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Abstract

Purpose

High density lipoprotein (HDL) protects against myocardial infarction via mechanisms that

remain unclear. STAT3 (signal transducer and activator of transcription 3) plays a key role in

HDL-induced cardioprotection. In the heart, microRNAs (miRNAs) are involved in ischemia

reperfusion injury. We therefore investigated whether the cardioprotective effect of HDL

modulates miRNAs as a downstream target of STAT3 activation.

Methods

STAT3 cardiomyocyte deficient mice (STAT3-KO) and wildtype littermates (STAT3-WT)

were submitted to left coronary ligature and reperfused (IR) with or without injection of HDL.

Infarct size (IS) was determined and cardiac miRNA expression was evaluated after reperfu-

sion in sham, IR and IR+HDL hearts by microarray analysis.

In vitro, neonatal rat ventricular cardiomyocytes were submitted to hypoxia with or without

HDL incubation. Cell viability and miRNA expression were analysed.

Results

In vivo, HDL reduced IS from 40.5±4.3% to 24.4±2.1% (p<0.05) in STAT3-WT mice. HDL

failed to protect in STAT3-KO mice. In STAT3-WT mice, both miR-34b and miR-337 were

increased in IR compared to sham and IR+HDL groups (p<0.05). These miRNAs were not

modulated in STAT3-KO mice. In vitro, incubation with HDL improved cell viability against

hypoxia (p<0.05). The expression of miR-34b and miR-337 was increased by hypoxia and

reduced by HDL treatment (p<0.05). In cardiomyocytes transfected with miRNA mimics,

HDL failed to improve cell viability against hypoxia.
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Conclusions

Our study, performed both in vivo and in vitro, delineates a novel cardioprotective signalling

pathway activated by HDL, involving STAT3-mediated decrease of miR-34b and miR-337

expression.

Introduction

Historically, high density lipoproteins (HDL) have been identified as a strong negative predic-

tor of cardiovascular events. Their beneficial effect on the cardiovascular system was attrib-

uted, in the first instance, to their ability to facilitate cholesterol excretion [1]. Recent evidence

attributes more widespread, beneficial actions to the HDL particle, such as antioxidant, anti-

inflammatory and anti-apoptotic actions on vascular cells [2]. The direct actions of HDL on

the heart have not been extensively investigated although experimental data show that HDL

protects from ischemia reperfusion injury (IR) [3,4], hypoxia [5,6], and apoptosis induced by

doxorubicin, a potent anti-cancer drug with cardiotoxic side effects [7]. In previous publica-

tions, we demonstrated that the protective effect of HDL against oxidative stress and IR is

mediated via the activation of the Survivor Activating Factor Enhancement (SAFE) pathway

which involves the activation of intracellular signalling factors including Tumour Necrosis

Factor alpha (TNFα) and Signal Transducer and Activator of Transcription 3 (STAT3) [6,8].

In the heart, STAT3 has been shown to be beneficial and plays a pro-survival role. Multiple

studies including ours have demonstrated the anti-apoptotic role of STAT3 in cardiac condi-

tioning [9].

MicroRNAs (miRNAs) are non-coding sequences of 20–22 nucleotides that can modulate

the expression of several genes simultaneously. miRNAs are involved in multiple actions that

modulate cell homeostasis. In the heart, miRNAs modulate the response during IR to promote

cell survival [10]. Recently, several research groups have reported the involvement of some

miRNAs in the pathophysiology of myocardial infarction [11,12]. Additionally, some miRNAs

have been shown to be involved in myocardial ischemic conditioning [13]. Despite the

research into signalling pathways involving miRNAs during conditioning regulation, the role

of STAT3 in miRNAs’ regulation has not been investigated. Most of the studies on STAT3 and

miRNA regulation are in cancer cells. While some miRNAs have been demonstrated to

directly target STAT3 expression [14], only a few studies showed that STAT3 can modulate

target miRNA [15]. Interestingly the HDL particle has been shown to contain miRNAs and

transports them to several different cell types [16,17]. This leads to the regulation of the expres-

sion of target mRNA [17]. In patients, the miRNA profile of HDL is modified under patho-

physiological conditions such as familial hypercholesterolemia and coronary artery disease

(myocardial infarction, stable and unstable angina) [16,18]. However, little is known about the

effect of HDL treatment on cardiac miRNA expression and potential consequences for protec-

tion against IR.

In this study, we evaluated whether HDL protects against IR injury by modulating the

miRNA expression as a downstream target of STAT3 activation.

Materials and methods

Animals

The investigation conforms to the Guide for the Care and Use of Laboratory Animals pub-

lished by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996) and
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has been approved by local ethical committee of the Geneva University Medical School (GE12/

3891). Animals were housed and treated in accordance with the Guide for Care and Use of lab-

oratory Animals Eighth Edition, published by the US National Institute of Health Publication.

Cardiomyocyte specific STAT3-deficient mice (STAT3-KO) and their wildtype littermates

(STAT3-WT) from a C57BL/6 genetic background were obtained from the University of Cape

Town (South Africa) as previously described [19]. Male mice aged 12–16 weeks and neonatal

Wistar rats (obtained from the University Medical Centre (CMU) animal facility, Medical Fac-

ulty, University of Geneva, Geneva, Switzerland.) were used in this study. Mice had ad libitum
access to water and food (standard diet) and were entrained in a 12 hour light and 12 hour

dark cycle. Mouse genotype determined the group attribution; the mice were distributed in the

group sequentially.

HDL isolation

HDL (d = 1.063–1.21g/mL) were isolated by cumulative flotation ultracentrifugation as previ-

ously described [20] from a plasma pool provided by healthy volunteers (recruited from the

University staff). The volunteers gave written, informed consent in accordance with local ethi-

cal committee requirements. After isolation, HDL were dialyzed against phosphate buffered

saline containing ethylenediaminetetraacetic acid (EDTA) (0.1mM) and stored at 4˚C.

