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Abstract: The surface porous ultrahigh molecular weight polyethylene (UHMWPE) composites were
successfully fabricated with NaCl and graphene oxide (GO) in the hot-pressing procedure. The GO
sheets were evenly dispersed in UHMWPE with the sedimentation method of GO in saturated NaCl.
The morphologies, chemical compositions, mechanical, and tribological properties of GO and surface
porous GO/NaCl/UHMWPE were investigated. The results show that GO sheet and NaCl could
be evenly dispersed in UHMWPE. The regular pores are present on the surface of UHMWPE after
NaCl dissolution in distilled water. The wear resistance properties are improved significantly, and
the friction properties increased slightly with the addition of GO and NaCl.

Keywords: surface porous; GO nanosheets; NaCl pore-forming filler; tribology properties; UHMWPE
composites

1. Introduction

Artificial joints are used to replace the malfunctioning bones, enabling thousands
of people to enjoy an active lifestyle [1]. The artificial joints are composed of two parts:
metal and polymer. Ultra-high molecular weight polyethylene (UHMWPE) is the most
common material used for the artificial joint bearing component, with the advantage
of unique characteristics and favorable properties, such as biocompatibility, chemical
stability, high wear resistance, and low friction, [2,3]. However, the low tribological
properties of UHMWPE activate osteolysis and aseptic loosening, which lead to artificial
joint replacement failure [4].

The polymer tribological properties can be improved by introducing filler materials
to the polymer structure, resulting in mechanics modification [5,6]. Articular cartilage
with porous structure has the advantage to provide human joints with excellent bearing
capacity, bio-friction, and wear resistance performance [7]. Porous UHMWPE simulating
as closely as possible the porous articular cartilage is a promising composite polymer
used for various implant materials [8,9]. The various type and distribution of the filler
materials are associated with the versatility of composite polymers. Maksimkin et al. [10]
demonstrated that the porous structure of UHMWPE implants formed with the optimal
method of monolithization at high pressure was a positive direction for implant in the
case of filler formation and removal. Zhang et al. [11] fabricated UHMWPE microporous
materials by loose sintering method and calculated the pore size by the face-centered cubic
structure model. The results have shown that the average pore size and porosity increased
with the increase of UHMWPE particle diameter, while the compressive strength and bulk
density decreased.
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Sodium chloride (NaCl) is one biological compatible and innocuous pore-forming
filler to fabricate the porous structure formation in UHMWPE with thermal compres-
sion [12]. Pal et al. [13] prepared porous UHMWPE by mixing NaCl and hydroxyapatite
powder as a pore-forming agent with hot isostatic pressing (HIP) and dissolving. Plum-
lee et al. [14] fabricated the porous UHMWPE with dry mixing of NaCl particles and
UHMWPE powder by the hot pressing method after the leaching of NaCl. Zalepugina and
Maksimkin et al. [15,16] obtained the porous multilayer UHMWPE with size controllable
in subcritical water, which could be used as a medical device for reconstructive medicine.
However, the research revealed that the porous formation in UHMWPE was associated
with structure destruction, under low mechanical stresses [14]. After NaCl dissolution, the
tribological properties of porous UHMWPE were similar to the porous articular cartilage.
Unfortunately, due to the appearance of holes, the integrity of polyethylene is destroyed,
which affects its mechanical properties. Hence, it is necessary to improve the mechanical
properties of porous polyethylene. Carbon materials with excellent mechanical properties
and out-performance lubrication characteristics could be used as the reinforcing filler for
polymer [4,17–20]. Graphene oxide (GO) with a stacked two-dimensional structure became
the research focus in the tribological field. Tai et al. [21] fabricated UHMWPE compos-
ited with GO to enhance the mechanical properties. The hardness and wear resistance of
the GO/UHMWPE composite were improved significantly when the GO content is up
to 1.0 wt.%. Suñer et al. [22] reported that the mechanical and wettability properties of
GO/UHMWPE composite were enhanced compared to virgin UHMWPE. When the GO
content is up to 0.5 wt.%, the composite exhibited higher characteristics. They [23] also as-
sessed the biocompatibility of GO/UHMWPE wear particles. They found that the GO with
higher concentrations (2 wt.%) led to a significant reduction in wear and GO to UHMWPE
matrix did not significantly affect the inflammatory properties. Bahrami et al. [24] found
that GO nanocomposite is a suitable filler and could be appropriately used in implant
and artificial body due to the low coefficient of friction and wear rate of UHMWPE with
the addition of GO. The rubbing surface morphological showed that GO produced an
exfoliated structure without any agglomeration in the polymeric matrix. However, the dry
GO sheets are different from evenly dispersed in UHMWPE powders. Suñer et al. [22]
found suboptimal dispersion of the GO in the UHMWPE matrix when the GO content
is above 0.5 wt.%. Therefore, it is an efficient approach to fabricate porous polyethylene
that GO with the excellent reinforcement strength properties was utilized to compensate
the damage of UHMWPE mechanical property due to the porous property. However,
GO is hydrophilic with the water-soluble units, and it is difficult to evenly disperse in
hydrophobic PE during the fabrication process. We found that GO dispersion could be
mixed with NaCl solution and GO sheets with saturated NaCl could be aggregated in
ethanol. It would be benefited for the GO dispersion with NaCl in PE.

