

targets of sRNAs, including point mutation strategies, reporter

gene assays, microarray profiling, and proteomics-based ap-

proaches. However, these experimental approaches have several

shortcomings. First, although point mutation strategies and

reporter gene assays can be used to identify direct targets, these

approaches are more applicable to target validation, rather than ab

initio target identification, due to the low-throughput nature of the

assays. Second, although microarray and proteomics represent

high-throughput approaches, they are only applicable to broad

target screening, as these methods cannot distinguish direct targets
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from indirect targets. Further experiments are then necessary to

validate targets after a small subset of candidate targets are

obtained. Moreover, the microarray-based approach cannot

detect targets that are translationally inhibited without degrada-

tion.

Computational prediction is a labor-saving methodology that is

complementary to experimental approaches for sRNA target

determination. Efficient prediction approaches can provide high

quality candidates for target validation. To date, two groups of

methods have been utilized in bacterial sRNA target prediction.

The first group is target prediction methods developed

specifically for bacterial sRNAs. For example, Zhang et al.

developed a method to predict the targets for Hfq-binding sRNAs

in E. coli using a modified Smith-Waterman local sequence

alignment algorithm [13]. Four characteristics were involved in

this prediction method: (1) Hfq-binding sites, (2) sub-sequences

ranging from –35 to +15 nt surrounding translation initiation sites

in mRNAs, (3) candidates for loop or bulge regions in the sRNAs

for alignment extension, and (4) conservation profiles of the sRNAs

and their targets. The highest score and the corresponding

alignment were selected as the final score and alignment for each

sRNA-mRNA pair.

Tjaden et al. proposed a program for sRNA target prediction,

termed TargetRNA, which included an individual base pair model

and a stacked base pair model of hybridization scoring for sRNA-

target interactions [14,15]. The individual base pair model was

based on a modified Smith-Waterman local sequence alignment

algorithm. The stacked base pair model was a straightforward

extension of RNA folding approaches with intra-molecular base-

pairing prohibited. The P-value for an sRNA-target hybridization

score was estimated with the distribution of ten thousand

hybridization scores of the sRNA and random RNA sequences.

The statistically significant sRNA-target interactions were selected

as candidate interactions.

Mandin et al. proposed a method for sRNA target prediction by

searching for the strong sRNA-mRNA duplexes [16]. Each sRNA-

mRNA duplex was scored as a sum of both positive contributions,

due to pairing nucleotides, and negative contributions, due to

bulges and internal loops. The cost of bulges and internal loops

were empirically gauged using four validated sRNA-mRNA

interactions. Statistical significance of the duplex was used as the

criterion for interaction, which was assessed by comparison to an

ensemble of random sequences.

Our group has presented two models for target prediction using

machine learning methods [17,18]. Sub-sequences located within

–30 to +30 nt of the start codons of targets were selected as core

binding regions. Based on the hypothesis that sequences

surrounding the core binding regions were also likely to influence

the interactions, we extracted flanking sequences around the core

binding regions using sliding windows. For each sub-sequence, ten

features, including the percent composition of bases in interior

loops, the minimum free energy (MFE) of hybridization, and the

difference in the MFE values before and after hybridization, were

taken into consideration. The models were then trained using the

Tclass system [19] and support vector machines (SVM),

respectively.

The second group is general RNA-RNA interaction prediction

methods. These methods aimed to find the hybridization structure

with the minimum binding energy for two RNA molecules. For

example, inteRNA [20] was developed to minimize the joint free

energy between the two RNA molecules under a number of

energy models with growing complexity. This method allowed

pseudo-knots in inter-molecular structures. RNAhybrid [21,22]

was a modification of the classic RNA secondary structure

prediction, by neglecting intra-molecular base-pairings and

multi-loops. This method was presented for miRNA target

prediction, but it was also utilized in sRNA target prediction by

Sharma et al. [23]. RNAplex [24] used a slightly different energy

model to reduce computational time. Compared to RNAhybrid,

RNAplex performed 10-27 times faster. RNAup [25] was designed

to find the hybridization structure with the minimum extended

hybridization energy which was the sum of hybridization energy

and the energy necessary to make the binding sites accessible.

Busch et al. proposed an approach, termed IntaRNA, which

incorporated accessibility of binding sites of two RNA molecules,

in addition to a user-definable seed [26]. Similar to RNAup,

IntaRNA searched for the optimal interaction with the minimum

extended hybridization energy, which was defined as the sum of

the hybridization energy and the energy required to make the

sRNA and target binding sites accessible. The MFE values for seed

regions were involved in the calculation of the minimum extended

hybridization energy.

Most of the above methods neglect the secondary structures of

two RNA molecules before they interact. However, many authors

have shown that target site accessibility is very important to target

recognition for miRNAs and siRNAs [27-33]. The free energy

alone of the hybridized duplex is a poor predictor for miRNA

target prediction [34]. In fact, by comparisons using 18 validated

sRNA-target interactions, Busch et al. showed that IntaRNA and

RNAup, the only two methods that considered site accessibility,

outperformed the other three methods that mainly considered the

free energy of hybridized structures, namely TargetRNA,

RNAhybrid and RNAplex. IntaRNA performed better than

RNAup, probably because IntaRNA added the hybridization

energy of seed for each candidate hybridized structure during the

energy calculation.

Herein, we propose a novel method, sTarPicker, which is

based on a two-step model of hybridization between an sRNA

and an mRNA target. In the two-step model, the seed region of

the sRNA first binds to the seed region of the target with

perfect complementary base-pairing. Then, the initial hybrid

elongates to form the complete sRNA-target interaction. We

assumed that the hybrid of the seed regions formed in the first

step should be stable enough to initiate the elongation of the

interaction in the second step. Using this model, first, all

possible duplexes between an sRNA and a target are screened

and stable duplexes are selected. Next, the duplexes are

extended to identify the entire binding sites by mimicking the

second step of the model. Finally, an ensemble classifier was

constructed to distinguish between true interactions and

pseudo interactions using machine learning methods. In

energy calculations for seed regions and binding regions, both

thermodynamic stability and site accessibility of sRNAs and

targets were considered.