In vivo ischemia reperfusion (IR)

IR was achieved through ligation of the left anterior descending (LAD) coronary artery as

described in detail previously [21]. In brief, IRI was analysed after ligation of the left anterior

descending (LAD) coronary artery. Mice were anaesthetized with 4% isoflurane, intubated and

mechanical ventilation performed (150μl, 120 breaths/min) using a rodent respirator (model

683; Harvard Apparatus). Anaesthesia was maintained with 2% isoflurane delivered in 100% O2

through the ventilator. A thoracotomy was performed and an 8–0 prolene suture was passed

under the left anterior descending (LAD) coronary artery. After 45min ischemia, LAD coronary

artery occlusion was released and reperfused for 8 or 24h. The mouse was injected with the anal-

gesic buprenorphine (0.1 mg/kg mouse body weight, one subcutaneous injection 30min before

the intervention and another 8h after the intervention) and was monitored during the first and

8h after the surgery. Approximately 10% of the mice used in this study died during the experi-

ments; from them approximately 90–95% died during or just after the surgery (option stated

and approved by the ethical committee). The mice that survived more than one hour after sur-

gery recovered well and did not showed significant, severe signs of illness following the proce-

dures. As stated, the mice were monitored and if they showed signs of illness (abundant

bleeding or dyspnea), they were immediately euthanized under anaesthesia ketamine-xylazine

(120mg/kg and 16mg/kg, respectively). After 24h reperfusion the mice were re-anaesthetized

with ketamine-xylazine (120mg/kg and 16mg/kg, respectively) and the LAD coronary artery

was re-occluded. Evan’s blue dye 2% (Sigma) was injected to delineate the in vivo area at risk

(AAR). The hearts were harvested, rinsed with PBS, sliced into 5–6 sections and stained with tri-

phenyltetrazolium chloride (TTC 1%) to allow quantification of infarct size. The different zones

were determined using a computerized planimetric technique (MetaMorph v6.0, Universal

Imaging Corporation) and IS was expressed in percentage of AAR (I/AAR). We paid particular

attention to the quantification of the different areas; each slice was carefully evaluated, as it is

known that Evans blue can precipitate out of solution on a subsequent addition of TTC and

prone to smearing during slicing, resulting in an ambiguous border definition and could there-

fore explain some small blue staining on the white area [22]. HDL (100μg protein/g mouse)

were injected intravenously (retro-orbital) 1min before reperfusion.
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Microarray analysis

Cardiac miRNA expression was evaluated in 3 different treatment groups (sham, IR and IR

+HDL). After 8h of reperfusion mice were re-anaesthetized and hearts (full ventricle to avoid

any bias) collected and frozen. Frozen heart tissues were powdered using liquid nitrogen.

Total RNA was extracted using miRNeasy Mini kits (Qiagen) and quantified using Qubit 2.0

(Invitrogen). RNA samples were subjected to microarray analysis using GeneChip miRNA 2.0

Arrays (Affymetrix) which measured 3163 mouse probesets (1908 mature miRNA and 1255

pre-miRNA probesets).

miRNA expression by quantitative PCR

RNA extracted from the in vivo experiments, as well as RNA extracted from cardiomyocytes

following hypoxia, was reverse transcribed using the miRCURY Locked Nucleic Acid (LNA)

Universal Reverse Transcription (RT) microRNA PCR, Polyadenylation and cDNA synthesis

kit (Exiqon). cDNA was diluted 80x and assayed in 10μl PCR reactions according to the proto-

col. The amplification was performed in a LightCycler 480 Real-Time PCR System (Roche) in

96-well plates. The amplification curves were analyzed using the Roche LightCycler software,

both for determination of Cp (by the 2nd derivative method) and for melting curve analysis.

Primers for mmu-miR-34b (cat n˚205086 MIMAT0004581, also valid for rno), mmu-miR-337

(cat n˚205184 MIMAT0004644), rno-miR-337 (cat n˚2103270 MIMAT0017035) and U6 (cat

n˚ 203907) as housekeeping gene were used (Exiqon).

Cell culture

Experiments involving animals were approved by the local Animal Ethics Committee (Univer-

sity of Geneva). Neonatal male and female (1 to 2-day-old) Wistar rats were euthanized by

decapitation and right ventricles rapidly excised and washed in Hank’s Balanced Salt Solution

(HBSS) (Sigma, H9394). Ventricles were then sliced in half and incubated in 50ml of 0.5%

trypsin (Sigma, 59418C) at 4ºC overnight with shaking. Trypsin was neutralized with 20ml

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen 31885023, glucose 1g/L) containing

10% fetal calf serum (FCS) (Biochrom,S0415) and 1% penstrep (Gibco, 15140122) at 37ºC as

described in detail previously [23].

Hypoxia protocol

Before hypoxic exposure, cell medium was replaced by modified Tyrode’s solution (in mM:

NaCl 136.9, KCl 2.68, Na2HPO4.12H2O 8.1, KH2PO4 1.47, CaCl2 0.9, MgCl2 .6H2O 0.49; pH

7.2). Cardiomyocytes were placed in an anaerobic hypoxia chamber containing 5% CO2 and

95% N2 at 37˚C for 7h. For normoxic treatment, cells were maintained in DMEM medium at

37˚C in a culture incubator with 5% CO2. Treated cardiomyocytes were exposed to HDL

(400μg protein/ml) during hypoxia.

Measurement of cell viability

Following hypoxia, cells were loaded with 0.04% trypan blue and cell viability was immediately

analysed using a light microscope. The number of viable (unstained) and non-viable (blue

stained) cardiomyocytes in 3 random microscopic fields was recorded, with at least 30 cells

counted in each field. Cell viability was normalized to the normoxic control.
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Small interfering RNA (siRNA) transfection

Lipofectamine RNAiMAX (Invitrogen) was used to transfect STAT3 siRNA or nonspecific

siRNA control into cardiomyocytes according to the recommendations of the manufacturer

(Life Technologies). Cells were treated with 50pmol of specific siRNA. After overnight trans-

fection, the complexes were removed, and fresh medium containing 10% FCS was added.

STAT3 mRNA expression was analysed using the following procedure: total RNA was

extracted (NucleoSpin RNA, Macherey-Nagel) and reverse transcribed using the manufactur-

ers’ protocols. Real-time PCR was performed on a Light-Cycler480II (Roche). Primers to

detect STAT3 were (sense) cagcctgtctgcagagttca and (anti-sense) aaggtgatcagg
tgcagctc and for housekeeping gene 9S were (sense) ctccggaacaaacggtgaggt and

(anti-sense) tccagcttcatcttgccctc.

miR-34b/miR-337 mimics and miR-34b/miR-337 antimiRs transfection

Cardiomyocytes were seeded in petri dishes. Then, miR-34b and miR-337 mimics (Qiagen)

(6nM each) or miR-34b and miR-337 antimiRs (Qiagen) (6nM each) were transfected into

cells using HiPerFect Transfection Reagent (Qiagen). After overnight transfection, complexes

were removed, and fresh medium containing 10% FCS was added. All stars Negative Control

siRNA (12nM) (Qiagen) was used as a negative control. This concentration used was compara-

ble to the one used in other studies [24,25]. The expression of miR-34b and miR-337was evalu-

ated by qPCR and showed that both miRNA concentrations were increased in the presence of

mimics (n = 8) (S1 Table). The magnitude of changes observed likely exceeded physiological

ranges but the concentrations at which endogenous miRNAs are considered pathophysiologic

remain unknown to this day.