The main purpose of this study is to fabricate PE materials with excellent friction
and mechanical properties, NaCl is used as pore forming agent to endow PE material
with a porous structure, and GO is used as the reinforcing agent to improve the PE
mechanical properties. The NaCl and GO fillers were used to composite the UHMWPE
to fabricate the surface porous GO/NaCl/UHMWPE composites with the sedimentation
method of GO in saturated NaCl through the ethanol-assisted mixing and hot forming
process. The mechanical and tribological properties of the UHMWPE and surface porous
GO/NaCl/UHMWPE composites were evaluated. The effect of the GO on the tribological
performance of the surface porous GO/UHMWPE was analyzed.

2. Materials and Experiments
2.1. Materials

UHMWPE powder and graphite powder (500 mesh, 99.85%) were obtained from
Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. The chemicals (H2SO4 98%,
H3PO4 85%, KMnO4 99%, HCl 37%, H2O2 30%) used to synthesis GO were purchased
from Sigma-Aldrich Co. LLC. The sodium chloride (NaCl) and ethanol solution were
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purchased from Sigma Aldrich Co. LLC, Shanghai, China. These chemicals were used
without further treatment.

2.2. Synthesis of GO

The GO dispersions were synthesized following the Hummers method [25]. Graphite
powder (1.5 g) was mixed with H2SO4 (98%,) and HCl in the ratio of 9:1 (180 mL and
20 mL). KMnO4 (10 g) was slowly added to this suspension and stirred at 50 ◦C with
magnetic stirring evenly at 600 rpm. After 12 h, H2O2 (6 mL, 30%) and concentrated HCl
(20 mL) were slowly dripped into this suspension. The mixture was settled for 12 h. The
supernatant was moved out. Finally, the remaining mud was washed with distilled water
until the pH value was 7. GO dispersions of a certain volume were dried in a vacuum oven
at 45 ◦C. The drying GO powder was used for characterization.

2.3. Fabrication of GO/NaCl/UHMWPE Composites

The schematic representation of surface porous GO/NaCl/UHMWPE composites
fabrication is shown in Figure 1. The surface porous GO/NaCl/UHMWPE composites
fabrication included the following steps: The cleaned GO dispersion was mixed with a
saturated NaCl solution and stirred for 30 min. Then, the homogeneous NaCl and GO
mixture was slowly dropped into ethanol solution. The GO and NaCl flocculate were
deposited at the bottom of the test tube. Also, the flocculate deposition was dried via the
rotary evaporation method at 70 ◦C to remove the ethanol. Furthermore, the supernatant
was moved away, and the NaCl and GO dispersion was dried and ground into a powder.
The dried GO/NaCl/UHMWPE powder and UHMWPE powder were fully mixed and
treated by hot pressing to form a rectangular laminate. The compression was pre-treated
at 7.5 MPa for 2 min and then conducted at 200 ◦C and 10 MPa for 2 h to form the GO
/NaCl/UHMWPE laminate. Finally, the laminate was kept at room temperature for cooling
and washed with distilled water and ethanol in the ultrasonic bath. A similar method was
used to fabricate the virgin UHMWPE specimen. The mass ratios of specimens are shown
in Table 1.