Methods

Summary of the sTarPicker Program
We modeled hybridization of sRNAs and targets as a two-step

process: (i) seed matching between the sRNA and a target, and (ii)

elongation of the hybrid to form a stable inter-molecular duplex

(Figure 1). Since both sRNAs and targets were fairly long, we

considered both molecules to be structured in the process. Based

on the two-step model for hybridization, sTarPicker gives

prediction with the following four steps: (1) selects stable seeds

from sRNA and putative target binding sequences, (2) extends

binding sites from seed regions, (3) extracts features characterizing

the binding sites, and (4) predicts with an ensemble classifier.

sTarPicker
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Materials: Training and test datasets
To construct the classifier using machine learning methods, we

retrieved 88 sRNA-mRNA pairs from our sRNATarBase release

1.0 [12]. These sRNA-mRNA pairs had been experimentally

verified through techniques that included point mutation analysis

and reporter gene assays. Four cis-encoded sRNAs and their

targets were excluded. Among the remaining 84 trans-acting pairs,

76 pairs caused repression of the target mRNA (i.e. repression

interaction), and 8 pairs caused activation of protein expression (i.e.

activation interaction). To avoid bias within the training and test

dataset, if multiple pairs in which the sRNAs and targets exhibited

high levels of homology respectively (sequence similarity greater

than 90%), only one pair were kept in the dataset. After removing

redundant pairs, we obtained 54 unique repression pairs and 8

unique activation pairs.

Of the 54 unique repression pairs, 44 pairs included detailed

binding sites, and 10 pairs included only the sRNA and target

names. Of the 8 unique activation pairs, 7 pairs included detailed

binding sites, and 1 pairs included only the sRNA and target

name. Of the 51 pairs for which detailed binding sites were

available, forty-nine of the target binding sites were located within

2150 to +100 nt surrounding the start codon, including 96% of all

unique pairs. Only one repressed target (ahrC of the SR1-ahrC

pair) and one activated target (hla of the RNAIII-hla pair) bound

sRNA outside of this region. Therefore, we selected sub-sequences

between 2150 and +100 nt of the start codon of the targets as the

putative binding region for sRNAs. The reported sequence of the

sRNA RybB in the RybB-ompW pair differed a little from RybB

sequence retrieved from GenBank. Therefore, this pair was

removed from the data. Finally, we obtained 42 unique repression

pairs and 6 unique activation pairs with detailed binding sites. We

randomly selected 32 of the 42 unique repression pairs as a

training dataset (Table S1), and the remaining 10 pairs were used

as positive test set.

During the course of our work, sRNATarBase deposited 7

newly found sRNA-mRNA repression pairs from release 1.0 to

release 2.0, which had been experimentally verified to interact

directly and the target binding sites were located within 2150 to

+100 nt surrounding the start codon. These repression pairs were

non-redundant and were added to positive test set.

In total, seventeen unique repression pairs are used as positive

test dataset, including 14 sRNAs distributed across six bacterial

strains (Table S2).

To evaluate the specificities of the prediction methods, we

constructed a non-interaction dataset as negative test dataset by

randomly selecting target genes in genomes without replacement.

For each sRNA in the positive test dataset, we randomly selected

10 target genes from the corresponding genome as non-interaction

targets. Therefore, as 14 unique sRNAs were included in the

positive test dataset, we obtained 140 non-interaction pairs in the

negative test dataset.

Computation of DGhybrid, DGopen and DDG
Thermodynamic stability and site accessibility are two reliable

indicators for hybridization between two RNA molecules. To

assess the thermodynamic stability and site accessibility of seed

regions and binding sites, we computed DGhybrid, DGopen and

DDG.

DGhybrid was defined as the binding free energy of the

hybridization structure of a specified sRNA region and a specified

target region. DGhybrid was computed using RNAduplex program

from Vienna RNA package [35].

DGopen was defined as the energy required to make the specified

region accessible for sRNA-target interactions. DGopen was

computed as the difference between DGunpaired and DGpaired.

DGpaired was defined as the free energy of the ensemble of all

secondary structures of the specified region and additional flanking

upstream and downstream sequences. DGunpaired was defined as

the free energy of the ensemble of all secondary structures of the

specified region and additional flanking upstream and downstream

sequences, in which the specified region was required to be

unpaired. Full-length sequences were used for the calculations of

DGpaired and DGunpaired for sRNAs. For mRNA targets, the

specified target region and 100 additional nucleotides of upstream

and downstream flanking sequence were used to calculate DGpaired

and DGunpaired. Flanking regions of 100 nucleotides in length were

chosen based on the fact that there was a low probability of

secondary structure base-pairing interactions between sequences

separated by more than 100 nucleotides. For example, Lu and

Mathews [36] found that over 75% of base pairs occurred between

nucleotides separated by fewer than 100 nucleotides in rRNA with

known secondary structure. Zhao et al. [37] and Kertesz et al. [28]

used the value of 70 additional nucleotides of upstream and

downstream for miRNA target prediction. Richter et al. [38] used

200 nt window for target prediction of sRNA Yfr1. Furthermore,

this constraint also reduced significantly the time complexity of the

computations described above. DGpaired was computed using

RNAfold [35] with ‘-p0’ option, to calculate the ensemble free

energy. DGunpaired was computed using RNAfold with ‘-p0 -C’

options, to calculate the ensemble free energy when imposing the

specified region to be single-stranded. In sRNA-target interactions,

DGopen included both the energy of opening sRNA specified

region and the energy of opening target specified region.

DDG was defined to be equal to the sum of DGhybrid and

DGopen.

Seed selection
For the two-step model of hybridization, stable hybridization of

the seed region is a prerequisite for the second step. To select

stable duplexes, we examined the secondary structures of the 32

experimentally-validated sRNA-mRNA pairs in the training

dataset. We found that all of the corresponding secondary

structures contained at least one duplex, with no less than five

consecutive base pairs. The number of G-U and G-C base pairs

Figure 1. Two-step model for hybridization of sRNAs and
targets.
doi:10.1371/journal.pone.0022705.g001

sTarPicker
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within these duplexes was found to vary with duplex length.