Statistical analysis

Data are expressed as mean ± the standard error of the mean (SEM). Comparisons were per-

formed by two-way ANOVA analysis (miRNA microarray and RNA sequencing analysis) and

by Student t-test (one-way paired and unpaired) when applicable. p<0.05 was accepted as sig-

nificantly different.

Results

In vivo HDL protects the heart from IR injury via STAT3

In order to evaluate the role of STAT3 in the cardioprotective role of HDL in vivo, mice were

submitted to the IR protocol and infarct size was analysed in STAT3-WT and STAT3-KO

mice. After 45min of ischemia followed by 24h reperfusion, HDL significantly reduced IS

(p<0.05) in STAT3-WT mice hearts but failed to protect in STAT3-KO mice (Fig 1A and 1C).

The AAR/V area was similar between the 4 groups (Fig 1B and 1C).

In vivo HDL regulates specific miRNAs during IR injury

As a next step, we analysed whether HDL can modulate the expression of miRNA in IR condi-

tioning. The operated mice were divided in 3 groups; sham operated, IR and IR+HDL mice.

After 45min of ischemia followed by 8h reperfusion, global miRNA expression was analysed

Fig 1. In vivo HDL protects the heart from IR injury via STAT3 activation. Mice were submitted to LAD occlusion for 45min and hearts were

reperfused for 24h. Mice were injected or not (IR) with HDL (HDL) one minute before reperfusion. A) Quantification of infarct size (I) expressed in %

of area at risk (AAR). B) Quantification of AAR per ventricle surface (V). C) Representative images of TTC stained middle heart sections of control or

treated mice. Data are mean ± SEM, n = 6–8, �: p<0.05 vs IR.

https://doi.org/10.1371/journal.pone.0218432.g001
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by microarray. In STAT3-WT mice, 15 miRNAs were upregulated and 1 was decreased (p

value<0.05 and fold change>2) following IR compared to operated sham mice. Among these

potential targets, the expression of miR-34b and miR-337 was significantly changed (p<0.05)

when treated with HDL. The expression of miR-34b and miR-337 was increased (fold change

2.22 and 2.21, respectively) in STAT3-WT mice hearts. HDL treatment decreased the expres-

sion of both miRNAs (fold change -1.90 and -2.62, respectively). In contrast, the expression of

these miRNAs was not modified between conditions in STAT3-KO mice (Fig 2).

These observations were confirmed by qPCR which showed that the expression of miR-34b

(Fig 3A) and miR-337 (Fig 3B) was increased by IR (2.26±0.35 and 1.59±0.24, respectively)

and reduced by HDL (1.26±0.15 and 0.91±0.10, respectively) in STAT3-WT mice hearts. In

contrast, the absence of STAT3 was associated with a significant increase in miR-34b

(p = 0.01) and miR-337 (p = 0.03) already in the sham operated animals (Fig 3A and 3B). Sub-

sequent treatment had no significant impact on miRNA levels (Fig 3A and 3B), as observed by

qPCR analysis.

HDL improves cell survival against hypoxia and regulates specific miRNAs

during hypoxia

In order to understand the role of these miRNAs in cardiomyocyte survival, we used a model

of neonatal rat cardiomyocytes. In these cells, the exposure to hypoxia decreased cell survival

from 100% (normoxia) to 75.0±5.3%. HDL treatment restored survival to 95.2±2.8% (Fig 4A).

The expression of miR-34b and miR-337 was evaluated in these conditions. Exposure to 7h

of hypoxia increased the expression of miR-34b (Fig 4B) and miR-337 (Fig 4C) by approxi-

mately 5 and 3 times, respectively. Incubation with HDL significantly reduced the expression

of both miRNAs to a level similar to normoxia.

HDL improves cell survival against hypoxia via STAT3 and miRNA

expression

The specific role of STAT3 was also evaluated using specific STAT3 siRNA. Treatment with

STAT3 siRNA showed a 94.0±2.6% reduction in STAT3 mRNA expression (S1 Fig). these cells

transfected either with control siRNA or STAT3 siRNA, exposure to 7h of hypoxia decreased

cell survival by 30%. Although HDL treatment protected from cell death in control siRNA

transfected cells, HDL failed to restore cell survival in cardiomyocytes transfected with STAT3

siRNA (Fig 5A).

Additionally, the expression of miR-34b and miR-337 was altered in the cardiomyocytes

transfected with STAT3 siRNA. Correspondingly, HDL lost its effect and failed to modulate

the expression of these miRNAs (Fig 5B and 5C).

miR-34b and miR-337 expression influence cell survival

The role of these miRNAs in the hypoxic insult was further evaluated using specific mimics

and antimiRs. In order to mimic optimally the situation of hypoxia a mix of both miR-34b and

miR-337 mimics or miR-34b and miR-337 antimiRs was used. Exposure to hypoxia of cells

transfected with the mix of mimics diminished cell survival by approximately 30%. In these

Fig 2. In vivo HDL regulates specific miRNAs during IR injury. Mice were sham operated (sham) or submitted to LAD occlusion for 45min and hearts were

reperfused for 8h (IR). HDL was injected or not one min before reperfusion. miRNA was isolated from total heart and miRNA expression assessed by

microarray analysis after 8h of reperfusion in in vivo mouse hearts using GeneChip miRNA 2.0 Arrays. A) miRNA expression significant change (p<0.05)

between sham and IR group (Heatmap representation). B) Expression of miR-34b and miR-337 (boxplot representation). n = 3. �: p<0.05 vs sham, #: p<0.05 vs

IR.

https://doi.org/10.1371/journal.pone.0218432.g002
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Fig 3. In vivo HDL regulates miR-34b and miR-337 during IR injury. Mice were sham operated (sham) or submitted to LAD occlusion for 45min and hearts

were reperfused for 8h (IR). HDL was injected or not one min before reperfusion. miRNA was isolated from total heart. A) miR-34b and B) miR-337 expression

was measured by qPCR and normalized to U6 expression. Data are mean ± SEM, n = 6–9, �: p<0.05 vs sham, #: p<0.05 vs hypoxia. The difference between sham

STAT3-WT and STAT3-KO is significant (p<0.05).

https://doi.org/10.1371/journal.pone.0218432.g003
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cells, HDL lost its protective capacity (Fig 6A). Conversely cardiomyoytes transfected with a

mix of antimiRs were protected against the deleterious insult of hypoxia independently of the

HDL treatment (Fig 6B).

Discussion

The main findings in our study strongly suggest that HDL confers protection against IR via

the can modulation of the expression of miRNAs. In addition, our data show that this modula-

tion by HDL is mediated via the activation of the pro-survival protein STAT3 whose role in

HDL-mediated protection has previously been demonstrated in details [6–8].

