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SUMMARY

The canonical mammalian Hippo pathway contains a core kinase signaling cascade requiring 

upstream MST to form a stable complex with SAV1 in order to phosphorylate the downstream 

LATS/MOB complex. Though SAV1 dimerization is essential for the trans-activation of MST, the 

molecular mechanism underlying SAV1 dimerization is unclear. Here, we discover that the SAV1 

WW tandem containing a short Pro-rich extension immediately following the WW tandem 

(termed as “WW12ex”) forms a highly stable homodimer. The crystal structure of SAV1 WW12ex 

reveals that the Pro-rich extension of one subunit binds to both WW domains from the other 

subunit. Thus, SAV1 WW12ex forms a domain-swapped dimer instead of a WW2 

homodimerization-mediated dimer. The WW12ex-mediated dimerization of SAV1 is required for 

the MST/SAV1 complex assembly and MST kinase activation. Finally, we show that several 

cancer-related SAV1 variants disrupt SAV1 dimer formation, and thus, these mutations may impair 

the tumor-suppression activity of SAV1.
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In Brief

Lin et al. report the crystal structure of the SAV1 WW12 tandem dimer, showing that the proline-

rich tail following the WW tandem governs domain-swapped SAV1 dimer formation. WW 

tandem-mediated SAV1 dimer formation is important for the interaction between SAV1 and MST 

during Hippo signaling.

INTRODUCTION

The Hippo signaling pathway is evolutionarily conserved and critical for organ size control 

and tissue homeostasis. In mammals, the canonical Hippo pathway contains a core kinase 

cascade, in which the MST (mammalian STE20-like protein kinase)/SAV1 (Salvador 

homolog 1) complex phosphorylates and activates the LATS (large tumor suppressor 

homolog proteins)/MOB (Mps one binder proteins) complex. The activated LATS kinases 

then phosphorylate and sequester YAP/TAZ transcription factors in cytoplasm, thereby 

turning off their transcriptional activities (Pan, 2010; Yu et al., 2015; Sun and Irvine, 2016; 

Fulford et al., 2018; Moya and Halder, 2019).

SAV1 is a scaffold protein that contains an N-terminal flexible region capable of binding to 

Merlin/NF2 and the striatin-interacting phosphatase and kinase complex (STRIPAK), a 

middle WW domain tandem capable of dimerization but with an unclear or debatable 

mechanism, and a C-terminal SARAH (Salvador-RassF-Hippo) domain that can 

heterodimerize with the SARAH domain of MST1/2 (Yu et al., 2010; Bae et al., 2017; 

Lin et al. Page 2

Cell Rep. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ohnishi et al., 2007; Pantalacci et al., 2003; Callus et al., 2006; Cairns et al., 2018). 

Formation of the MST/SAV1 complex and subsequent activation of MST kinases require 

interaction between the SARAH domains of the two proteins as well as SAV1 self-

association (Callus et al., 2006; Bae et al., 2017). Previous biochemical and nuclear 

magnetic resonance structural studies have suggested that SAV1 self-association is mediated 

by its WW2-mediated formation of a weak homodimer (Ohnishi et al., 2007; Bae et al., 

2017). We show in this study that the WW2-mediated dimerization is likely not a key 

mechanism for the SAV1 homodimer formation.

WW-domain-mediated target binding has been extensively studied (Sudol and Hunter, 2000; 

Salah et al., 2012). Accordingly, a number of putative targets, including LATS/Warts, 

angiomotins (AMOTs), AKT1, and RUNX, have been reported to bind to the WW domains 

of SAV1 via the canonical WW/“PPxY” motif (or PY motif in short) interaction mode 

(Tapon et al., 2002; Mana-Capelli and McCollum, 2018; Jiang et al., 2019; Min et al., 2012; 

Won et al., 2019). Many of the above-mentioned studies used individual WW domains or 

truncated WW12 tandem of SAV1 for binding assays. In our hands, using highly purified 

proteins, we could hardly detect any binding of the SAV1 WW tandem to the tandem PY-

motif-containing proteins, including LATS1/2, AMOTs, PTPN14, and PTPN21 (Lin et al., 

2019). Our finding is corroborated by the proteomic studies searching for SAV1-binding 

proteins by other groups (Hauri et al., 2013; Kwon et al., 2013; Wang et al., 2014; Vargas et 

al., 2020). Recently, we demonstrated that the WW-domain-containing proteins (e.g., 

KIBRA, YAP, MAGI2, and MAGI3) involved in cell growth and polarity use their WW 

tandems to bind to specific targets containing multiple PY motifs. Such WW-tandem-

mediated target interactions allow formation of very stable and highly specific WW domain 

protein/target complexes required for cell growth and signaling (Ji et al., 2019; Lin et al., 

2019). The WW-tandem-mediated target recognition has also been reported in other multiple 

WW domain proteins, such as HECT family E3 ubiquitin ligases (Chong et al., 2010). Like 

other WW tandem proteins involved in cell growth, SAV1 also contains two WW domains 

connected by a completely conserved 12-residue sequence (Figure 1A). We hypothesized 

that the evolutionally conserved WW12 tandem of SAV1, like the WW tandems of KIBRA, 

YAP, and MAGIs, may also function as an integral unit in binding to its targets that are still 

to be discovered.

Deregulation of the Hippo pathway has been linked to a wide range of human cancers (Yu et 

al., 2015; Ma et al., 2019; Zheng and Pan, 2019). Consistent with the critical roles of SAV1 

in the Hippo pathway, genomic copy number loss of SAV1 or downregulation of SAV1 

protein level is known to be associated with different types of human cancers, such as high-

grade clear cell renal cell carcinoma (ccRCC), colorectal cancer, pancreatic ductal 

adenocarcinoma (PDAC), mucinous tubular and spindle cell carcinoma, and hepatocellular 

carcinoma (Matsuura et al., 2011; Mehra et al., 2016; Sohn et al., 2016; Wang et al., 2016; 

Jiang et al., 2017). Mining the catalogue of somatic mutations in cancer (COSMIC) database 

(https://cancer.sanger.ac.uk/cosmic) identifies many variants within the WW tandem of 

SAV1 in patients with cancers (see below for detail). Detailed biochemical and structural 

studies of the SAV1 WW tandem may shed light on the molecular mechanism underlying 

the MST/SAV1 complex assembly and offer insights into the potential impacts of the cancer-

related SAV1 variants on the Hippo pathway activity.
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In this study, we tested our hypothesis that the SAV1 WW12 tandem may function as an 

integral structural and functional unit in the Hippo pathway using combined biochemical and 

structural biology approaches. We discovered that a highly conserved Pro-rich sequence 

extension immediately following SAV1 WW2 directly binds to the WW12 tandem, forming 

a stable domain-swapped dimer. This domain-swapped SAV1 dimer formation is critical for 

the MST/SAV1 complex assembly and the Hippo pathway activation. Thus, our study 

reveals molecular insights into the scaffolding role of SAV1 in the Hippo core kinase 

cascade.