Table 1. Mass ratios of surface porous GO/NaCl/UHMWPE composites.

Mass Ratios (wt.%) 1 2 3 4 5 6 7

UHMWPE 99 89.5 89 89.9 99 79 69
GO 0 0.5 1 0.1 1 1 1

NaCl 1 10 10 10 0 20 30

2.4. Characterization of GO and Surface Porous GO/NaCl/UHMWPE Composites

The size and thickness of GO sheets were measured by a multimode atomic force
microscope (AFM) (nano-scope III, Bruker, Karlsruhe, Germany). The chemical composi-
tions of GO and surface porous GO/UHMWPE were characterized by Fourier transform
infrared spectroscopy (FT-IR) (Paragon 1000, Perkin Elmer, USA). The structure of GO
and morphology of surface porous GO/NaCl/UHMWPE were observed by scanning
electron microscope (SEM) (FEI Company, Hillsboro, Oregon, USA). The microstructure
of GO and surface porous GO/NaCl/UHMWPE was performed by X-ray diffractometer
(XRD) (2200/PC, Rigaku Corporation, Tokyo, Japan) under the condition of 2θ = 5–60◦,
λ = 0.154 nm. The microhardness experiments were carried out with the fabricated speci-
mens using the Vicker microhardness tester. The load was 500 gf, and the holding time
was 10 s. The water static contact angles of sample surfaces were measured according to
the ISO 15989 standard. Five times tests were prepared at different locations.
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Figure 1. Schematic representation of the fabrication of surface porous graphene oxide (GO)/NaCl/ ultrahigh molecular
weight polyethylene (UHMWPE) composites.

2.5. Tribological Measurement

The tribological performance of the UHMWPE and surface porous GO/NaCl/UHMWPE
composite were evaluated by the reciprocating tribometer (Lanzhou Institute of Chemical
Physics, Lanzhou, China) as shown in Figure 2. The coefficient of friction is a significant
factor in understanding the friction performance of the polymer. The elastic model of
UHMWPE is less than that of the metal. Wear ratio is one important factor to evaluate the
wear performance of the polymer. The friction force and the corresponding coefficient of
friction (COF, µ) were automatically recorded. The experiment materials, such as virgin
UHMWPE, surface porous GO/NaCl/UHMWPE composite, and 316 L stainless steel
balls (diameter of 10 mm), were cleaned in acetone for 10 min each in an ultrasonic bath.
The main component of synovial fluid is water. To control the variables of experimental
factors, water was used as the lubricating medium in this experiment. The normal load is a
significant parameter affecting the friction and wear properties of UHMWPE to metal. In
this study, the friction and wear properties of porous polyethylene were investigated with
load as variable. In the test progress, the UHMWPE and GO/NaCl/UHMWPE samples
were fixed in the sample fixers with a 10 mL lubricant. The distilled water was used as
the lubricant. The sliding velocity was 15 mm/s and the sliding duration was 11 min.
The influence of the normal loads (20, 30, 50, 70, 90 N) on the tribological performance
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were investigated. All the tests were repeated three times, and the average values were
calculated. The wear ratio (κ) was calculated with Equation (1):

κ =
v

L × FN
(1)

where v is the wear volume in mm3 measured with Keyence VK 9700 laser scanning
microscopy [26,27]; FN is the applied normal load in N; L is the total sliding distance
in mm.
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3. Results
3.1. Characterization of GO and Surface Porous GO/NaCl/UHMWPE Composites
3.1.1. Characterization of GO

The AFM images and height profiles of GO sheets are shown in Figure 3a,b. The
thickness of the GO sheet was 0.93 nm and the stacking GO sheet was 2.1 nm. It is
accordant with the values for single-layer GO sheet [28]. The chemical components of GO
were evaluated by FT-IR, as shown in Figure 3c. The spectrum of O–H groups of GO at
3419 cm−1 was observed. The stretching vibrations of C=O and C=C of GO were 1734 cm−1

and 1627 cm−1, respectively. The vibration spectrum C–O in C–OH and C–O–C vibrations
in epoxy were 1384 cm−1 and 1051 cm−1, respectively [29,30]. The interlayer spacing of
graphite and GO was assessed by XRD according to the Bragg law shown in Equation (2):

nλ = 2d sin θ (2)