HDL is a major negative predictor for cardiovascular events. New evidence has demon-

strated that HDL has more widespread beneficial effects beyond its role in reverse cholesterol

transport [2]. These beneficial effects appear to act via a direct interaction with cells. Although

the mechanisms by which HDL can affect cell function remain to be fully elucidated, several

studies showed that HDL is capable of influencing a number of intracellular signalling cascades

involved in multiple cell survival processes. Little is known concerning the direct effect of

HDL in the heart. A few studies, including our own, demonstrated that HDL protects the

heart against stress [4–7,21]. However, the precise mechanisms of action have not been fully

delineated, underlining the need to expand our understanding on the interaction between

HDL and the heart. In our present study, we used human HDL in rodent models. The use of

human HDL in rodent models is commonly reported in the literature and has been experi-

mented without any evidence of problems [4,26–30]. Similarly, several studies have used trans-

genic mice expressing human apoA1, which is the major protein content in HDL particle [31–

33]. In order to ensure that HDL derived from different species act in a similar manner in our

model, we performed in vitro experiments and showed that both human and murine HDL

exerted similar effects on cell death (S2 Fig) as well as on ERK1/2 phosphorylation (S3 Fig) in

endothelial cells.

In this study, we evaluated HDL impact on miRNA expression under conditions of IR. The

use of the microarray approach allows an objective analysis of the expression of miRNA modu-

lated by IR and HDL treatment in vivo. It revealed miRNAs whose expression was modulated

by IR compared to sham-treated mice. Among these miRNAs, only a few were affected by

HDL treatment compared to those in IR. The analysis highlighted the expression of 2 miRNAs:

miR-34b and miR-337. These experiments were extended in vitro. Similar to the data obtained

in vivo, in cultured cardiomyocytes hypoxia induced an increase in miR-34b and miR-337

expression. Experiments using mimics and anti-miRNAs strongly support a role in cell sur-

vival under ischemia. Our data demonstrate that a decrease in the expression of these miRNA

induced by HDL treatment could improve cardiac cell survival. The potential effect of HDL on

miRNAs was only investigated in IR protocol as a particle able to trigger cardioprotective

effects. It would also be of interest to explore the regulation of miRNAs following a treatment

of HDL in hearts not subjected to IR. In endothelial cells, Tabet et al [34] demonstrated that

HDL altered endothelial cell miRNA levels with significant differential miRNA following a

treatment with native HDL (3 in total; 1 down: miR-339-5p; 2 up: miR-223 and miR-577).

Our previous publications underlined the role of STAT3 in the protective effect of HDL

[6,7]. We also demonstrated that, in the heart, HDL induces the serine phosphorylation of

STAT3 after 5 min of stimulation in vitro, ex vivo and in vivo [8,9,21]. Sekine et al. [35] and

Fig 4. HDL improves cell survival against hypoxia and regulates specific miRNAs during hypoxia. Cardiomyocytes were incubated in Tyrode solution,

submitted to 7h hypoxia and treated during hypoxia with HDL. A) Cell viability, B) miR-34b and C) miR-337 expression. Results are expressed in

percentage of normoxia. Data are mean ± SEM, n = 8–10, �: p<0.05 vs normoxia, #: p<0.05 vs hypoxia.

https://doi.org/10.1371/journal.pone.0218432.g004
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Feuerborn et al. [36] confirmed a similar effect in prostate cancer DU145 cells and in

RAW264.7 murine macrophages, respectively.

In the present study, we used specific cardiomyocyte STAT3 knockout mice to confirm in
vivo the role of STAT3 in the HDL-induced cardioprotection cardioprotective effects, there-

fore supporting our previous work conducted in an isolated heart model [6]. Furthermore, we

now demonstrate that STAT3 plays a role in the modulation of the expression of miR-34b and

miR-337 in vivo. These results were confirmed in vitro where STAT3 siRNA transfected cardi-

omyocytes were not protected by HDL treatment. Interestingly, in sham treated animals,

absence of STAT3 was associated with a significant increase in both miRNAs (Fig 3A and 3B).

Although the precise role of these specific miRNAs has not been investigated in myocardial

IR, Bernardo and colleagues investigated the role of the miR-34 family in the heart submitted

to stress [37]. Under conditions of myocardial infarction, the miR-34 family is upregulated

whereas inhibition improves heart function. Unfortunately, global inhibition of miR-34a, b

and c was used, thus not allowing the evaluation of the specific role of miR-34b in this response

[37]. According to our data, miR-34b could play an important role in the effect of miR-34 fam-

ily. In cardiac studies, miR-34b is associated with congenital disease [38] and is dysregulated

in patients with diabetic ischemic heart failure [39]. miR-337 is increased in plasma from coro-

nary artery disease patients compared to control subjects [40] and its expression is modulated

in the regenerative process of neonatal ventricular cells [41]. Unfortunately, its role in these

different pathologies was not investigated. It should be noted that most of the knowledge on

these miRNAs comes from cancer studies. In tumoral cells, miR-337 suppresses cell prolifera-

tion, migration, and invasion in human pancreatic cancer cell lines [42] and senescence in

human colorectal cancer cells [43]. miR-34b is downregulated in prostate cancer cells, in

colonic tumours, gastric carcinogenesis, pancreatic cancer metastasis [44–47] and is correlated

with higher lymph node metastasis [48]. Additionally induction of its expression induces cell

death in ovarian cancer cells [49]. While an increase of miR-337 expression induced cell death,

a decrease in miR-34b expression seems to improve cell survival. This is therefore in agree-

ment with our data. Likewise, miR-34b is upregulated in neuronal PC12 cells exposed to sevo-

flurane preconditioning [50], suggesting that an increase in miR-34b expression could be

protective in neuronal cells. Comparing these studies with our own is difficult, given the differ-

ent cell type and different pathophysiological conditions.

Thus, our data suggest a new role for these miRNAs in the heart, a role that HDL can bene-

ficially influence by modulating their expression.

There is a growing body of evidence demonstrating that miRNAs are closely associated

with the STAT3 signalling pathway. Modulation of STAT3 expression essentially influenced

cell survival. Although most of these data have been obtained from cancer cells [14], a few arti-

cles described the link between miRNA and STAT3 in cardiac tissue. Among these articles,

only one study shows that reduction of STAT3 levels can modulate miRNA expression. More

precisely, knock-down of STAT3 increased miR-199a expression and subsequent impairment

of the ubiquitin-proteasome system [15]. In the other studies, STAT3 was targeted by miR-17,

miR-21 in cardiomyocytes [51,52] and miR-351 in endothelial cells [53]. The reduction of

STAT3 protein expression impaired cell survival. In the present study, we therefore highlight a

novel aspect on the role of STAT3 in HDL-induced cardioprotection by demonstrating the

influence of HDL-activated STAT3 on the expression of miR-34b and miR-337.