RESULTS

WW12ex, but Not WW12, of SAV1 Forms a Stable Dimer

SAV1 and LATS/Warts have been reported to interact with each other via direct binding 

between the WW domains of SAV1 and the PY-motifs of LATS/Warts (Tapon et al., 2002; 

Ni et al., 2015). A quantitative binding study showed that SAV1 WW domains binds to the 

PY1 motif of LATS1 with a dissociation constant (Kd) of ~150 μM (Ni et al., 2015). Such a 

weak binding is likely not adequate for SAV1 to organize its targets with sufficient 

specificity and stability (Ji et al., 2019; Lin et al., 2019). We then tested whether multiple PY 

motifs together might render LATS1 to bind to the SAV1 WW tandem with high affinity, 

like the interactions of LATS1 PY23 to the tandem WW domains of KIBRA, MAGI2, and 

MAGI3 (Lin et al., 2019). We purified a highly conserved SAV1 fragment containing its 

WW12 tandem and a highly conserved extension sequence immediately following WW12 

(residues E198–Q285 in mouse SAV1 and termed as SAV1 WW12ex; Figure 1A) and a 

fragment of LATS1 containing all four PY motifs (PY1–4 covering residues N361–E582; 

Figure 1B). Isothermal titration calorimetry (ITC)-based assay only detected a very weak 

binding between SAV1 WW12ex and LATS1 PY1–4 (Kd > 100 μM; Figure 1C). This weak 

interaction was further verified by size-exclusion chromatography showing that mixing of 

the equal molar amount of SAV1 WW12ex and LATS1 PY1–4 did not cause obvious elution 

volume changes of either protein (Figure 1D).

Like the WW tandems from KIBRA and MAGIs (Lin et al., 2019), the two WW domains of 

SAV1 are connected by a short (12 residues) and completely conserved linker sequence 

(Figure 1A). Thus, we further tested whether the SAV1 WW tandem, analogous to the WW 

tandems of KIBRA and MAGIs, could selectively bind to two PY motifs separated by only 2 

to 3 residues (Ji et al., 2019; Lin et al., 2019). Disappointedly, there were no detectable 

interactions between SAV1 WW12ex and the PY motif repeats from AMOTL1 PY34, 

LATS1 PY23, and PTPN14 PY12 (Figures 1B, 1E, and S1). A very weak interaction (Kd 

~39 μM, an affinity typical for many single WW domain/PY motif interactions) was 

detected between dendrin PY23 and SAV1 WW12ex (Figures 1E and S1A). This is in sharp 

contrast to the very strong bindings (Kd values of a few nM) of dendrin PY23 to WW 

tandems of KIBRA and MAGIs (Ji et al., 2019; Lin et al., 2019). Analytical gel filtration 

chromatography analysis also showed that mixing of SAV1 WW12ex and dendrin PY23 

only induced a very small elution peak shift of dendrin PY23 (Figure 1F), consistent with 

the very weak interaction between SAV1 WW12ex and dendrin PY23. Sequence alignment 

analysis of SAV1 WW12ex showed that the extension sequence following the WW domains 
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contains two conserved Pro-rich motifs separated by only two residues: a noncanonical type 

I WW domain binding PY motif (“VPRY”) and a poly-P motif (“PPPψ”, where “ψ” is a 

hydrophobic residue with an aliphatic sidechain; Figure 1A). We postulated that the Pro-rich 

extension sequence might fold back to bind to the WW12 tandem, forming an autoinhibited 

structure. Indeed, a weak interaction (Kd ~91 μM) between WW12 and the extension 

sequence of SAV1 could be detected by ITC (Figure 1G). It is envisaged that the affinity of 

the binding between WW12 and the extension sequence in cis is significantly stronger in 

SAV1 WW12ex. We further found that SAV1 WW12ex was eluted as a stable and 

homogeneous dimer on an analytical gel filtration column. Truncating the poly-P motif (i.e., 

“WW12PY” in Figure 1H) or both the poly-P and PY motifs (i.e., “WW12” in Figure 1H) 

progressively weakened the dimer formation of SAV1 WW12ex. Collectively, the above 

biochemical analyses revealed that SAV1 WW12ex forms a stable dimer in solution and the 

extension sequence is essential for the WW12ex dimer formation.

Crystal Structure of the SAV1 WW12ex Homodimer

To understand the molecular basis governing the SAV1 WW12ex dimerization, we 

determined the crystal structure of mouse SAV1 WW12ex at the 1.7-Å resolution (Figure 

2A; Table S1). Note that mouse and human SAV1 WW12ex differ by only one amino acid 

residue with Val279 in human replaced by Ile in mouse (Figure 1A). For the convenience of 

description, we number the residues of SAV1 based on the human sequence, as we will be 

analyzing numerous SAV1 variants found in patients with cancers. All residues of SAV1 

WW12ex (L199–Y281) are well resolved in the electron density map. In the crystal, SAV1 

WW12ex adopts a V-shaped homodimer with the Pro-rich extension sequence from one 

molecule binding to WW12 from another molecule, forming a domain-swapped dimer 

(Figure 2A). The structure clearly shows that the target binding sites of both WW domains 

are occupied by the extension sequence, revealing that SAV1 WW12ex indeed adopts an 

autoinhibited conformation (i.e., the target binding site of the WW tandem is blocked by its 

own tail extension; Figure 2B). The direct contact between the two WW12 tandems in the 