The reflection of GO is a strong single peak at 2θ = 10.3◦, illustrating that the GO layer
spacing is larger as shown in Figure 3d. Due to oxide groups in GO, water molecules were
trapped between the graphene oxide sheets [31,32]. No obvious peak is found in the profile
of GO, indicating that graphite has been successfully oxidized to GO.
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3.1.2. Characterization of Surface Porous GO/NaCl/UHMWPE Composites

Figure 4 shows the SEM of the surface and cross-section of UHMWPE and surface
porous GO/NaCl/UHMWPE composites at different magnifications. From Figure 4b,c,
it can be seen that more regular pores are present on the GO/NaCl/UHMWPE sur-
face. Comparing with Figure 4b,c, it can be seen that the cross-section of UHMWPE
material is relatively smoother with small pores, and the cross-section of surface porous
GO/NaCl/UHMWPE composites was rough with the larger regular pores.

FT-IR spectra were used to characterize the chemical structure of UHMWPE and
surface porous GO/NaCl/UHMWPE composites with 1 wt.% GO and 10 wt.% NaCl, as
shown in Figure 5a. The significant features with the asymmetric stretching vibration peaks
(2923 cm−1) and symmetric stretching vibration peaks (2849 cm−1) of –CH– can be seen
in the figure. The in-plane deformation vibration peaks of –CH appeared at 719 cm−1.
Comparing with the peak strength of surface porous GO/NaCl/UHMWPE composites, it
was found that the 1036 cm−1 and 1658 cm−1 peaks appeared in the strength for surface
porous GO/NaCl/UHMWPE composites. This is because of the introduction of GO with
oxygen-containing groups.
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Figure 5b shows the XRD spectra of UHMWPE and surface porous GO/NaCl/UHMWPE
composites with 1 wt.% GO and 10 wt.% NaCl. It can be seen that the XRD spectra of
surface porous GO/NaCl/UHMWPE composites are similar to that of UHMWPE. The
characteristic derivative peaks of UHMWPE occur at 21.5◦, 23.9◦, and 36.3◦. The peak of
surface porous GO/NaCl/UHMWPE composites occurs at 2θ = 26.9◦. The surface porous
structure would destroy the integrality of UHMWPE, and the X-ray value changed from
23.9◦ to 26.9◦ [31]. The results have shown that the surface porous GO/NaCl/UHMWPE
composites did not degrade during the hot-pressing process. GO could be well dispersed in
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UHMWPE composites during the hot press processing. Therefore, GO has been successfully
doped into UHMWPE matrix.

3.1.3. Hardness of Surface Porous GO/NaCl/UHMWPE Composites

The hardness curve of UHMWPE and surface porous GO/NaCl/UHMWPE were
investigated. Figure 6a shows the influence of the content of GO on the hardness of
GO/NaCl/UHMWPE with 10 wt.% NaCl. It can be seen that the hardness of UHMWPE
was improved with the addition of GO of 0.5 wt.%. This is due to the GO nanoparticles’
small particle size, large surface curvature and excellent mechanical properties affecting
the internal structure and hardness of polymer materials, effectively improving UHMWPE
load-bearing capacity. Nevertheless, the hardness decreased with the addition of NaCl
with 10 wt.%. Figure 6b shows the influence of the content of NaCl on the hardness of
GO/NaCl/UHMWPE with 1 wt.% GO. It can be seen that the hardness of surface porous
GO/NaCl/UHMWPE slightly decreased with the increase of NaCl content from 0 to
30 wt.%. This is due to the increased porosity of UHMWPE with NaCl dissolution. As
shown in Figure 6, the hardness of porous UHMWPE increased with the increase of GO and
decreased with the increased NaCl. To balance the UHMWPE surface pores and surface
hardness, the GO/NaCl/UHMWPE composited with 1 wt.% GO and 10 wt.% NaCl.
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3.1.4. Contact Angle of Surface Porous GO/NaCl/UHMWPE Composites