Fig 5. HDL improves cell survival against hypoxia via STAT3 and miRNA expression. Cardiomyocytes transfected with control or STAT3 siRNA

were incubated in Tyrode solution, submitted to 7h hypoxia and treated during hypoxia with HDL. A) Cell viability, B) miR-34b and C) miR-337

expression. Results are expressed in percentage of normoxia. Data are mean ± SEM, n = 3–7, �: p<0.05 vs normoxia, #: p<0.05 vs hypoxia.

https://doi.org/10.1371/journal.pone.0218432.g005

HDL induces cardioprotection via miRNA activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218432 June 20, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0218432.g005
https://doi.org/10.1371/journal.pone.0218432


Fig 6. miR-34b and miR-337 expression influences cell survival. Cell viability after 7h of hypoxia in neonatal rat cardiomyocytes treated with negative control,

miR-34b and miR-337 mimics (A) or antimiRs (B). Results are expressed in percentage of normoxia. Data are mean ± SEM, n = 5, �: p<0.05 vs normoxia, #:

p<0.05 vs hypoxia.

https://doi.org/10.1371/journal.pone.0218432.g006
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Our data identify a novel pathway by which HDL can protect the heart from IR injury with

the modulation of miR-337 and miR-34b expression as critical downstream target of STAT3

(see Fig 7). It is, to our knowledge, the first study to demonstrate a role for HDL in modulating

miRNA expression following IR. This novel aspect of HDL action in the heart expands our

understanding in the cardioprotective effects of HDL. Combination of these protective influ-

ences underlines the therapeutic potential of HDL in the heart.

Supporting information

S1 Table.

(DOCX)

S1 Fig.

(DOCX)

S2 Fig.

(DOCX)

S3 Fig.

(DOCX)

Author Contributions

Conceptualization: Sandrine Lecour, Richard W. James, Miguel A. Frias.

Data curation: Sarah Pedretti, Marie-Claude Brulhart-Meynet, Fabrizio Montecucco.

Formal analysis: Sarah Pedretti, Miguel A. Frias.

Funding acquisition: Fabrizio Montecucco, Sandrine Lecour, Richard W. James, Miguel A.

Frias.

Investigation: Sarah Pedretti, Marie-Claude Brulhart-Meynet, Fabrizio Montecucco, Richard

W. James, Miguel A. Frias.

Methodology: Sarah Pedretti, Marie-Claude Brulhart-Meynet, Fabrizio Montecucco, Miguel

A. Frias.

Project administration: Richard W. James, Miguel A. Frias.

Resources: Fabrizio Montecucco, Sandrine Lecour, Richard W. James, Miguel A. Frias.

Supervision: Richard W. James, Miguel A. Frias.

Validation: Miguel A. Frias.

Writing – original draft: Sarah Pedretti, Miguel A. Frias.

Writing – review & editing: Miguel A. Frias.

References
1. Barter PJ, Rye KA. High density lipoproteins and coronary heart disease. Atherosclerosis. 1996; 121

(1):1–12. PMID: 8678914

Fig 7. Proposed mechanism of HDL cardioprotection against IR injury occurring via a STAT3-dependent

decrease of miR-34b and miR-337 expression.

https://doi.org/10.1371/journal.pone.0218432.g007

HDL induces cardioprotection via miRNA activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218432 June 20, 2019 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218432.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218432.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218432.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0218432.s004
http://www.ncbi.nlm.nih.gov/pubmed/8678914
https://doi.org/10.1371/journal.pone.0218432.g007
https://doi.org/10.1371/journal.pone.0218432


2. Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis:

beyond reverse cholesterol transport. Atherosclerosis. 2002; 161(1):1–16. PMID: 11882312

3. Calabresi L, Rossoni G, Gomaraschi M, Sisto F, Berti F, Franceschini G. High-density lipoproteins pro-

tect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-alpha

content and enhancing prostaglandin release. Circulation research. 2003; 92(3):330–337. PMID:

12595346

4. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I et al. High-density lipoproteins

and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion

injury in vivo via the S1P3 lysophospholipid receptor. Circulation. 2006; 114(13):1403–1409. PMID:

16982942

5. Tao R, Hoover HE, Honbo N, Kalinowski M, Alano CC, Karliner JSet al. High-density lipoprotein deter-

mines adult mouse cardiomyocyte fate after hypoxia-reoxygenation through lipoprotein-associated

sphingosine 1-phosphate. American journal of physiology Heart and circulatory physiology. 2010; 298

(3):H1022–1028. https://doi.org/10.1152/ajpheart.00902.2009 PMID: 20061542

6. Frias MA, Pedretti S, Hacking D, Somers S, Lacerda L, Opie LH et al. HDL protects against ischemia

reperfusion injury by preserving mitochondrial integrity. Atherosclerosis. 2013; 228(1):110–116. https://

doi.org/10.1016/j.atherosclerosis.2013.02.003 PMID: 23497785

7. Frias MA, Lang U, Gerber-Wicht C, James RW. Native and reconstituted HDL protect cardiomyocytes

from doxorubicin-induced apoptosis. Cardiovascular research. 2010; 85(1):118–126. https://doi.org/10.

1093/cvr/cvp289 PMID: 19700468

8. Frias MA, James RW, Gerber-Wicht C, Lang U. Native and reconstituted HDL activate Stat3 in ventricu-

lar cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovascular research. 2009; 82

(2):313–323. https://doi.org/10.1093/cvr/cvp024 PMID: 19151362

9. Frias MA, Lecour S, James RW, Pedretti S. High density lipoprotein/sphingosine-1-phosphate-induced

cardioprotection: Role of STAT3 as part of the SAFE pathway. Jak-Stat. 2012; 1(2):92–100. https://doi.

org/10.4161/jkst.19754 PMID: 24058758

10. D’Alessandra Y, Pompilio G, Capogrossi MC. MicroRNAs and myocardial infarction. Current opinion in

cardiology. 2012; 27(3):228–235. https://doi.org/10.1097/HCO.0b013e3283522052 PMID: 22476028

11. Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X et al. MicroRNA expression signature and the role of

microRNA-21 in the early phase of acute myocardial infarction. The Journal of biological chemistry.

2009; 284(43):29514–29525. https://doi.org/10.1074/jbc.M109.027896 PMID: 19706597

12. Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K et al. MicroRNA-320 is involved in the regulation of

cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009; 119

(17):2357–2366. https://doi.org/10.1161/CIRCULATIONAHA.108.814145 PMID: 19380620

13. Varga ZV, Zvara A, Farago N, Kocsis GF, Pipicz M, Gaspar R et al. MicroRNAs associated with ische-

mia-reperfusion injury and cardioprotection by ischemic pre- and postconditioning: protectomiRs. Amer-

ican journal of physiology Heart and circulatory physiology. 2014; 307(2):H216–227. https://doi.org/10.