WW12ex dimer is minimal, suggesting that the WW2-mediated dimer formation of SAV1 

reported earlier (Ohnishi et al., 2007) may not be the main mechanism for the SAV1 

dimerization. A structural comparison of the SAV1 WW12 tandem in the WW12ex dimer 

with the WW12 tandems of KIBRA and MAGI2 in complex with dendrin PY23 revealed 

that the three WW tandems adopt a similar overall conformation (Figure 2C). Notably, 

compared to the KBIRA and MAGI2 WW tandems, SAV1 WW12 has a much shorter 

interdomain linker (12 amino acids [aas] in SAV1 versus 23 or 24 aas in MAGI2 or KIBRA; 

Figures 2C–2E). The 12-residue linker of SAV1 WW12 (S228–G239) folds into three 

continuous β-turns to glue the two WW domains into an integral structural unit (Figures 2D 

and 2E), explaining why the 12-residue linker in vertebrate SAV1 is completely conserved. 

In KIBRA and MAGI2, the supramodular structures of their WW12 tandems are stabilized 

by the interactions between the interdomain linker and a C-terminal helix extension (Figures 

2C and 2E; also see Lin et al., 2019).

Detailed Interactions between WW12 and the Extension in the SAV1 WW12ex Dimer

In the SAV1 WW12ex dimer, each WW domain forms a canonical b sheet fold with three 

anti-parallel β strands. Instead of the typical type I WW/PPxY motif interactions, the 
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extension sequence binds to the two WW domains of SAV1 via somewhat unique modes 

with “PPPI” of the poly-P motif binding to WW1 and “PRY” of the PY motif engaging 

WW2 (Figures 3A and 3B). Due to the formation of the WW12 supramodule, the distance of 

two target binding pockets of the WW tandem is fixed and optimal for simultaneously 

recognizing the PPPI and PRY motifs of the extension separated by only two residues (Ji et 

al., 2019; Lin et al., 2019). The PPPI motif lies in the hydrophobic groove of WW1. P276 

and P277 are sandwiched by two aromatic residues (Y216 from b2 and W227 immediately 

following b3) in WW1. I279 of the PPPI motif occupies the WW1 hydrophobic pocket that 

is normally occupied by a Tyr in type I WW domains (Figure 3C). The binding between the 

PPPI motif and SAV1 WW1 is a type I WW domain/target binding instead of a type II WW/

target binding (Figure S2; Meiyappan et al., 2007).

Interestingly, the PRY motif, instead of the canonical four-residue PPxY motif, binds to 

SAV1 WW2 (Figures 3B and 3C). P271 from the PRY motif nestles in a pocket formed by 

three aromatic residues from WW2 (F248 from β1′/β2′ loop, Y251 from β2′, and Y262 

immediately following β3′). The binding of P271 to SAV1 WW2 is essentially the same as 

the first Pro in the PPxY motif’s binding to the type I WW domain (Figures 3B and 3C). 

Thus, the backbone of the PRY motif of SAV1 WW12ex adopts a more extended 

conformation in order to match the length of the backbone of the four-residue PPxY motif 

bound to a typical type I WW domain (Figure 3C). The sidechain of R272 forms a network 

of salt bridges with E247 in the β1′/β2′ loop of WW2, D274 in the extension, and R214 

from WW1 (Figure 3A). Y273, like the tyrosine residue in the typical PPxY motif, forms a 

signature hydrogen bond with H255 from the β2′/β3′ loop of WW2 (Figures 3A and 3B).

The structure, together with the amino acid sequence analysis, clearly shows that both WW 

domains of SAV1 are typical type I WW domains with all key residues necessary for binding 

to PY motif targets (Figures 3D and 3E). This analysis suggests that, if not autoinhibited, the 

SAV1 WW12 tandem should be able to bind to two PY-motif repeats arranged right next to 

each other. Indeed, we detected a robust binding of dendrin PY23 to SAV1 WW12 (Kd ~1.7 

μM; Figure 3F). LATS1-PY23 also binds to SAV1 WW12. However, the binding of LATS1-

PY23 to SAV1 WW12 is much weaker (Kd ~43 μM) than its binding to WW tandems of 

KIBRA, MAGI2, and MAGI3 (Figure S3). Additionally, dendrin PY23 binds to WW12PY 

(i.e., WW12ex with the PPPI motif truncated) and to WW12 with comparable affinities 

(Figures 3F and 3G), indicating that disrupting the interaction between PPPI motif and 

WW1 releases the autoinhibition of WW12ex. The above results also imply that the SAV1 

WW12 tandem may bind to certain target proteins upon release of its autoinhibition.

Crystal Structure of the SAV1 WW12/Dendrin PY23 Complex

To understand the binding of the SAV1 WW12 tandem to the canonical PPxY motifs, we 

tried to determine the structure of SAV1 WW12 in complex with dendrin PY23. Mixing 

SAV1 WW12 and dendrin PY23 at a 1:1 ratio resulted in a homogeneous and monomeric 

complex peak (Figure S4A). The structural determination of the SAV1 WW12/dendrin PY23 

complex (Figure 4A; Table S1) was facilitated by fusing dendrin PY23 to the C terminus of 

SAV1 WW12. The fusion protein was shown as a homogeneous dimer on an analytical gel 

filtration column (Figure S4B). The structures of the SAV1 WW tandem in the WW12ex 
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dimer and in the dendrin PY23-bound complex are extremely similar with (root-mean-

square deviation [RMSD] value of their backbones of ~0.7Å; Figure 4B). The structure of 

the complex confirms that both WW domains can bind to the type I WW targets containing 

PPxY motifs (Figure 4A).

Careful inspection of the interaction between the dendrin PPPY motif and SAV1 WW2 

showed that the first Pro in the motif is not involved in the binding (Figures 4A and 4C). 