Shorter duplexes tended to have more G-C pairs and less G-U

pairs. Based on these observations, potential helical regions that

satisfied the following four conditions were kept for further

analysis: (1) if the length of the helical region was 5 nt, G-U base

pairs were forbidden and at least 4 G-C base pairs or 3 consecutive

G-C base pairs must be present; (2) if the length of the helical

region was 6,7 nt, at most one G-U base pair and at least 3 G-C

base pairs must be present; (3) if the length of the helical region

was 8,9 nt, at most one G-U base pair and at least 2 G-C base

pairs must be present; and (4) if the length of the helical region was

10 nt or more, at most 4 G-U base pairs and at least 2 G-C base

pairs must be present.

After applying the above restrictions in all the potential helical

regions in the 32 training pairs, we obtained 460 potential seeds,

including 38 true seeds (consistent with the reported hybrid

structures) and 422 pseudo seeds (inconsistent with the reported

hybrid structures). Among them, 38 true seeds were distributed in

32 training pairs. To examine the thermodynamic stability and site

accessibility of these seeds, we calculated their DDG values.

Figure 2 shows the DDG distribution of true seeds (in gray) and

pseudo seeds (in white). From this distribution, it is evident that all

but two true seeds had DDG values less than 22 kcal/mol,

whereas the majority of pseudo seeds had DDG values greater than

22 kcal/mol. Therefore, based on these results, we selected

22 kcal/mol as the threshold for thermodynamic stability and site

accessibility for seed regions. Using this constraint, we obtained 36

true seeds and 116 pseudo seeds. Among them, 36 true seeds were

distributed in 31 training pairs. Therefore, using the seed selection

criterion defined above, we recovered 97% (31/32) of the training

pairs and only kept 27% (116/422) of the pseudo seeds.

To provide a more objective evaluation of the rationality of our

seed selection method, we selected seeds between sRNAs and

targets in the positive test data consisting of 17 unique pairs with

detailed binding site information. Application of constraints for

duplex length, number of G-C base pairs, and number of G-U

base pairs resulted in the identification of 239 potential seeds,

which included 24 true seeds and 215 pseudo seeds. Among them,

24 true seed were distributed in 16 test pairs. After further

selection of seeds with DDG values less than 22 kcal/mol, we

obtained 70 potential seeds, including 20 true seeds and 50 pseudo

seeds. Among them, 20 true seeds were distributed in 16 test pairs.

Therefore, using this method, we recovered 94% (16/17) of the

test pairs and only kept 23% (50/215) of the pseudo seeds. These

percentages were similar to those derived from the training

dataset.

Taken together, potential helical regions that satisfied the

following five conditions were selected as candidate seeds: (1) if the

length of the helical region was 5 nt, G-U base pairs were

forbidden, and at least 4 G-C base pairs or 3 consecutive G-C base

pairs must be present; (2) if the length of the helical region was

6,7 nt, at most one G-U base pair and at least 3 G-C base pairs

must be present; (3) if the length of the helical region was 8,9 nt,

at most one G-U base pair and at least 2 G-C base pairs must be

present; (4) if the length of the helical region was 10 nt or more, at

most 4 G-U base pairs and at least 2 G-C base pairs must be

present; and (5) DDG for the helical regions must be less than

22 kcal/mol. Potential helical regions between sRNAs and target

genes were identified using GUUGle [39]. Terminal G-U base

pairs were removed.

Extension of binding sites from seed regions
The second step of the two-step model is the elongation of the

interaction between the sRNA and the target. Full-length binding

sites were obtained by extending potential interacting nucleotides

on either side of the seed regions. We first computed a hybrid

structure of the sRNA and the target sequence, imposing the sRNA

seed to pair with the target seed. The target sequence included the

target seed region and 100 additional nucleotides upstream and

downstream. Next, we searched for interacting nucleotides on either

side of the seed regions in the sRNA and the target sequence. If an

intra-molecular base pair was encountered on one side, the search

on this side was halted. Binding sites were defined as the maximum

interacting regions in which no intra-molecular base pairs were

formed. The hybrid structures were computed using RNAcofold

[35] with ‘-C -noLP -noCloseGU’ parameters, to impose base-

pairing of seed regions and to forbid lonely pairs and G-U base pairs

at the end of helices. For the convenience of searching for full-length

binding sites, the dot-bracket notations of the secondary structures

were converted to ct files.

Figure 2. DDG distributions for true and pseudo seed regions in the training dataset. DDG includes contributions from both the
hybridization energy and the energy required to make the sRNA and target binding sites accessible.
doi:10.1371/journal.pone.0022705.g002
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Feature extraction
For each hybrid involving an sRNA binding site and a target

binding site, we extracted 22 features describing the hybrid. The

percentage of the nucleotides A, C, G, U, G+C, A+U, A+C in the

hybrid were calculated as features 1-7, respectively. The

percentage of paired nucleotides and the percentage of paired

nucleotides in duplexes of at least 3 bp were defined as features 8

and 9. The ratio of the number of base pairs in duplexes of at least

3 bp to all base pairs was feature 10. The maximum number of

consecutive base pairs was feature 11. The numbers of interior

loops and bulges in the hybrid structure were features 12 and 13.

The total number of interior loops and bulges was feature 14. The

percentages of nucleotides in interior loops and bulges were

features 15 and 16. The percentage of unpaired nucleotides was

feature 17. The minimum free energy and DDG of the hybrid were

calculated as feature 18 and 19. The free energy and DDG of the

seed region were calculated as feature 20 and 21. The seed length

was feature 22.

Training of the ensemble classifier sTarPicker using the
Tclass system

After selecting 36 true seeds and 116 pseudo seeds from the

training dataset using the seed screening methods described above,

we next extended sRNA and target binding sites beginning from

these seeds. To avoid bias in the training data, we removed

redundancies in the extended binding sites. For an sRNA-target

pair, if multiple binding sites were consistent with experimentally-

verified binding sites, only the site with the smallest DDG value for

the seed was selected as positive sample. For 116 binding sites

extended from pseudo seeds, the binding sites that did not overlap

with positive samples were selected as negative samples. Further-

more, if multiple negative samples overlapped with each other,

only the site with the smallest DDG value for the seed was selected

as negative sample. In total, thirty-one binding sites were taken as

positive samples and 102 non-redundant binding sites were taken

as negative samples. The extended binding sites were compared

with the corresponding validated binding sites reported in the

literature. Results from this analysis revealed that the extended

binding sites corresponded well to the validated binding sites

(Table S3).