1152/ajpheart.00812.2013 PMID: 24858849

14. Cao Q, Li YY, He WF, Zhang ZZ, Zhou Q, Liu X et al. Interplay between microRNAs and the STAT3 sig-

naling pathway in human cancers. Physiological genomics. 2013; 45(24):1206–1214. https://doi.org/10.

1152/physiolgenomics.00122.2013 PMID: 24192393

15. Haghikia A, Missol-Kolka E, Tsikas D, Venturini L, Brundiers S, Castoldi M et al.Signal transducer and

activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell

function in the heart: a key role for ubiquitin-conjugating enzymes. European heart journal. 2011; 32

(10):1287–1297. https://doi.org/10.1093/eurheartj/ehq369 PMID: 20965886

16. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in

plasma and delivered to recipient cells by high-density lipoproteins. Nature cell biology. 2011; 13

(4):423–433. https://doi.org/10.1038/ncb2210 PMID: 21423178

17. Vickers KC, Landstreet SR, Levin MG, Shoucri BM, Toth CL, Taylor RC et al. MicroRNA-223 coordi-

nates cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States

of America. 2014; 111(40):14518–14523. https://doi.org/10.1073/pnas.1215767111 PMID: 25246565

18. Niculescu LS, Simionescu N, Sanda GM, Carnuta MG, Stancu CS, Popescu AC et al. MiR-486 and

miR-92a Identified in Circulating HDL Discriminate between Stable and Vulnerable Coronary Artery Dis-

ease Patients. PloS one. 2015; 10(10):e0140958. https://doi.org/10.1371/journal.pone.0140958 PMID:

26485305

19. Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR et al. Genetic depletion of cardiac myo-

cyte STAT-3 abolishes classical preconditioning. Cardiovascular research. 2004; 63(4):611–616.

https://doi.org/10.1016/j.cardiores.2004.06.019 PMID: 15306216

HDL induces cardioprotection via miRNA activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218432 June 20, 2019 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/11882312
http://www.ncbi.nlm.nih.gov/pubmed/12595346
http://www.ncbi.nlm.nih.gov/pubmed/16982942
https://doi.org/10.1152/ajpheart.00902.2009
http://www.ncbi.nlm.nih.gov/pubmed/20061542
https://doi.org/10.1016/j.atherosclerosis.2013.02.003
https://doi.org/10.1016/j.atherosclerosis.2013.02.003
http://www.ncbi.nlm.nih.gov/pubmed/23497785
https://doi.org/10.1093/cvr/cvp289
https://doi.org/10.1093/cvr/cvp289
http://www.ncbi.nlm.nih.gov/pubmed/19700468
https://doi.org/10.1093/cvr/cvp024
http://www.ncbi.nlm.nih.gov/pubmed/19151362
https://doi.org/10.4161/jkst.19754
https://doi.org/10.4161/jkst.19754
http://www.ncbi.nlm.nih.gov/pubmed/24058758
https://doi.org/10.1097/HCO.0b013e3283522052
http://www.ncbi.nlm.nih.gov/pubmed/22476028
https://doi.org/10.1074/jbc.M109.027896
http://www.ncbi.nlm.nih.gov/pubmed/19706597
https://doi.org/10.1161/CIRCULATIONAHA.108.814145
http://www.ncbi.nlm.nih.gov/pubmed/19380620
https://doi.org/10.1152/ajpheart.00812.2013
https://doi.org/10.1152/ajpheart.00812.2013
http://www.ncbi.nlm.nih.gov/pubmed/24858849
https://doi.org/10.1152/physiolgenomics.00122.2013
https://doi.org/10.1152/physiolgenomics.00122.2013
http://www.ncbi.nlm.nih.gov/pubmed/24192393
https://doi.org/10.1093/eurheartj/ehq369
http://www.ncbi.nlm.nih.gov/pubmed/20965886
https://doi.org/10.1038/ncb2210
http://www.ncbi.nlm.nih.gov/pubmed/21423178
https://doi.org/10.1073/pnas.1215767111
http://www.ncbi.nlm.nih.gov/pubmed/25246565
https://doi.org/10.1371/journal.pone.0140958
http://www.ncbi.nlm.nih.gov/pubmed/26485305
https://doi.org/10.1016/j.cardiores.2004.06.019
http://www.ncbi.nlm.nih.gov/pubmed/15306216
https://doi.org/10.1371/journal.pone.0218432


20. James RW, Proudfoot A, Pometta D. Immunoaffinity fractionation of high-density lipoprotein subclasses

2 and 3 using anti-apolipoprotein A-I and A-II immunosorbent gels. Biochimica et biophysica acta. 1989;

1002(3):292–301. https://doi.org/10.1016/0005-2760(89)90343-3 PMID: 2469471

21. Brulhart-Meynet MC, Braunersreuther V, Brinck J, Montecucco F, Prost JC, Thomas A, et al. Improving

reconstituted HDL composition for efficient post-ischemic reduction of ischemia reperfusion injury. PloS

one. 2015; 10(3):e0119664. https://doi.org/10.1371/journal.pone.0119664 PMID: 25781943

22. Redfors B, Shao Y, Omerovic E. Myocardial infarct size and area at risk assessment in mice. Exp Clin

Cardiol. 2012; 17(4):268–272. PMID: 23592952

23. Frias MA, Somers S, Gerber-Wicht C, Opie LH, Lecour S, Lang U. The PGE2-Stat3 interaction in doxo-

rubicin-induced myocardial apoptosis. Cardiovascular research. 2008; 80(1):69–77. https://doi.org/10.

1093/cvr/cvn171 PMID: 18567640

24. Clark AL, Naya FJ. MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 Noncod-

ing RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator

Cited2. The Journal of biological chemistry. 2015; 290(38):23162–23172. https://doi.org/10.1074/jbc.

M115.672659 PMID: 26240138

25. Zhang ZW, Li H, Chen SS, Li Y, Cui ZY, Ma J. MicroRNA-122 regulates caspase-8 and promotes the

apoptosis of mouse cardiomyocytes. Brazilian journal of medical and biological research = Revista bra-

sileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2017; 50(2):e5760.

26. Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O et al. High-density lipoprotein

stimulates myocardial perfusion in vivo. Circulation. 2004; 110(21):3355–3359. https://doi.org/10.1161/

01.CIR.0000147827.43912.AE PMID: 15545521

27. Mishra M, Muthuramu I, Aboumsallem JP, Kempen H, De Geest B. Reconstituted HDL (Milano) Treat-

ment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. International jour-

nal of molecular sciences. 2018; 19(11).