Interestingly, changing the PPPY motif of dendrin into “PPDY” weakened the dendrin 

PY23/SAV1 WW12 binding by ~18 fold, but changing the PPPY motif into “DPPY” did not 

decrease the binding at all. Replacing the Pro preceding Tyr in the PPPY motif with Arg also 

weakened the binding by ~9 fold. Therefore, SAV1 WW2 can only recognize a 3-residue 

motif (i.e., PRY motif in Figure 3A and PPY motif in Figure 4A)withthe optimal sequence 

of“PPY”. Itisnoted that the second last residue of b3 in most of the type I WW domain is a 

Thr, and the side chain of this Thr forms a strong hydrogen bond with the backbone of the 

Pro−2 in the PPxY motif (i.e., “P−3P−2xY0”), thus stabilizing the turn-like structure of the 

“PxY” sequence (Figures 4A and 4C). In SAV1 WW2, the second last residue of β3′ is an 

Ala, which cannot formany hydrogenbond withPro−2. The two Pro residues in the PPY motif 

assume the same binding mode as the two Pro residues in the canonical PPxY-motif 

containing ligands (Figures 4A and 4C). Taken together, the above structural and 

biochemical analyses indicate that the optimal target binding sequence for the SAV1 WW12 

tandem is “PPYxxPPxY,” where x can be various amino acid residues.

Phosphomimetic Y273E Mutation Can Release the Autoinhibition of SAV1 WW12ex

In SAV1 WW12ex dimer, Y273 is critical for the PRY motif to bind to WW2 (Figure 5A). It 

is envisaged that potential phosphorylation of Y273 in the PRY motif may release the 

autoinhibition of SAV1 WW12ex. Phosphorylation of the Tyr residue in the “PPPY” motif 

of β-dystroglycan has been reported (James et al., 2000; Ilsley et al., 2001), and the PPPY 

motif of β-dystroglycan is required for its tight binding to the KIBRA WW tandem (Lin et 

al., 2019). We substituted Y273 with glutamic acid to mimic its phosphorylation. Strikingly, 

compared with the wild-type protein, the Y273E mutant of SAV1 WW12ex failed to form a 

stable dimer (Figure 5B). Concomitantly, dendrin PY23 was able to bind to Y273E-

WW12ex with a much stronger affinity than to the wild-type (WT) WW12ex (Kd 3.8 μM 

versus ~39 μM; Figure 5C versus Figure S1A). The above biochemical data suggest that 

phosphorylation of Y273 can release the autoinhibition of the SAV1 WW12ex. It will be 

important to investigate in the future whether phosphorylation of Y273 may indeed occur for 

SAV1 in vivo.

WW12ex-Mediated SAV1 Dimerization Is Essential for MST/SAV1 Complex Assembly upon 
Hippo Activation

In solution, SAV1 WW12ex formed a stable dimer, and its elution volume did not change 

when the concentrations of protein were varied (Figure 5D). However, the various WW12ex 

truncation mutants (Figure 1H) or the Y273E mutant (Figure 5B) were eluted at volumes 

between a dimer and a monomer on the gel filtration column. Additionally, when the 

concentration of the Y273E-WW12ex increased, its elution volume became smaller (Figure 

5D). The above analysis indicated that the WW12ex truncation mutants or the Y273E-
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WW12ex mutant formed weak dimers in solution. We speculated that such weak 

dimerization of the WW12ex variants is mediated by WW2, as WW2 was reported to form 

homodimer in solution (Ohnishi et al., 2007). In the NMR structure of the WW2 dimer, 

Ser245 is in the dimeric interface (Figure 5E), and substitution of S245 with Asp converted 

WW12 into a homogeneous monomer (Figure S5A). Replacing S245 with Asp also 

converted Y273E-WW12ex into a homogeneous monomer. In contrast, if only S245 was 

replaced by Asp, this SAV1 WW12ex mutant remained as a stable dimer in solution (Figures 

5B and S5A). Thus, the dimerization of SAV1 WW12ex is determined by the tail extension 

sequence instead of the previous reported WW2 (Figure 5F).

We next used SAV1 knockout (KO) HEK293A cells that were characterized previously 

(Plouffe et al., 2016) to test the dimerization property of the full-length SAV1. The FLAG-

tagged WT SAV1 could pull down the Myc-tagged SAV1 expressed in SAV1 KO HEK293A 

cells (Figure 5G). Neither the FLAG-tagged SAV1-Y273E nor the SAV1-Y273E/S245D 

bound to the Myc-tagged WT SAV1. In contrast, the FLAG-tagged SAV1-S245D could still 

bind to the Myc-tagged WT SAV1, suggesting that the previously reported WW2-mediated 

SAV1 dimerization might be an in vitro experimental artifact.

We further generated stable cell pools by re-expressing WT SAV1 or various SAV1 mutants 

in SAV1 KO cells to test the MST/SAV1 complex formation upon Hippo pathway 

stimulation by serum deprivation (Miller et al., 2012; Yu et al., 2012). Under the Hippo off 

state (+fetal bovine serum [FBS]), WT and each mutant SAV1 bound to MST1 at a similar 

level using a co-immunoprecipitation-based assay (Figure 5H), indicating that the WW12ex-

mediated SAV1 dimerization does not play a critical role in the interaction between SAV1 

and MST1 under the Hippo off status. However, upon Hippo activation by serum starvation 

(−FBS), SAV1 KO HEK293A cells expressing SAV1-Y273E or SAV1-Y273E/S245D 

showed diminished MST1 and SAV1 complex formation when compared to the cells 

expressing WT or S245D SAV1 (Figure 5H). The above data support that WW12ex-

mediated SAV1 dimerization is important for the MST and SAV1 complex assembly during 

the Hippo signal on state. Moreover, cells expressing SAV1-Y273E/S245D or SAV-Y273E 

(to a less extent) showed diminished LATS1 phosphorylation under serum starvation (Figure 

S5B), further indicating that the WW12ex-mediated SAV1 dimer formation is important for 

MST activation and subsequent LATS phosphorylation.

SAV1 Variants within WW12ex Found in Patients with Cancers Are Defective in Dimer 
Formation

We searched the COSMIC database (https://cancer.sanger.ac.uk/cosmic) and identified eight 

SAV1 variants distributed throughout the WW12ex region of the protein from patients with 

cancers (Figures 6A and 6B). Except for the R214K and S245L, the rest of the six variants 

were found to impair either SAV1 WW12ex dimer formation and/or target binding (assayed 

using dendrin PY23 as a putative target for the binding assay; Figures 6C, 6D, and S6). 