After obtaining positive and negative binding sites from the

training dataset, we used the Tclass system [19] to select features

and construct our classifier. The Tclass system integrates a

wrapper method of feature-forward selection and ensemble

classifier construction. This system was originally proposed for

analysis of gene expression [19] and has been successfully applied

to analysis of high-level expression of foreign genes in the pPIC9

vector [40] and to prediction of sRNA targets [17]. The number of

features ranged from 1 to 10. For each number of features, ten

subsets with the best leave-one-out cross-validation (LOOCV)

classification accuracy were recorded.

To provide a more unbiased estimation, we performed stability

analysis as follows. For each selected feature subset, we randomly

partitioned 75% of the training dataset into a training subset for

constructing classifier, and the remaining 25% of the dataset was

used as the test subset for evaluating the performance of classifier.

This process was repeated 1000 times, and the average

classification accuracy from 1000 test subsets was defined as the

stability index. Figure 3 shows the variation of the stability index

according to the number of features. These results reveal that the

highest stability index was obtained using five features. The feature

subset with the highest stability index was chosen as the final

feature subset. This subset included feature 1 (percentage of A

nucleotides present in the hybrid), feature 4 (percentage of U

nucleotides present in the hybrid), feature 18 (DG of the binding

region), feature 19 (DDG of the binding region) and feature 22

(seed length).

The corresponding 1000 classifiers generated as a part of the

process of stability analysis were used as base classifiers for the final

ensemble classifier, termed sTarPicker. Each base classifier gives a

positive or negative prediction, indicating interacting or non-

interacting respectively. The output of sTarPicker is the result of

unweighted voting from 1000 base classifiers, that is, the ratio of

the number of base classifiers giving positive predictions to the

1000 total classifiers. For example, if 500 base classifiers give

positive predictions, the output score is 0.5. This value corresponds

to the probability that the target interacts with the sRNA.

Generally, if the probability is greater than 0.5, the target is

considered to interact with the sRNA.

For sRNA target predictions, particularly genome-wide predic-

tions of sRNA targets, high specificity is much more important

than high sensitivity. This is due to the fact that high specificity

reduces the number of false positives, providing a smaller number

of candidate targets to be subjected to experimental validation.

Therefore, to increase specificity, sTarPicker was trained with

more negative samples than positive (negative : positive, 102 : 31).

When sTarPicker was applied to the training dataset and the

threshold probability was set to 0.5, the sensitivity and specificity

were 54.84% (17/31) and 98.04% (100/102), respectively. When

the threshold was set to 1, the sensitivity and specificity were

35.48% (11/31) and 99.02% (101/102), respectively.

Comparisons with the existing methods
For comparative purposes, we also applied three state-of-the-art

methods to the test dataset, namely IntaRNA [26], TargetRNA

[14,15], and sRNATarget [17,18]. IntaRNA was chosen because

this method was a typical general RNA-RNA interaction

prediction method. Moreover, IntaRNA was demonstrated

recently to outperform three other general RNA-RNA interaction

prediction methods on 18 validated sRNA-target pairs. Tar-

getRNA and sRNATarget were chosen because the methods were

the only two available methods developed specifically for bacterial

sRNAs.

For IntaRNA, sRNA target prediction was conducted under

default parameter settings. Target regions used for IntaRNA

ranged from 2150 to +100 nt surrounding the start codon,

Figure 3. Variation of the stability index based on the number
of features analyzed. The stability index represented the average of
prediction accuracies over 1000 simulations with a training:test data
partition ratio of 75%:25%.
doi:10.1371/journal.pone.0022705.g003
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identical to conditions for sTarPicker. Results from IntaRNA were

sorted in ascending order of the energies.

For TargetRNA, we used the available web service with two

groups of parameter settings. One group of parameters was the

optimal settings that Tjaden et al. obtained in their paper [14].

The other group of parameters was identical to the parameters

used in sTarPicker. To distinguish between the results of the two

parameter settings, we denoted the method with the default

parameter settings by TargetRNA and the method with the other

parameter settings by TargetRNA2. If a target was identified in

the list of the predicted candidates, the P-value was recorded. In all

other cases, sRNA-target pairs were considered to be non-

interaction predicted by TargetRNA. The results were sorted in

ascending order of the P-values.

For sRNATarget, we used a local program under default

parameters. Target regions ranged from 230 to +30 nt surround-

ing the start codon, which was the best interval in sRNATarget

[17]. To eliminate the bias introduced by different training

samples and different target regions, we re-trained the model with

the 32 sRNA-target pairs from sTarPicker as positive training

samples and 64 non-interaction pairs randomly selected from

sRNATarBase [12] as negative samples. The core binding regions

were sub-sequences from 2150 to +100 nt surrounding the start

codon and the flanking regions were sub-sequences from 2200 to

+120 nt surrounding the start codon. The new model was denoted

by sRNATarget2. The results were sorted in descending order of

the sRNATarget scores.

We employed sensitivity and positive predictive value (PPV) to

compare the prediction accuracy of binding sites. Sensitivity and

PPV were calculated as follows:

Sensitivity ~
number of correctly predicted base pairings

number of validated base pairings

PPV ~
number of correctly predicted base pairings

number of predicted base pairings

These measures have also been used to compare the prediction

accuracy of several target prediction methods in IntaRNA [26].

Web application design
To provide a convenient tool for users, we implemented a web

application for sTarPicker. Two versions were designed for the

distinct purposes of genome-wide target prediction and evaluation

of interactions.

The genome-wide target prediction application can be used to

examine all possible targets for an sRNA among all protein-coding

genes in the genome. The search is executed after users input the

following four parameters: bacterial genome, sRNA sequence,

threshold for sTarPicker probability, and user email address. At

the completion of the job, sTarPicker will notify the user via an

email. The output includes all of the candidate target genes and

the corresponding sTarPicker probabilities, DDG values for

binding regions and seed regions, and the secondary structures

of the interactions. Candidate target genes are sorted based on

sTarPicker probability (descending), followed by DDG of target

regions (ascending), and finally by DDG of seed regions

(ascending). If an sRNA-target pair returns multiple candidate

interactions, all are listed.