Figure 7 shows the static contact angles of UHMWPE and surface porous GO/NaCl/
UHMWPE composites with 1 wt.% GO and 10 wt.% NaCl. It can be seen that the static
contact angle of UHMWPE material decreased with the addition of GO, and the static
contact angle of surface porous GO/NaCl/UHMWPE composite further decreased with
the addition of NaCl. This is due to the oxide functional groups on the GO surface and edge,
which enhances the hydrophilic groups on the surface of the UHMWPE composite and
reduces the static contact angle of the surface. The surface porosity of GO/NaCl/UHMWPE
material was increased with the solution of NaCl. The static contact angle was further
reduced. Hence, the surface wettability of GO/NaCl/UHMWPE was increased by adding
GO and NaCl.
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3.2. Tribological Performance of Surface Porous GO/NaCl/UHMWPE

The tribological performance of UHMWPE and surface porous GO/NaCl/UHMWPE
composite and in particular the influences of GO, NaCl concentration, and lubrication on
the coefficient of friction (COF) and wear rate (κ) were investigated.

3.2.1. Influence of GO Content on Tribological Properties

Figure 8 shows the effect of GO contents (0 to 1 wt.%) on the coefficient of friction
(COF) and wear ratio (κ) of UHMWPE and surface porous GO/NaCl/UHMWPE com-
posites with 10 % NaCl in water. From Figure 8a, it can be seen that COFs of surface
porous GO/NaCl/UHMWPE composites decreased slightly compared with that of the
porous UHMWPE without GO. With the increasing of GO contents from 0.1 wt.% to
1 wt.%, COF of surface porous GO/NaCl/UHMWPE composites slightly decreased from
0.056 ± 0.0046 to 0.051 ± 0.009. From Figure 8b, it can be seen that κ of surface porous
GO/Nal/UHMWPE composites decreased slightly compared with that of the porous
UHMWPE without GO. With the increase of GO content from 0.1 wt.% to 1 wt.%, κ of
surface porous GO/NaCl/UHMWPE composites slightly increased from 1.18 ± 0.18 to
1.32 ± 0.23 m3/Nm·10−12. The addition of GO decreased the wear ratio because the GO
reinforcement increased the UHMWPE elastic modulus. The layer-lattice structure of GO
endows polymer with self-lubricating characteristics. These layers are linked by weak van
der Waals bonds, which may be easily broken by sheer force under sliding conditions [33].
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3.2.2. Influence of NaCl Content on Tribological

Figure 9 shows the effect of NaCl contents (0, 10, 20, 30%) on COF and wear ratio (κ) of
UHMWPE and surface porous GO/UHMWPE composites with 1% GO in the water. From
Figure 9a, it can be seen that COFs of surface porous GO/NaCl/UHMWPE composites
in water-based lubrication decreased gradually with the increase of NaCl contents from
5% to 30%. From Figure 9b, it can be seen that κ of surface porous GO/NaCl/UHMWPE
composites in water-based lubrication increased gradually with the increasing of NaCl
contents from 1.07 to 1.53 m3/Nm·10−12.
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3.2.3. Influence of Normal Loads on Tribological Performance

Figure 10 shows the effect of normal loads (20, 30, 50, 70, 90 N) on the COF and
wear ratio (κ) of UHMWPE and surface porous GO/NaCl/UHMWPE composites with
reciprocally moving at a speed of 30 mm/s in water. Figure 10a shows that COF of
UHMWPE and surface porous GO/NaCl/UHMWPE composites increased gradually with
the normal load increasing from 20 N to 90 N. When the load was greater than 50 N, COF
presented a steady trend. Also, Figure 10b shows that the wear ratio gradually increased
with the increase of normal load from 20 N to 90 N. Moreover, it can be seen from the
figures that the COF and wear ratio of surface porous GO/NaCl/UHMWPE composite
was lower than that of UHMWPE. This shows that the frictional and wear resistance of
surface porous GO/NaCl/UHMWPE composites was better in water.
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3.2.4. Frictional and Wear Properties of Surface Porous UHMWPE