Analytical gel filtration chromatography analysis clearly showed that the R233Q, D254H, 

Y262H, and Y273H mutations of SAV1 WW12ex all displayed impaired dimer formation 

(Figures 6C and 6D; cf. the Y273E-WW12ex mutant in Figure 5). R233 is in the second β-

turn in the completely conserved WW12 linker; it forms a network of hydrogen bonds with 
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the residues from both WW domains (W227, S228, and H229 in WW1 and E241 in WW2; 

Figure 6B1) to stabilize the two WW domains into a structural supramodule (Figure 2). 

Therefore, R233Q mutation is expected to disturb the structural coupling of the WW12 

tandem and consequently impair the SAV1 WW12ex dimer formation and its putative target 

binding (Figure S6B). The R233Q mutation has been reported to impair the tumor-

suppression ability of SAV1 in mice (Jiang et al., 2019). D254 is at the end of β2′ of WW2; 

it forms several hydrogen bonds with the backbones of T256 and N257 in the β2′/β3′ loop, 

thus stabilizing the loop conformation (Figure 6B2). H255 in the β2′/β3′ loop is a signature 

residue in the type I WW domain, as it recognizes Tyr in the PPxY motif of targets, 

including the PRY motif in the extension sequence of SAV1. Y262 is at the end of β3′ of 

WW2; its aromatic ring stacks with the Pro residue from the PRY motif of the extension 

sequence (Figure 6B3) or the Pro−2 residue from the PPPY motif of dendrin PY23 (Figure 

4A). Thus, the D254H mutation or the Y262H mutation weakens the SAV1 dimer formation 

and its putative target binding (Figures 6C, 6D, and S6B). The Y273H mutant of SAV1 

WW12ex should behave very much like the Y273E mutant as detailed in Figure 5. The 

R214K or the S245L mutation had minimal impact on the dimer formation or the putative 

target binding of SAV1 WW12 (Figure S6).

W209 forms hydrophobic interactions with V207 and K215 in the folding core of WW1 

(Figure 6B4). Although W209 is not directly involved in the WW12ex supramodule 

formation or autoinhibition, the W209C mutation may destabilize the overall folding of 

WW12ex and thus can weaken its dimer formation and putative target binding (Figure S6). 

T224, analogous to D254 in WW2, stabilizes backbone conformation of the β2/β3 loop, thus 

facilitating H220 in the loop to binding to the Tyr residue in the PPxY motif (Figure 6B4). 

Accordingly, the T224H mutant of SAV1 WW12 displayed a significantly reduced binding 

to dendrin PY23 (Figure S6B).

DISCUSSION

The detailed structural and biochemical analysis presented in this study demonstrated that 

SAV1 uses its WW12 tandem and an extension sequence immediately following the tandem 

to form a stable, domain-swapped dimer (Figure 2). The extension sequence contains two 

sub-optimal type I WW-binding motifs that directly bind to both WW domains, thus 

assembling SAV1 into a dimer and concomitantly keeping its WW tandem from binding to 

potential proteins (Figure 3). It should be noted that the autoinhibited conformation of SAV1 

WW12ex referred here is specifically defined as potential target binding of the WW tandem. 

The formation of the WW12ex homodimer does not inhibit the function of SAV1. Instead, 

the WW12ex homodimer formation is important for SAV1 to form complex with MST and 

thus critical for SAV1’s function. Our structural analysis revealed that Y273 in the extension 

sequence is critical for forming the SAV1 WW12ex homodimer. Replacing Y273 with Glu 

dramatically weakens the SAV1 WW12ex dimer formation and the interaction between 

SAV1 and MST when the Hippo signaling is on (Figure 5). It is tempting to speculate that 

phosphorylation of Y273 may function as a regulatory switch in modulating SAV1’s activity 

in the Hippo core kinase signaling cascade.
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Analogous to the WW tandems from KIBRA and MAGIs (Ji et al., 2019; Lin et al., 2019), 

the direct conformational coupling between the two WW domains in the SAV1 WW12 

tandem is critical for its autoinhibition and putative target binding. By direct conformational 

coupling, the distance between the target binding pockets of the two WW domains in each of 

these WW tandems is fixed and optimal for binding to two consecutive PY-motif-containing 

peptides in target proteins. Consequently, these WW tandems can bind to target proteins 

with very high affinities. Given that most of WW domain proteins contain multiple WW 

domains arranged in tandem, these tandemly arranged WW domains may also function as 

supramodules.

Previous studies showed that SAV1 recruits MST1/2 through their SARAH domains 

(Pantalacci et al., 2003; Callus et al., 2006; Bae et al., 2017; Cairns et al., 2018). In this 

study, we found that, when the Hippo signal is off, the interaction between SAV1 and MST 

does not depend on SAV1-WW12ex-mediated dimerization. However, when the Hippo 

signal is on, the assembly of the MST/SAV1 complex and the kinase activity of MST require 

SAV1 WW12ex homodimerization (Figures 5G, 5H, and S4B). It is possible that the 

WW12ex-mediated SAV1 dimer formation may facilitate incorporation of additional 

components, such as STRIPAK or Merlin/NF2, to the MST/SAV1 assembly upon the 

activation of the Hippo pathway (Yu et al., 2010; Bae et al., 2017). Further experiments will 

be needed to test the above possibility.

Finally, our structural and biochemical analysis of the eight SAV1 variants found in patients 

with cancers revealed that a number of such variants impair SAV1 dimer formation and 

subsequent MST activation (Figures 5G, 5H, and 6). Therefore, these variants can be 

deleterious by impairing the tumor-suppressing activity of SAV1. The SAV1 WW12ex 

structure will be useful to analyze additional variants within SAV1 WW12ex that may be 

identified in the future.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Mingjie Zhang (mzhang@ust.hk)

Materials Availability—Materials generated in this study are available upon request from 

the Lead Contact.