The interaction evaluation tool can be used to assess the

interaction between selected sRNAs and targets. The program is

executed after users input the following six parameters: bacterial

genome, sRNA name and sequence, sRNA mutation information,

target gene name and sequence (or genomic locus), target

mutation information, and threshold for sTarPicker probability.

sRNA and target mutation information are optional, but these

options are particularly useful when users are interested in

analyzing the interaction between an sRNA and a target for

which either or both sequences have been subjected to mutational

analysis. Results are returned instantly and include all candidate

interactions between the sRNA and the target, the corresponding

sTarPicker probabilities, DDG values for binding and seed regions,

and secondary structures of the interactions.

Results

Performance on the test dataset
To evaluate the performance of sTarPicker, we applied the

program to our test dataset, which included 17 interaction pairs

and 140 non-interaction pairs. The target region was defined as a

sub-sequence containing 150 nt upstream and 100 nt downstream

of the first base of the start codon. The interval [2150, +100] was

determined because the target binding sites of 96% of validated

sRNA-target pairs located in the interval. When the threshold for

sTarPicker probability was set to 0.5, the sensitivity and specificity

were 76.47% (13/17) and 99.29% (139/140), respectively. When

the threshold was set to 1, the sensitivity and specificity were

35.29% (6/17) and 100% (140/140), respectively. In order to

generate a ROC curve (receiver operator curve) for sTarPicker,

the results were sorted based on sTarPicker probability (descend-

ing), followed by DDG of target regions (ascending), and finally by

DDG of seed regions (ascending). If an sRNA-target pair had

several predicted binding regions, the region with the smallest rank

was selected.

To compare with the existing methods, we applied three state-

of-the-art methods to the test dataset, namely IntaRNA,

TargetRNA, and sRNATarget. IntaRNA performance was

evaluated using 17 interactions and 140 non-interactions, identical

to the analysis of sTarPicker performance. TargetRNA perfor-

mance was evaluated with two groups of parameter settings. The

results of the two groups of parameter settings were denoted by

TargetRNA and TargetRNA2, respectively. For TargetRNA and

TargetRNA2 assessment, interaction Qrr1-luxR and ten non-

interactions involving the sRNA Qrr1 in Vibrio harveyi were

excluded because the web service of TargetRNA did not provide

the corresponding genome. Two interactions, MicF-ompF and

GcvB-oppA, were excluded since they were used as training

samples in the method of TargetRNA. Ten non-interactions

involving the sRNA MicF were also excluded due to the absence of

MicF after the exclusion of interaction MicF-ompF. Therefore, the

performances of TargetRNA and TargetRNA2 were evaluated

using 14 interactions and 120 non-interactions. sRNATarget

performance was evaluated with the published model [18] and the

re-trained model with the same training dataset and target regions

from sTarPicker. For analysis of sRNATarget, two interactions,

MicF-ompF and GcvB-oppA, were excluded since they were used

as training samples. Ten non-interactions involving the sRNA

MicF were also excluded from the test dataset. Therefore,

sRNATarget performance was evaluated using a total of 15

interactions and 130 non-interactions. sRNATarget2 performance

was evaluated using 17 interactions and 140 non-interactions,

identical to the analysis of sTarPicker performance.

Figure 4 shows the ROC curves for the four methods applied to

the test dataset. Based on these curves, it is evident that sTarPicker

performed best, followed by IntaRNA. TargetRNA, TargetRNA2,

sTarPicker
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sRNATarget and sRNATarget2 performed the third. Taking into

consideration that TargetRNA and TargetRNA2 limited the

number of reported candidate targets, the performance of

TargetRNA and TargetRNA2 was conserved.

We next further compared the prediction accuracy of binding

sites by sTarPicker, IntaRNA and TargetRNA. Table 1 shows a

comparison of predictions for 17 sRNA-target pairs from the test

dataset with detailed binding site information available. sRNA-

Target was not included in the comparison because it does not

provide binding sites.

As shown in Table 1, sTarPicker outperformed IntaRNA,

TargetRNA and TargetRNA2 in the prediction accuracy of

binding sites. IntaRNA achieved the second best. TargetRNA

achieved the third and TargetRNA2 achieved the fourth.

sTarPicker missed interaction Qrr1-luxR due to the absence of

seed in length of 5 nt or more. However, sTarPicker still achieved

the best averaged value of sensitivity and PPV among the three

methods. IntaRNA reported putative binding sites for all 17 pairs,

but three of them were completely different from the binding sites

validated by experiments. The accuracies of TargetRNA and

TargetRNA2 were far low because this method only reported 5 or

2 out of 17 pairs due to the cutoff of P value. The detailed

information was provided in Table S4.

Although repression and activation of translation might exhibit

different interaction characteristic, it is undertaken that the

isolation of ribosome binding sites (RBS) on the target mRNAs

after sRNAs bind targets causes translational repression, and the

exposure of RBSs that are sequestered by structures of mRNAs

themselves causes translational activation [41]. To evaluate the

performance of sTarPicker on activation pairs, we applied

sTarPicker on the six unique activation pairs with target binding

sites within the interval [2150,+100] surrounding the start codon.

When the threshold for sTarPicker probability was set to 0.5 and

1, the sensitivities were 50.00% (3/6) and 33.33% (2/6)

respectively (Table S5). The performance was similar to those

derived from the repression pairs in training and test datasets. This

result suggests that sTarPicker can also be used to predict or

evaluate the interactions that cause translational activation, despite

the fact that this method was trained with repression interactions.

Performance in genome-wide predictions of sRNA
targets

To evaluate the ability of sTarPicker to identify sRNA targets

genome-wide, we used sTarPicker to predict sRNA targets for 14

sRNAs from 6 bacterial strains in the test dataset. The genome

sequences and annotation of protein-coding genes were download-

ed from GenBank database of the National Center for Biotechnol-

ogy Information [42]. For each sRNA, we extracted target regions

ranging from 2150 to +100 nt surrounding the start codon for all

annotated genes in the corresponding genome. In total, 60,713

interactions were obtained (Table S2), including 16 true interactions

from the test dataset and 7 true interactions from the training

dataset. The interaction of Qrr1-hapR was excluded because the

target gene hapR was not annotated in the genome of Vibrio cholerae

obtained from GenBank. The remaining 60,690 interactions were

all considered non-interactions. Results for each sRNA were sorted

based on sTarPicker probability (descending), followed by DDG of

binding regions (ascending), and finally by DDG of seed regions

(ascending). If an sRNA-target pair returned several binding sites,

only the binding site with the highest rank was selected.