28. Xu B, Gillard BK, Gotto AM Jr., Rosales C, Pownall HJ. ABCA1-Derived Nascent High-Density Lipopro-

tein-Apolipoprotein AI and Lipids Metabolically Segregate. Arteriosclerosis, thrombosis, and vascular

biology. 2017; 37(12):2260–2270. https://doi.org/10.1161/ATVBAHA.117.310290 PMID: 29074589

29. Thacker SG, Zarzour A, Chen Y, Alcicek MS, Freeman LA, Sviridov DO et al. High-density lipoprotein

reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology.

2016; 149(3):306–319. https://doi.org/10.1111/imm.12638 PMID: 27329564

30. Bursill CA, Castro ML, Beattie DT, Nakhla S, van der Vorst E, Heather AK et al. High-density lipopro-

teins suppress chemokines and chemokine receptors in vitro and in vivo. Arteriosclerosis, thrombosis,

and vascular biology. 2010; 30(9):1773–1778. https://doi.org/10.1161/ATVBAHA.110.211342 PMID:

20702809

31. Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY et al. HDL protects against doxo-

rubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent man-

ner. American journal of physiology Heart and circulatory physiology. 2018; 314(1):H31–H44. https://

doi.org/10.1152/ajpheart.00521.2016 PMID: 28986362

32. Tiniakou I, Kanaki Z, Georgopoulos S, Chroni A, Van Eck M, Fotakis P et al.Natural human apoA-I

mutations L141RPisa and L159RFIN alter HDL structure and functionality and promote atherosclerosis

development in mice. Atherosclerosis. 2015; 243(1):77–85. https://doi.org/10.1016/j.atherosclerosis.

2015.08.028 PMID: 26363436

33. Hewing B, Parathath S, Barrett T, Chung WK, Astudillo YM, Hamada T et al. Effects of native and mye-

loperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice.

Arteriosclerosis, thrombosis, and vascular biology. 2014; 34(4):779–789. https://doi.org/10.1161/

ATVBAHA.113.303044 PMID: 24407029

34. Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM et al. HDL-transferred microRNA-223

regulates ICAM-1 expression in endothelial cells. Nature communications. 2014; 5:3292. https://doi.

org/10.1038/ncomms4292 PMID: 24576947

35. Sekine Y, Suzuki K, Remaley AT. HDL and sphingosine-1-phosphate activate stat3 in prostate cancer

DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion. The Prostate.

2011; 71(7):690–699. https://doi.org/10.1002/pros.21285 PMID: 20979115

36. Feuerborn R, Becker S, Poti F, Nagel P, Brodde M, Schmidt H et al.High density lipoprotein (HDL)-

associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activ-

ity and survivin expression. Atherosclerosis. 2017; 257:29–37. https://doi.org/10.1016/j.atherosclerosis.

2016.12.009 PMID: 28038379

37. Bernardo BC, Gao XM, Winbanks CE, Boey EJ, Tham YK, Kiriazis H et al. Therapeutic inhibition of the

miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of

the National Academy of Sciences of the United States of America. 2012; 109(43):17615–17620.

https://doi.org/10.1073/pnas.1206432109 PMID: 23047694

HDL induces cardioprotection via miRNA activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218432 June 20, 2019 18 / 19

https://doi.org/10.1016/0005-2760(89)90343-3
http://www.ncbi.nlm.nih.gov/pubmed/2469471
https://doi.org/10.1371/journal.pone.0119664
http://www.ncbi.nlm.nih.gov/pubmed/25781943
http://www.ncbi.nlm.nih.gov/pubmed/23592952
https://doi.org/10.1093/cvr/cvn171
https://doi.org/10.1093/cvr/cvn171
http://www.ncbi.nlm.nih.gov/pubmed/18567640
https://doi.org/10.1074/jbc.M115.672659
https://doi.org/10.1074/jbc.M115.672659
http://www.ncbi.nlm.nih.gov/pubmed/26240138
https://doi.org/10.1161/01.CIR.0000147827.43912.AE
https://doi.org/10.1161/01.CIR.0000147827.43912.AE
http://www.ncbi.nlm.nih.gov/pubmed/15545521
https://doi.org/10.1161/ATVBAHA.117.310290
http://www.ncbi.nlm.nih.gov/pubmed/29074589
https://doi.org/10.1111/imm.12638
http://www.ncbi.nlm.nih.gov/pubmed/27329564
https://doi.org/10.1161/ATVBAHA.110.211342
http://www.ncbi.nlm.nih.gov/pubmed/20702809
https://doi.org/10.1152/ajpheart.00521.2016
https://doi.org/10.1152/ajpheart.00521.2016
http://www.ncbi.nlm.nih.gov/pubmed/28986362
https://doi.org/10.1016/j.atherosclerosis.2015.08.028
https://doi.org/10.1016/j.atherosclerosis.2015.08.028
http://www.ncbi.nlm.nih.gov/pubmed/26363436
https://doi.org/10.1161/ATVBAHA.113.303044
https://doi.org/10.1161/ATVBAHA.113.303044
http://www.ncbi.nlm.nih.gov/pubmed/24407029
https://doi.org/10.1038/ncomms4292
https://doi.org/10.1038/ncomms4292
http://www.ncbi.nlm.nih.gov/pubmed/24576947
https://doi.org/10.1002/pros.21285
http://www.ncbi.nlm.nih.gov/pubmed/20979115
https://doi.org/10.1016/j.atherosclerosis.2016.12.009
https://doi.org/10.1016/j.atherosclerosis.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/28038379
https://doi.org/10.1073/pnas.1206432109
http://www.ncbi.nlm.nih.gov/pubmed/23047694
https://doi.org/10.1371/journal.pone.0218432


38. Liu YM, Wang Y, Peng W, Wu Z, Wang XH, Wang ML et al.Single-nucleotide polymorphism of the pri-

miR-34b/c gene is not associated with susceptibility to congenital heart disease in the Han Chinese pop-

ulation. Genetics and molecular research: GMR. 2013; 12(3):2937–2944. https://doi.org/10.4238/2013.

August.12.9 PMID: 24065649

39. Greco S, Fasanaro P, Castelvecchio S, D’Alessandra Y, Arcelli D, Di Donato M et al. MicroRNA dysre-

gulation in diabetic ischemic heart failure patients. Diabetes. 2012; 61(6):1633–1641. https://doi.org/10.