Data and Code Availability—The atomic coordinates of the SAV1 WW12ex structure 

and the structure of SAV1 WW12 in complex with Dendrin PY23 have been deposited to the 

Protein Data Bank under the accession codes of 7BQF and 7BQG, respectively.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines—HEK293K cells (from ATCC) were maintained in DMEM (GIBCO) containing 

10% fetal bovine serum (FBS, GIBCO), 100 U/mL penicillin and 100 mg/mL streptomycin 

and with 5% CO2 at 37 °C. Cells were tested using morphology, karyotyping, and PCR-
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based approaches to confirm their identity. Cells were tested negative for mycoplasma 

contamination by cytoplasmic DAPI staining.

METHOD DETAILS

Constructs, Protein Expression and Purification—The coding sequence of SAV1 

WW12ex was PCR amplified using mouse brain cDNA as template. The rest of the 

constructs were described in our earlier studies (Ji et al., 2019; Lin et al., 2019). For 

crystallization, Dendrin (residues P224-G235) was covalently linked to the C terminus of 

SAV1 WW12 (residues E198-V271) by a two-step PCR method. Various fragments and 

mutants were created using the standard PCR-based and the standard PCR-based site-

directed mutagenesis methods, respectively. All constructs were confirmed by DNA 

sequencing. All constructs used for protein expression were individually cloned into a pET 

vector and recombinant proteins were expressed in Codon-plus BL21 (DE3) Escherichia coli 
cells with induction of protein expression by 0.3 mM IPTG at 16 °C overnight. All 

recombinant proteins were purified using Ni2+-nitrilotriacetic acid agarose (Ni-NTA) 

column followed by size exclusion chromatography (Superdex 200 column from GE 

Healthcare). The tags of the recombinant proteins were removed before crystallization.

Crystallization and Data Collection—The crystals were obtained by hanging drop 

vapor diffusion method at 16 °C within 3–5 days. Crystals of SAV1 WW12ex were grown in 

solution containing 2% v/v 1,4-Dioxane, 10%−20% w/v PEG 3350 and 100 μM Tris-HCl 

(pH 8.0); crystals of SAV1/Dendrin complex were grown in solution containing 4 M 

Potassium formate, 2% w/v PEG 2000 MME and 100 mM BIS-TRIS propane (pH 9.0). 

Before diffraction experiments, crystals were soaked in the original crystallization solutions 

containing an additional 10%−25% glycerol for cryoprotection. All diffraction data were 

collected at the Shanghai Synchrotron Radiation Facility BL17U1 or BL19U1. Data were 

processed and scaled by HKL2000 (Otwinowski and Minor, 1997) or HKL3000 (Minor et 

al., 2006).

Structure Determination and Refinement—The two structures were determined by 

molecular replacement using PHASER (McCoy et al., 2007). The initial phase of SAV1 

WW12ex was solved using the structures of SAV1 WW1 (PDB code: 2YSB) and WW2 

(PDB code: 2DWV) as the searching models. The initial phase of the SAV1/Dendrin 

complex was solved using the WW tandem part from the structure of SAV1 WW12ex. The 

extension of SAV1 ex and the PY23 motif of Dendrin were manually built according to the 

Fobs - Fcalc difference Fourier maps in COOT (Emsley et al., 2010). Further manual model 

adjustment and refinement were completed iteratively using COOT and PHENIX (Adams et 

al., 2010) based on the 2Fobs - Fcalc and Fobs - Fcalc difference Fourier maps. The final 

models were further validated by MolProbity (Williams et al., 2018). Detailed data 

collection and refinement statistics are summarized in Table S1. All structure figures were 

prepared using PyMOL (http://pymol.sourceforge.net/).

Isothermal Titration Calorimetry Assay—Isothermal Titration Calorimetry (ITC) 

experiments were carried out on a VP-ITC calorimeter (Micro-Cal) at 25 °C. Titration buffer 

contained 50 μM Tris-HCl (pH 7.8), 100 mM NaCl, 1 mM DTT and 1 mM EDTA. All 
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samples were degassed and cleared by centrifugation before the experiment. For a typical 

experiment, each titration point was performed by injecting a 10 mL aliquot of a protein 

sample (300 μM) into the cell containing a reactant (30 μM) at a time interval of 120 s to 

ensure that the titration peak returned to the baseline. The titration peaks were automatically 

integrated and normalized by Origin7.0 (MicroCal). Data were fitted using the one-site 

binding model within the Origin7.0. The dissociation constants are reported as values ± 

fitting errors.

Analytical Gel Filtration Chromatography Coupled with Static Light Scattering
—An AKTA FPLC system (GE Healthcare) equipped with analytical gel filtration column 

and coupled with static light scattering and differential refractive index detector (miniDawn, 

Wyatt) was used for the assays. Protein samples (100 μL with the concentration of 25–100 

μM) were loaded to a Superose 12 10/300 GL column (GE Healthcare) pre-equilibrated with 

the assay buffer (same as that used in the ITC experiments). Data were analyzed with 

ASTRA6 (Wyatt).

Transfection and Lentiviral Infection—Cells were seeded in 6-well plates for 24 hr, 

and then were transfected with plasmids using PolyJet Reagent (Signagen Laboratories) 

according to the manufacturer’s instruction. To generate HEK293A cells stably expressing 

Flag-SAV1 WT or mutants (Y273E, S245D, and Y273E/S245D), stable HEK293A cells 

with SAV1 KO (Plouffe et al., 2016) were individually infected with lentivirus packed with 

plasmids expressing empty vector (plenti-EF1α), Flag-SAV1, or Flag-SAV1 mutants. Forty-

eight hours after infection, cells were selected with 1 μg/mL puromycin (Thermo Fisher) in 

the culture medium. To stimulate the Hippo pathway, low confluence cells (0.5 × 105 cells 

per well) in 12-well plates were treated with serum starvation.

Immunoblotting and Immunoprecipitation—Immunoblotting was performed with the 

standard methods as described (Yu et al., 2012). Antibodies for SAV1 (#13301), LATS1 

(#3477), MST1 (#3682), pLATS (#8654S), Myc (#2278) were from Cell Signaling 

Technology; Anti-Flag antibody (#F1804) was from Sigma-Al-drich; c-myc (#sc-789), 

GAPDH (#sc-25778) were obtained from Santa Cruz Biotechnology. For 

immunoprecipitation, cells were harvested at 48 hr after transfection with lysis buffer 

containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% NP-40, 10 mM 

pyrophosphate, 10 mM glycerophosphate, 50 mM NaF, 1.5 mM Na3VO4, protease inhibitor 

cocktail (Roche), and 1 mM PMSF. After centrifuging at 13,300 × g for 15 min at 4 °C, 

supernatants were collected for immunoprecipitation. Anti-Myc or Anti-Flag antibody was 

added to the supernatants and the mixtures were incubated with rotation overnight at 4 °C. 