Figure 4. ROC curves of sTarPicker and three state-of-the-art prediction methods on the test dataset. Results from sTarPicker were
sorted based on sTarPicker probability (descending), DDG of binding regions (ascending), and DDG of seed regions (ascending). If an sRNA-target pair
returned several binding sites, only the site with the smallest rank was selected. Results from IntaRNA were sorted in ascending order of the energies.
Results from sRNATarget and sRNATarget2 were sorted in descending order of the prediction scores. Results from TargetRNA and TargetRNA2 were
sorted in ascending order of the P-values. The ROC curve was generated from the rates of true and false predictions while varying the number of
considered interactions in all of the test data.
doi:10.1371/journal.pone.0022705.g004
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In addition to sTarPicker, we also used IntaRNA, TargetRNA

and sRNATarget for genome-wide predictions of sRNA targets for

the same 14 sRNAs with the following exceptions. The parameter

settings and putative target binding regions for the three methods

were identical to the settings and putative binding regions

described in Methods part. For IntaRNA, performance was

evaluated using 16 true interactions and 60,690 non-interactions,

identical to sTarPicker. For TargetRNA and TargetRNA2, the

sRNA Qrr1 in Vibrio harveyi was excluded as the web service of

TargetRNA did not provide the corresponding genome. Two

interactions, MicF-ompF and GcvB-oppA, were excluded since

they were used as training samples for the method of TargetRNA.

The sRNA MicF was also excluded due to its absence after the

exclusion of the two interactions. Therefore, this method was

analyzed with a total of 50,644 interactions from 12 sRNAs

distributed in five genomes, including 13 true interactions from the

test dataset and 8 true interactions from the training dataset. The

remaining 50,623 interactions were considered to be non-

interactions. For assessment of sRNATarget, we excluded two

interactions, MicF-ompF and GcvB-oppA, from our test dataset,

since they were included in the training data for sRNATarget. The

sRNA MicF was also excluded due to its absence after exclusion of

the two interactions. Therefore, this method was analyzed with a

total of 56,564 interactions from 13 sRNAs distributed in six

genomes, including 14 true interactions from the test dataset and 8

true interactions from the training dataset. The remaining 56,542

interactions were considered to be non-interactions. For sRNA-

Target2, performance was evaluated using 16 true interactions

and 60,690 non-interactions, identical to sTarPicker.

Figure 5 shows the ROC curves for all four methods on

genome-wide target predictions of 14 sRNAs. Each ROC curve

was generated by calculating sensitivity and specificity while

varying the number of predicted interactions taken into consid-

eration for each sRNA. Based on ROC curve analysis, it is evident

that sTarPicker exhibited the best performance, better than

IntaRNA, sRNATarget, sRNATarget2, TargetRNA and Tar-

getRNA2. TargetRNA exhibited the best performance when the

false positive rate was less than 0.005. However, TargetRNA only

reported 3 out of 13 true interactions evaluated. It is worth noting

that all positive predictions excluding true interactions from the

training and test datasets were classified as false positives.

However, some of these false positives may indeed represent

actual interactions. Therefore, the estimated sensitivity and

specificity values for all four methods may in fact be conservative.

In particular, estimates of TargetRNA and TargetRNA2 perfor-

mance may be more conservative, as this method only provides

targets with P value less than 0.01 for each sRNA.

A case study: target prediction of the sRNA Yfr1 in
Prochlorococcus

During the time in which sTarPicker was being developed,

Richter et al. published a study in which IntaRNA was used to

discover two novel targets for the sRNA Yfr1 in Prochlorococcus

MED4 [38]. Therefore, to compare sTarPicker with IntaRNA, we

applied sTarPicker to the prediction of Yfr1 targets in the

Prochlorococcus MED4 genome (Genbank accession number

NC_005072). The putative target regions included sequences

within 2150 to +100 nt of the start codon for all annotated genes.

We also utilized sRNATarget to predict targets of Yfr1. Since

TargetRNA does not provide the corresponding genome, this

program was excluded in the analysis.

Table 2 shows the predicted results for sRNA Yfr1 and six

protein-coding genes. The two som genes PMM1119 and

PMM1121 were experimentally validated as bona fide targets,

and the remaining genes were found to be pseudo targets of Yfr1.

As shown in Table 2, sTarPicker predicted two som genes as

Table 1. Prediction accuracy of binding sites on seventeen validated sRNA-target pairs.

sRNA-target Sensitivity PPV

sTarPicker IntaRNA TargetRNA TargetRNA2 sTarPicker IntaRNA TargetRNA TargetRNA2

GcvB-sstT 0.417 0.000 - - 0.172 0.000 - -

MicF-ompF 0.840 1.000 0.560* 0.560* 1.000 1.000 0.636* 0.636*

MicA-phoP 0.455 0.455 1.000 - 1.000 1.000 1.000 -

OmrA-csgD 0.737 0.684 - - 1.000 1.000 - -

GcvB-livK 0.625 0.625 - - 0.652 0.652 - -

GcvB-oppA 0.913 1.000 1.000* - 0.955 1.000 1.000* -

InvR-nmpC 0.927 0.000 - - 0.704 0.000 - -

MicA-lamB 1.000 1.000 - - 0.885 0.821 - -

MicA-ompX 1.000 0.900 - 1.000 0.714 1.000 - 0.769

RybB-ompN 1.000 1.000 1.000 - 1.000 1.000 1.000 -

MicC-nmpC 1.000 1.000 - - 1.000 1.000 - -

PrrF1-sodB 0.840 0.600 - - 1.000 0.789 - -

Qrr1-hapR 0.708 0.708 - - 1.000 1.000 - -

Qrr1-luxO 0.444 0.444 - - 1.000 1.000 - -

MicX-VC0620 0.406 0.938 0.969 - 0.765 1.000 0.969 -

Qrr1-luxR - 0.000 - - - 0.000 - -

LhrA-lmo0850 1.000 0.786 - - 0.824 1.000 - -

Average on 17 pairs 0.724 0.655 0.266 0.092 0.804 0.780 0.271 0.083

*Indicates that the interaction was in the training dataset. -Indicates that no interaction was predicted. The highest average sensitivity and PPV are shown in bold.
doi:10.1371/journal.pone.0022705.t001
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targets of Yfr1 with probabilities of 1 and 0.837, respectively. The