Figure 11 shows the effect of the addition of GO (1 wt.%) and NaCl (10%) on COF and
κ of four samples (UHMWPE, UHMWPE with NaCl, UHMWPE with GO, and UHMWPE
with NaCl and GO) at the speed of 30 mm/s under normal load of 30 N in the water. From
Figure 11a, it can be seen that the COF decreased with the addition of NaCl and GO. When
GO and NaCl together presented in UHMWPE, the COF was less than the other samples.
From Figure 11b, it can be seen that κ of UHMWPE with NaCl was higher than that of
UHMWPE. The wear ratio of GO/NaCl/UHMWPE was less than the other samples. Also,
the κ of UHMWPE with NaCl and GO was less than that of UHMWPE with GO and was
larger than that of UHMWPE with NaCl.
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4. Discussion

The pores structure of UHMWPE polymer which is similar to the porous articular
cartilage was fabricated by NaCl and the UHMWPE mechanical properties were improved
by GO. It is difficult for dry GO sheets to be evenly dispersed into the polymer [34]. In
this research, the sedimentation method of GO in saturated NaCl was used to improve the
GO sheets dispersion. When the GO and NaCl powder were mixed with UHMWPE with
stirring, the GO sheets attached to UHMWPE powder and evenly dispersed in UHMWPE.
The GO sheet and NaCl powder were dried with ethanol volatilization by continuous
stirring. This prevented the GO sheet condensation. The chemical and mechanical char-
acterizations have illustrated that the homogeneous NaCl and GO mixture was slowly
dropped into ethanol solution. GO sheet was successfully synthesized by the characteriza-
tion results of AFM, FT-IR, and XRD. The GO sheets were nano-size layers with oxygen
chemical components.

The GO improved the hardness and wettability of UHMWPE. That was because
the GO with NaCl increased the UHMWPE surface porous. In the friction process, the
UHMWPE surface with pores would be destroyed, and the new UHMWPE surface presents
new porous properties due to the solution of NaCl in the water. In this research, 1 wt.%
GO and 10% NaCl filler were added to the UHMWPE material.

The frictional results reveal that surface porous GO/NaCl/UHMWPE presents the
friction-reducing and anti-wear properties in water. It could be explained by the simplified
schematic, shown in Figure 12. First, the adhesion part of the friction force F(f, adh) is
determined by the shear strength τ of the materials at the interface and the real contact
area Ar between them [35]:

Ff ,adh = τ Ar (3)
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The regular surface pores of GO/NaCl/UHMWPE are one crucial factor to im-
prove tribological performance. The regular pores reduce the contact area between metal
and UHMWPE.

Second, the porous structure improves the lubrication performance of lubricants by
“encapsulating” [36]. Lubricants can be stored in the pores between the friction pairs.
The shear strength was reduced with self-lubricating characteristics [37], thereby the
COF and wear ratio were reduced. Besides, in the wear producer, the surface porous
GO/NaCl/UHMWPE material is continuously worn, and new surface pores appear with
the dissolution of NaCl. Moreover, the addition of GO sheet is composed of many laminated
graphite planes, endowing it with self-lubricating characteristics [38], hence, improving
the load-bearing capacity of the material.

5. Conclusions

In this research, GO/NaCl/UHMWPE composites were synthesized by hot pressing.
The effects of GO and NaCl on the mechanical and tribological properties of surface porous
GO-modified surface porous GO/NaCl/UHMWPE in water were investigated, which pro-
vided a theoretical basis for the preparation of composite artificial joint prosthesis materials.

(1) The sedimentation method of GO in saturated NaCl was used to improve the
even dispersion of the GO sheets into the UHMWPE matrix. Considering the reinforce-
ment of GO and destruction of NaCl, 1 wt.% GO and 10% NaCl filler were added to the
UHMWPE material.

(2) The anti-friction and anti-wear properties of GO/NaCl/UHMWPE were improved
with the water-based lubrication.

(3) In the friction process, with the dissolution of NaCl, new holes appear on the
surface of GO/NaCl/UHMWPE, forming a virtuous circle of constant improvement of the
anti-friction and anti-wear properties.
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