Then Pierce Protein A/G Magnetic Beads (Thermo Fisher) were added to the mixtures and 

further incubated with rotation for 2 hr at 4 °C. Immunoprecipitated proteins were eluted 

with SDS-PAGE sample buffer, resolved by SDS-PAGE and probed by the indicated 

antibodies.

QUANTIFICATION AND STATISTICAL ANALYSIS

ITC data were analyzed by Origin7.0 (MicroCal). The dissociation constants are shown as 

values ± fitting errors.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SAV1 WW tandem binds to a short sequence following the tandem and forms 

a stable dimer

• The extension sequence binds both WW domains via the type I PY-motif 

binding mode

• Disruption of WW-tandem-mediated SAV1 dimer impairs SAV1/MST 

complex formation

• Multiple SAV1 cancer variants are defective in WW tandem-mediated dimer 

formation
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Figure 1. Dimerization of SAV1 WW12ex
(A) Schematic diagram showing the domain organization of SAV1. The heatmap below the 

scheme shows the amino acid sequence conservation of SAV1 throughout the evolution. The 

amino acid sequences of SAV1 WW12ex from different species are aligned at the bottom of 

the panel. Key residues for the “PPxY” motif binding are denoted with triangles. Variants 

found in patients with caners are shaded in yellow.

(B) Schematic diagram showing the domain organization of selected multiple PY-motif-

containing proteins in cell growth and polarity.

(C) ITC-based measurement of the binding of SAV1 WW12ex to LATS1 PY1–4.
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(D) The analytical gel filtration chromatography elution profiles of SAV1 WW12ex (green), 

LATS1 PY1–4 (gold), and their mixture (black) with each protein at a concentration of 50 

μM.

(E) ITC-derived binding affinities of SAV1 WW12ex to various closely spaced PY motif 

repeats shown in (B).

(F) The analytical gel filtration chromatography elution profiles of SAV1 WW12ex (green), 

dendrin PY23 (gold), and their mixture (black) with each protein at a concentration of 50 

μM.

(G) ITC-based measurement showing the weak interaction between WW12 and the 

extension sequence of SAV1.

(H) Analytical gel filtration chromatography coupled with static light scattering analysis 

showing that SAV1 WW12ex forms a stable dimer in solution. Truncating the poly-P or both 

poly-P motif and PY motif impairs the dimer formation of SAV1 WW12ex. WW12ex (aas 

E198–Q285), WW12PY (aas E198–Q276), and WW12 (aas E198–A268) are colored in 

blue, green, and red, respectively.

Kd values of the ITC assays here and below are reported as fitted result ± fitting error of the 

corresponding experimental binding curve. Also see Figure S1.
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Figure 2. Crystal Structure of the SAV1 WW12ex Homodimer
(A) Ribbon diagram showing the overall structure of the SAV1 WW12ex dimer.

(B) Surface combined with ribbon-stick model showing the interaction between WW12 and 

the extension in SAV1. Residues in WW12 that are hydrophobic, negatively charged, and 

positively charged are colored in yellow, red, and blue, respectively.

(C) Superimposition of the structures of the WW tandems from SAV1, KIBRA (PDB: 6J69), 

and MAGI2 (PDB: 6JJZ), each in complex with their respective targets.

(D) Combined surface and ribbon-stick model showing the structural basis for the coupling 

of the two WW domains by the 12-residue linker in SAV1. The 12-residue linker forms 3 

continuous β-turns and is colored in green.

(E) Amino acid sequence alignment of the WW tandems from SAV1, KIBRA, and MAGI2 

based on the structural alignment shown in (C)

Also see Figure S2 and Table S1.
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Figure 3. Detailed Interactions between WW12 and the Extension of SAV1
(A) Combined ribbon and stick model showing the detailed interactions between WW12 and 

the extension in the SAV1 WW12ex dimer.

(B) Ribbon-stick model showing detailed interactions of the classical type I WW/PPxY 

motif binding observed in the KIBRA WW tandem in complex with dendrin PY23.

(C) Comparisons of the conformation of the “PPPI” (top) and “PRY” (bottom) sequences 

observed in the SAV1 WW12ex structure with the conformation of a classical “PPSY” 

sequence bound to a type I WW domain.

(D and E) Ribbon-stick model showing that WW1 (D) and WW2 (E) of SAV1 are typical 

type I WW domains containing all key residues required for binding to PY motif targets.

(F and G) ITC-based measurements showing that WW12 (F) and WW12PY (G) of SAV1 

can robustly bind to dendrin PY23 due to truncation-induced releases of the autoinhibition 

of SAV1 WW12ex.

Also see Figures S2 and S3.
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Figure 4. Crystal Structure of the SAV1 WW12/Dendrin PY23 Complex
(A) Combined ribbon and stick diagram showing the structure and detailed interaction of 

SAV1 WW12 in complex with dendrin PY23.

(B) Superimposition of the structures of the SAV1 WW tandems from the WW12ex dimer 

and from the complex between SAV1 WW12 and dendrin PY23.

(C) Combined surface and ribbon-stick diagram showing the binding of SAV1 WW2 with 

the “PPPY” motif of dendrin and the binding of SAV1 WW1 with the PPSY motif of 

dendrin.

(D) ITC-based measurements quantifying the binding of SAV1 WW12 to WT and various 

mutants of dendrin PY23.

Also see Figure S4 and Table S1.
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Figure 5. WW12ex-Mediated SAV1 Dimerization Is Essential for the MST/SAV1 Complex 
Assembly upon Hippo Activation
(A) Combined surface and ribbon-stick model showing that Y273 is critical for the SAV1 

WW12ex dimer structure formation.

(B) Analytical gel filtration chromatography coupled with static light scattering analysis 

showing the dimeric state of SAV1 WW12ex WT and its various mutants.