remaining genes were predicted to be pseudo targets as the

probabilities were 0.001 or 0. Therefore, the predictions from

sTarPicker were in complete agreement with the experimental

results. IntaRNA does not provide an obvious indication of

interaction, since this method only provides an energy score for

each sRNA-target pair. For this reason, the six monocistronic

genes with known transcriptional start sites in the top 10

candidates were selected for experimental validation after

confining target binding regions to the interval of [239, +19] in

the previous report [38]. Among the six candidate targets for

experimental validation, two som genes verified as bona fide targets

were ranked at positions 1 and 3. The gene PMM0494 verified as

a pseudo target was ranked at position 2. Therefore, at lease one

false positive was included in the predicted results even if only top

three genes were selected as candidate targets. sRNATarget

predicted that PMM1119 and PMM0494 were targets of Yfr1

with a probability of 1 and predicted the remaining candidates to

be pseudo targets with probabilities less than 0.5. Both a false

negative (PMM1121) and a false positive (PMM0494) were

identified in the prediction results.

Furthermore, sTarPicker only predicted 5 out of 1717 protein-

coding genes to be candidate targets with probabilities greater

than 0.5 in all annotated protein-coding genes. Two som genes

verified as bona fide targets were ranked at position 2 and 3 in all 5

candidate targets. Therefore, the PPV for sTarPicker was 0.40 (2/

5). The PPV for IntaRNA in the report of Richter et al. [38] was

0.33, since 2 out of 6 candidates were verified as bona fide targets.

sRNATarget predicted 23 genes to be targets with probabilities

Figure 5. ROC curves of sTarPicker and three state-of-the-art methods in genome-wide prediction of sRNA targets. For sTarPicker, the
results for each sRNA were sorted based on sTarPicker probability (descending), DDG of binding regions (ascending), and DDG of seed regions
(ascending). If an sRNA-target pair returned several binding sites, only the site with the smallest rank was selected. For IntaRNA, results for each sRNA
were sorted in ascending order of the energies. For sRNATarget and sRNATarget2, results for each sRNA were sorted in descending order of the
prediction scores. For TargetRNA and TargetRNA2, results for each sRNA were sorted in ascending order of the P-values. Each ROC curve was
generated by calculating sensitivity and specificity while varying the number of predicted interactions taken into consideration for each sRNA.
doi:10.1371/journal.pone.0022705.g005

Table 2. Predicted results for interaction of Yfr1 and six
validated targets.

Target sTarPicker IntaRNA sRNATarget

Prob Ranka Rankb Energy Rankb Prob Rankc

PMM1119 (som) 1 2 1 213.42 1 1 1

PMM1121 (som) 0.837 3 2 210.54 3 0 -

PMM0494 (ppa) 0.001 32 7 212.58 2 1 1

PMM1697 (s factor) 0 - - 29.03 4 0 -

PMM0538 0 - - 28.15 6 0 -

PMM0050 (argJ) 0 - - 27.51 10 0 -

The Rank column shows the rank of the target among all predicted targets from
the genome-wide prediction. For sTarPicker, results for each sRNA were sorted
based on sTarPicker probability (descending), DDG of binding regions
(ascending), and DDG of seed regions (ascending). If an sRNA-target pair
returned several binding sites, only the site with the smallest rank was selected.
For IntaRNA, results were sorted in ascending order of the energies. Only
interactions at the interval of [239, +19] were considered according to their
paper. For sRNATarget, results were sorted in descending order of the
sRNATarget scores. The first two som genes were experimentally validated and
shown to be bona fide interaction. The remaining interactions were validated to
be non-interaction. ‘-’indicates that no interaction was predicted.
aindicates that the rank was obtained when target binding sites were confined
at the interval of [2150, +100].

bindicates that the rank was obtained when target binding sites were confined
at the interval of [239, +19].

cindicates that the rank was obtained with default parameter settings.
doi:10.1371/journal.pone.0022705.t002
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greater than 0.5. With a false positive and a false negative, the

PPV for sRNATarget is 0.04 (1/23). sTarPicker had the best PPV

in the three methods. It should be noted that the six candidate

targets for IntaRNA were ranked best only under the following

two important circumstances: (1) the sRNA seeds were located in

the interval [17,27], and (2) the target binding sites were located in

the interval [239, +19]. If we confined the target binding site to

interval [239, +19], only two som genes, PMM1119 and

PMM1121, were reported to be targets with probabilities greater

than 0.5 (File S1). The PPV for sTarPicker increased to 1.00 (2/2),

much better than IntaRNA and sRNATarget.

Comparison of binding sites predicted by sTarPicker and

IntaRNA showed that they were identical. Taken together,

sTarPicker exhibited much better performance than IntaRNA

and sRNATarget in the target prediction of sRNA Yfr1.

Discussion

In this study, we proposed a novel target prediction method,

sTarPicker, for prediction of bacterial sRNA targets. The

methodology of the program is based on a two-step model of

hybridization between an sRNA and a target. In the first step, the

sRNA seed binds the target seed by forming a consecutive base-

pairing stretch. If the duplex is sufficiently stable, the initial hybrid

elongates to form the complete sRNA-target interaction in the

second step. Based on the two-step model, sTarPicker first screens

seed regions based on an empirical energy value deduced from our

training dataset. The program next extends the entire binding site,

beginning at the seed regions, mimicking the second step of the

model. Through an ensemble classifier trained using the Tclass

system, sTarPicker then makes the final prediction regarding

whether a sequence represents a target.

Long et al. also employed a two-step model to explore miRNA-

target interactions [31]. There are four primary differences

between their work and sTarPicker. With respect to the first

major difference, Long et al. employed a two-step model for the

hybridization between a miRNA and a target. As miRNAs are

short, approximately 22 nt in length, they were considered to be

unstructured in this hybridization. Only targets were considered to

be structured in their model. Therefore, for seed selection, they

only considered the stacking energies of miRNA seeds and single-

stranded nucleotides of targets. We employed a two-step model for

the hybridization between an sRNA and a target. However, in our

case, as both sRNAs and targets were long sequences, we

considered both to be structured. As a result, we computed the

DDG values for seed regions, which included both the total energy

of hybridization and the energy required to make both sRNA and

target seed regions accessible.