2337/db11-0952 PMID: 22427379

40. D’Alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P et al. Diagnostic poten-

tial of plasmatic MicroRNA signatures in stable and unstable angina. PloS one. 2013; 8(11):e80345.

https://doi.org/10.1371/journal.pone.0080345 PMID: 24260372

41. Liu HL, Zhu JG, Liu YQ, Fan ZG, Zhu C, Qian LM. Identification of the microRNA expression profile in

the regenerative neonatal mouse heart by deep sequencing. Cell biochemistry and biophysics. 2014;

70(1):635–642. https://doi.org/10.1007/s12013-014-9967-7 PMID: 24756729

42. Zhang R, Leng H, Huang J, Du Y, Wang Y, Zang W et al.miR-337 regulates the proliferation and inva-

sion in pancreatic ductal adenocarcinoma by targeting HOXB7. Diagnostic pathology. 2014; 9:171.

https://doi.org/10.1186/s13000-014-0171-2 PMID: 25183455

43. Kim SY, Lee YH, Bae YS. MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular

senescence by targeting alpha subunit of protein kinase CKII in human colorectal cancer cells. Bio-

chemical and biophysical research communications. 2012; 429(3–4):173–179. https://doi.org/10.1016/

j.bbrc.2012.10.117 PMID: 23137536

44. Forno I, Ferrero S, Russo MV, Gazzano G, Giangiobbe S, Montanari E et al. Deregulation of MiR-34b/

Sox2 Predicts Prostate Cancer Progression. PloS one. 2015; 10(6):e0130060. https://doi.org/10.1371/

journal.pone.0130060 PMID: 26107383

45. Hiyoshi Y, Schetter AJ, Okayama H, Inamura K, Anami K, Nguyen GH et al. Increased microRNA-34b

and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon

cancer. PloS one. 2015; 10(4):e0124899. https://doi.org/10.1371/journal.pone.0124899 PMID:

25894979

46. Wang AM, Huang TT, Hsu KW, Huang KH, Fang WL, Yang MH et al.Yin Yang 1 is a target of micro-

RNA-34 family and contributes to gastric carcinogenesis. Oncotarget. 2014; 5(13):5002–5016. https://

doi.org/10.18632/oncotarget.2073 PMID: 24970812

47. Liu C, Cheng H, Shi S, Cui X, Yang J, Chen L et al.MicroRNA-34b inhibits pancreatic cancer metastasis

through repressing Smad3. Current molecular medicine. 2013; 13(4):467–478. PMID: 23305226

48. Wang LG, Ni Y, Su BH, Mu XR, Shen HC, Du JJ. MicroRNA-34b functions as a tumor suppressor and

acts as a nodal point in the feedback loop with Met. International journal of oncology. 2013; 42(3):957–

962. https://doi.org/10.3892/ijo.2013.1767 PMID: 23314612

49. Xie YL, Yang YJ, Tang C, Sheng HJ, Jiang Y, Han K et al. Estrogen combined with progesterone

decreases cell proliferation and inhibits the expression of Bcl-2 via microRNA let-7a and miR-34b in

ovarian cancer cells. Clinical & translational oncology: official publication of the Federation of Spanish

Oncology Societies and of the National Cancer Institute of Mexico. 2014; 16(10):898–905. https://doi.

org/10.1007/s12094-014-1166-x PMID: 24643702

50. Sun Y, Li Y, Liu L, Wang Y, Xia Y, Zhang L et al.Identification of miRNAs Involved in the Protective

Effect of Sevoflurane Preconditioning Against Hypoxic Injury in PC12 Cells. Cellular and molecular neu-

robiology. 2015; 35(8):1117–1125. https://doi.org/10.1007/s10571-015-0205-7 PMID: 25982511

51. Du W, Pan Z, Chen X, Wang L, Zhang Y, Li S et al.By targeting Stat3 microRNA-17-5p promotes cardio-

myocyte apoptosis in response to ischemia followed by reperfusion. Cellular physiology and biochemis-

try: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2014; 34

(3):955–965.

52. Haider KH, Idris NM, Kim HW, Ahmed RP, Shujia J, Ashraf M. MicroRNA-21 is a key determinant in IL-

11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovascular

research. 2010; 88(1):168–178. https://doi.org/10.1093/cvr/cvq151 PMID: 20498256

53. Zhang Y, Liu Y, Zhang H, Wang M, Zhang J. Mmu-miR-351 attenuates the survival of cardiac arterial

endothelial cells through targeting STAT3 in the atherosclerotic mice. Biochemical and biophysical

research communications. 2015; 468(1–2):300–305. https://doi.org/10.1016/j.bbrc.2015.10.108 PMID:

26505789

HDL induces cardioprotection via miRNA activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0218432 June 20, 2019 19 / 19

https://doi.org/10.4238/2013.August.12.9
https://doi.org/10.4238/2013.August.12.9
http://www.ncbi.nlm.nih.gov/pubmed/24065649
https://doi.org/10.2337/db11-0952
https://doi.org/10.2337/db11-0952
http://www.ncbi.nlm.nih.gov/pubmed/22427379
https://doi.org/10.1371/journal.pone.0080345
http://www.ncbi.nlm.nih.gov/pubmed/24260372
https://doi.org/10.1007/s12013-014-9967-7
http://www.ncbi.nlm.nih.gov/pubmed/24756729
https://doi.org/10.1186/s13000-014-0171-2
http://www.ncbi.nlm.nih.gov/pubmed/25183455
https://doi.org/10.1016/j.bbrc.2012.10.117
https://doi.org/10.1016/j.bbrc.2012.10.117
http://www.ncbi.nlm.nih.gov/pubmed/23137536
https://doi.org/10.1371/journal.pone.0130060
https://doi.org/10.1371/journal.pone.0130060
http://www.ncbi.nlm.nih.gov/pubmed/26107383
https://doi.org/10.1371/journal.pone.0124899
http://www.ncbi.nlm.nih.gov/pubmed/25894979
https://doi.org/10.18632/oncotarget.2073
https://doi.org/10.18632/oncotarget.2073
http://www.ncbi.nlm.nih.gov/pubmed/24970812
http://www.ncbi.nlm.nih.gov/pubmed/23305226
https://doi.org/10.3892/ijo.2013.1767
http://www.ncbi.nlm.nih.gov/pubmed/23314612
https://doi.org/10.1007/s12094-014-1166-x
https://doi.org/10.1007/s12094-014-1166-x
http://www.ncbi.nlm.nih.gov/pubmed/24643702
https://doi.org/10.1007/s10571-015-0205-7
http://www.ncbi.nlm.nih.gov/pubmed/25982511
https://doi.org/10.1093/cvr/cvq151
http://www.ncbi.nlm.nih.gov/pubmed/20498256
https://doi.org/10.1016/j.bbrc.2015.10.108
http://www.ncbi.nlm.nih.gov/pubmed/26505789
https://doi.org/10.1371/journal.pone.0218432