(C) ITC-based measurement showing that SAV1 Y273E-WW2ex can robustly bind to 

dendrin PY23, suggesting that phosphorylation of Y273 releases the autoinhibited 

conformation of SAV1 WW12ex.

(D) Analytical gel filtration chromatography showing that SAV1 WW12ex, but not Y273E-

WW12ex mutant, forms a stable dimer in solution.
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(E) Combined surface and ribbon-stick model showing that S245 is located in the dimer 

interface of the isolated SAV1 WW2 dimer structure (PDB: 2DWV) derived from NMR-

based study.

(F) Cartoon model showing the dimer formation of WT SAV1 WW12ex and the impact of 

various mutants on the dimer assembly.

(G) Co-immunoprecipitation-based assay showing the self-association of WT and various 

SAV1 mutants expressed in SAV1 KO HEK293A cells.

(H) Co-immunoprecipitation-based assay showing the effect of SAV1 mutations on the 

MST/SAV1 complex formation at the Hippo pathway off (“+FBS”) and on (“−FBS”) 

conditions.

Also see Figure S5.

Lin et al. Page 23

Cell Rep. Author manuscript; available in PMC 2020 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Impact of SAV1 Variants Found in Patients with Cancers on the SAV1 WW12ex Dimer 
Formation
(A and B) Schematic diagram

(A) and ribbon-dot model (B) summarizing eight SAV1 variants in the WW12ex region 

found in patients with cancers. The mutations that obviously impair the dimer formation of 

SAV1 are colored in red. The panels in B1–B4 show the detailed structural roles of the 

residues found in the variants.

(C) Analytical gel filtration chromatography coupled with static light scattering analyses of 

SAV1 WW12ex and its variants with impaired dimer formation.

(D) Summary of molecular weights of the analyzed SAV1 WW12ex mutants derived from 

the analytical gel filtration chromatography coupled with static light scattering analyses.
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Also see Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-LATS1 Cell Signaling Technology Cat#3477; RRID: AB_2133513

Rabbit monoclonal anti-pLATS1 Cell Signaling Technology Cat#8654S; RRID: AB_10971635

Rabbit polyclonal anti-MST1 Cell Signaling Technology Cat#3682; RRID: AB_2144632

Rabbit monoclonal anti-SAV1 Cell Signaling Technology Cat#13301; RRID: AB_2798176

Rabbit monoclonal anti-Myc Cell Signaling Technology Cat#2278; RRID: AB_490778

Rabbit polyclonal anti-c-myc Santa Cruz Cat#sc-789; RRID: AB_631274

Rabbit polyclonal anti-GAPDH Santa Cruz Cat#sc-25778; RRID: AB_10167668

Mouse monoclonal anti-Flag Sigma-Aldrich Cat#F1804; RRID: AB_262044

Bacterial and Virus Strains

Escherichia coli: BL21(DE3) Novagen Cat #69450

Chemicals, Peptides, and Recombinant Proteins

Recombinant protein: SAV1 WW12ex (aa E198-
Q285, Trxtag

Lin et al., 2019 UniProt: Q8VEB2

Recombinant protein: SAV1 WW12PY (aa E198-
Q276), Trxtag

This paper UniProt: Q8VEB2

Recombinant protein: SAV1 WW12 (aa E198-
A268), Trxtag

This paper UniProt: Q8VEB2

Recombinant protein: SAV1 ex(aaA268-Q285) This paper UniProt: Q8VEB2

Recombinant protein: Dendrin PY23 (aa D222-
G241), Trxtag

This paper UniProt: Q80TS7

Recombinant protein: LATS1 PY1–4 (aa N361-
E582), Trxtag

Lin et al., 2019 UniProt: Q8BYR2

Recombinant protein: LATS1 PY23 (aa V545-
S568), Trx tag

Lin et al., 2019 UniProt: Q8BYR2

Recombinant protein: PTPN14 PY12 (aa A433-
G455), Trx tag

Lin et al., 2019 UniProt: Q15678

Recombinant protein: AMOTL1 PY34 (aa R307-
T327), Trx tag

This paper UniProt: Q8IY63

Recombinant protein: SAV1 WW12 (aa E198-
V271) fused Dendrin PY23 (aa P224-G235)

This paper UniProt: Q8VEB2/Q80TS7

PolyJet SignaGen Laboratories Cat#SL100688

Pierce Protein A/G Magnetic Beads Thermo Fisher Scientific Cat#88803

cOmplete, EDTA-free Protease Inhibitor Cocktail Roche Cat#11873580001

Deposited Data

SAV1 WW12ex structure This paper PDB: 7BQF

SAV1 WW12 and Dendrin PY23 complex structure This paper PDB: 7BQG

Experimental Models: Cell Lines

Human: HEK293A Plouffe et al., 2016 N/A

Human: HEK293A SAV1 dKO Plouffe et al., 2016 N/A

Human: HEK293A SAV1 dKO Flag-SAV1 This paper N/A

Human: HEK293A SAV1 dKO Flag-SAV1-Y273E This paper N/A

Human: HEK293A SAV1 dKO Flag-SAV1-S245D This paper N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: HEK293A SAV1 dKO Flag-SAV1 Y273E/
S245D

This paper N/A

Recombinant DNA

Plasmid: Myc-SAV1 full length This paper NCBI: NM_021818

Software and Algorithms

HKL2000 HKL Research Inc. https://www.hkl-xray.com/

HKL3000 HKL Research Inc. https://www.hkl-xray.com/; RRID: SCR_015023

PHASER McCoy et al., 2007 https://www.phenix-online.org/; RRID: SCR_014219

Phenix Adams et al., 2010 https://www.phenix-online.org/; RRID: SCR_014224

Coot Emsley et al., 2010 https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/
coot/; RRID: SCR_014222

MolProbity Williams et al., 2018 http://molprobity.biochem.duke.edu/; RRID: 
SCR_014226

PyMOL DeLano Scientific LLC http://pymol.sourceforge.net/; RRID: SCR_000305

ASTRA6.1 Wyatt Technology Corporation https://www.wyatt.com/products/software/astra.html; 
RRID: SCR_016255

Origin7.0 OriginLab https://www.originlab.com/; RRID: SCR 002815
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