Second, in the model from Long et al., the miRNA nucleates

base-pairing with a block of four consecutive unpaired nucleotides

in the target in the first step, despite the fact that a longer stretch of

base pairs may be present between the miRNA and the target. In

contrast, we assumed that the entire sRNA seed combined with

the entire target seed in the first step of the model, generating base-

paired sequences longer than 4 nt. We do not exclude the

possibility that seed base-pairing is initiated by base-pairing

between fewer nucleotides than those included in the entire seed

length, such that the first step of Long’s model becomes a

preliminary step for the first step in our model.

Third, Long et al. used a stacking energy value of 24.09 kcal/mol

as the initiation threshold, which was based on a previously reported

empirical value [43]. The accessibility of target sites was not taken

into consideration, since miRNAs were required to bind single-

stranded nucleotides within the target. In contrast, we used a DDG

value of 22 kcal/mol as the initiation threshold, which was deduced

from our training dataset. Accessibility of both sRNA seeds and

target seeds were considered in calculation of DDG.

Finally, Long et al. predicted targets according to the total

energy for all qualified sites, whereas we constructed an ensemble

classifier using machine-learning methods to make final predic-

tions.

In comparison to three state-of-the-art methods for sRNA target

prediction, namely IntaRNA, TargetRNA and sRNATarget,

sTarPicker performed best in both the accuracy of predicted

binding sites and in identification of sRNA targets on an

independent test dataset. IntaRNA also required the existence of

a seed. However, IntaRNA only added the hybridization energy of

seed regions into the extended hybridization energy of the binding

sites, and tried to find the hybridization structure with the

minimum energy. The site accessibility of seeds was not considered

separately in IntaRNA. In sTarPicker, the hybridization energy

and site accessibility of seeds were a prerequisite for interaction of

two RNA molecules. Only stable hybridized seeds were taken to

be extended in the second step of the method. The comparison

with IntaRNA showed that the incorporation of site accessibility of

seeds and seed selection based on the extended hybridization

energy could improve the prediction quality.

Besides IntaRNA, TargetRNA and sRNATarget, we also

compared sTarPicker with sRNATargetSVM, the model con-

structed using SVM in our previous work [17]. To conduct an

objective comparison with sRNATargetSVM, we re-trained the

model using SVM with the 32 sRNA-target pairs from sTarPicker

as positive samples and 64 non-interaction pairs randomly selected

from sRNATarBase [12] as negative samples. The core target

binding regions were sub-sequences from 2150 to +100 nt

surrounding the initial start codon and the flanking regions were

sub-sequences from 2200 to +120 nt surrounding the initial start

codon. The detailed methods of sRNATargetSVM2 were

provided in File S2. The new model was denoted by sRNATar-

getSVM2. The sensitivity and specificity of sRNATargetSVM2 on

the training data were 87.10% and 100%, respectively. The

performance on the training dataset was far better than that of

sTarPicker. However, the sensitivity and specificity of sRNATar-

getSVM2 on the test data were only 35.29% and 95.00%,

respectively, which was rather less than those of sTarPicker. The

sharp decrease of the performance on the test dataset mainly owed

to the use of 10,000 features, because involvement of a large

number of features in training models will increase the

generalization error in machine learning methods. Moreover,

sRNATargetSVM2 employed 10,000 features, whereas sTar-

Picker employed only five features selected using the Tclass

system. The computational cost of sRNATargetSVM2 was about

2,000 times more than that of sTarPicker.

In this study, the training and test datasets included 32 and 17

sRNA-mRNA pairs, respectively. The small numbers of training

and test samples owed to the limited number of unique sRNA-

mRNA pairs with detailed binding sites experimentally-verified as

direct interaction. The small sample size might cause the limited

coverage of the whole sRNA-mRNA interaction population, and

hence decrease the prediction accuracy. This might be the main

reason that all the prediction methods presented by far predict a

large number of false positives. With the increase of unique sRNA-

mRNA pairs that are experimentally validated to interact directly,

the performance of prediction methods would be improved.

Compared to the number of the training samples, the number

of features (22) was relatively big. In machine learning methods,

the generalization error of the model will be increased if a large

number of features are employed to train the model. In this

sTarPicker
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situation, feature subset selection is very important to improve the

performance of prediction models. We employed the Tclass system

to select a feature subset composed of five features. The

performance on the independent test dataset was similar to the

performance on the training dataset, suggesting a good general-

ization ability of sTarPicker.

Currently, sTarPicker was trained and evaluated on one

random partition of training and test dataset. To observe the

performance of our approach with different partitions of training

and test datasets, we randomly selected 32 sRNA-mRNA pairs as

a training dataset and the remaining 17 pairs as a positive test

dataset. For each sRNA in the positive test dataset, we randomly

selected 10 target genes from the corresponding genome as non-

interaction targets to compose a negative test dataset. We trained

the model using the same steps as those used in sTarPicker and

evaluated on the test dataset. The AUC (the Area Under the ROC

Curve) value was computed to evaluate the model. The above

process was repeated 30 times. All the AUC values for the 30

models were listed in Table S6. The AUC values ranged from

0.8462 to 0.9565. The average was 0.9084. The AUC value for

sTarPicker was 0.9164, only slightly higher than the average AUC

value. This result demonstrated the robustness of our approach.

Availability and Future Directions
The genome-wide prediction application is available at http://

ccb.bmi.ac.cn/starpicker/prediction.php. The interaction evalua-

tion application is available at http://ccb.bmi.ac.cn/starpicker/

evaluation.php.

In the present methodology, we assumed that any part of the sRNA

sequences could function as binding sites. However, analysis of all

validated binding sites suggested that sRNAs exhibit a strong tendency

to bind targets using common regions. For example, Salmonella GcvB,

an sRNA 201 nt in length, has been shown to interact directly with

seven targets via a common region located within 62–92 nt [44].

Therefore, the performance of sTarPicker could be further improved

by restricting the functional binding sites of sRNAs.
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