
Computational and Structural Biotechnology Journal 18 (2020) 1509–1524
journal homepage: www.elsevier .com/locate /csbj
Comparison of unsupervised machine-learning methods to identify
metabolomic signatures in patients with localized breast cancer
https://doi.org/10.1016/j.csbj.2020.05.021
2001-0370/� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Department of Epidemiology and Biostatistics, Centre
Antoine Lacassagne, University Côte d’, Azur 33 avenue de Valombrose, 06189 Nice,
France.

E-mail address: jocelyn.gal@nice.unicancer.fr (J. Gal).
1 These authors contributed equally to this work.
Jocelyn Gal a,1,⇑, Caroline Bailleux b,1, David Chardin c,d,1, Thierry Pourcher d, Julia Gilhodes e, Lun Jing d,
Jean-Marie Guigonis d, Jean-Marc Ferrero b, Gerard Milano f, Baharia Mograbi g, Patrick Brest g,
Yann Chateau a, Olivier Humbert c,d, Emmanuel Chamorey a

aUniversity Côte d’Azur, Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, Nice F-06189, France
bUniversity Côte d’Azur, Medical Oncology Department Centre Antoine Lacassagne, Nice F-06189, France
cUniversity Côte d’Azur, Nuclear Medicine Department, Centre Antoine Lacassagne, Nice F-06189, France
dUniversity Côte d’Azur, Commissariat à l’Energie Atomique, Institut de Biosciences et Biotechnologies d’Aix-Marseille, Laboratory Transporters in Imaging and Radiotherapy
in Oncology, Faculty of Medicine, Nice F-06100, France
eDepartment of Biostatistics, Institut Claudius Regaud, IUCT-O Toulouse, France
fUniversity Côte d’Azur, Centre Antoine Lacassagne, Oncopharmacology Unit, Nice F-06189, France
gUniversity Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN TEAM4 Centre Antoine Lacassagne FHU-Oncoage, Nice F-06189, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 February 2020
Received in revised form 15 May 2020
Accepted 16 May 2020
Available online 3 June 2020

Keywords:
Unsupervised machine learning
Metabolomics
Breast neoplasms
Computer simulation
Genomics and transcriptomics have led to the widely-used molecular classification of breast cancer (BC).
However, heterogeneous biological behaviors persist within breast cancer subtypes. Metabolomics is a
rapidly-expanding field of study dedicated to cellular metabolisms affected by the environment. The
aim of this study was to compare metabolomic signatures of BC obtained by 5 different unsupervised
machine learning (ML) methods. Fifty-two consecutive patients with BC with an indication for adjuvant
chemotherapy between 2013 and 2016 were retrospectively included. We performed metabolomic pro-
filing of tumor resection samples using liquid chromatography-mass spectrometry. Here, four hundred
and forty-nine identified metabolites were selected for further analysis. Clusters obtained using 5 unsu-
pervised ML methods (PCA k-means, sparse k-means, spectral clustering, SIMLR and k-sparse) were com-
pared in terms of clinical and biological characteristics. With an optimal partitioning parameter k = 3, the
five methods identified three prognosis groups of patients (favorable, intermediate, unfavorable) with
different clinical and biological profiles. SIMLR and K-sparse methods were the most effective techniques
in terms of clustering. In-silico survival analysis revealed a significant difference for 5-year predicted OS
between the 3 clusters. Further pathway analysis using the 449 selected metabolites showed significant
differences in amino acid and glucose metabolism between BC histologic subtypes. Our results provide
proof-of-concept for the use of unsupervised ML metabolomics enabling stratification and personalized
management of BC patients. The design of novel computational methods incorporating ML and bioinfor-
matics techniques should make available tools particularly suited to improving the outcome of cancer
treatment and reducing cancer-related mortalities.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Breast cancer (BC) is the most common type of cancer in women
worldwide and the second leading cause of cancer-associated
deaths [1]. The treatment strategy may be guided by two classifica-
tions indicating the aggressiveness of the tumor. The anatomy-
clinical classification is based on age, TNM, histological factors (his-
tological grade, Ki-67) as well as on hormonal-receptor status and
Her-2 expression. The molecular classification resulting from geno-
mic [2], transcriptomic [3] and proteomic [4] analyses introduced
the concept of luminal A, luminal B, Her-2 and basal-like BC [5–
7]. This latter classification from Perou and Sorlie was assessed
using unsupervised analyses [6,8]. Efforts have been made to
develop multivariate prognostic models such as, AdjuvantOnline�,
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PREDICT Tool [9,10] and multigene predictors [11,12]. The use of
biomarker-based tests, including omics-based tests, has steadily
increased over the last decade as a result of the need for personal-
ized treatment strategies designed to optimize outcomes [13–18].
Several genomic prognostic markers have been described for BC
such as OncotypeDX�, Prosigna�, MammaPrint�, Endopredict�

Genomic grade index� and BC Index� [19]. Two markers are com-
mercially available and are increasingly used in clinical practice
(21-gene recurrence score OncotypeDX� and 70-gene prognostic
signature MammaPrint�). However, heterogeneity persists in bio-
logical features within BC subtypes, thus highlighting the need to
improve the taxonomy [20]. This heterogeneity may be related to
specific combinations of genetic, pathological and environmental
factors leading to specific metabolic alterations and interactions
[21,22].

Metabolomics is a new and growing field dedicated to the study
of metabolism at overall level that promises to provide new
insights into disease mechanisms and drug effects. Indeed, meta-
bolomics may offer a complementary approach to genomics and
could be used to better understand the influence of the environ-
ment on tumor phenotype [23]. Two distinct approaches charac-
terize metabolomics: a targeted approach aimed at quantifying
as accurately as possible a limited number of predefined metabo-
lites of interest [24] and an untargeted approach aimed at measur-
ing, without any a priori, as many metabolites as possible in a
sample [25,26]. As with other omics approaches, metabolomics
generates high-dimensional data. The processing of these data
can be done by applying supervised or unsupervised machine
learning (ML) algorithms that are increasingly used for medical
diagnosis and therapeutic strategy guidance [27–29]. Unsuper-
vised ML, in which no a priori class label information is given to
guide the algorithm [30], seems a suitable alternative to analyze
these data and address the problem of BC heterogeneity [6]. The
aim of this study was to compare metabolomic signatures of BC
obtained using five different unsupervised ML methods. To evalu-
ate the consistency of our results, the clusters obtained by unsu-
pervised ML methods were compared with patients’ clinical
characteristics and identified metabolic pathways.
2. Material and methods

2.1. Patients

This is a retrospective cohort study based on data and samples
from 52 patients already available in the Centre Antoine Lacas-
sagne tumor bank and collected during routine practice between
2013 and 2016. Patient tumor characteristics were: clinical stages
I to IIIB biopsy-proven BC, with an indication for post-surgery adju-
vant therapy. Tumor phenotypes were classified into three sub-
types: triple-negative (estrogen receptor, progesterone receptor
and Her-2 non-over-expressed); luminal (estrogen receptor and/
or progesterone receptor positive and Her-2 non-over-
expressed); Her-2 over-expressed (Her-2 over-expressed, estrogen
receptor and progesterone receptor either positive or negative)
[31]. After surgery, all patients were treated according to current
guidelines, with sequential chemotherapy including anthracycli-
nes (epirubicin and cyclophosphamide) and taxanes followed by
radiotherapy. Patients with Her-2 over-expressed tumors were
treated with trastuzumab concurrently with taxanes and contin-
ued for one year. Patients with luminal BC were then treated by
endocrine therapy with tamoxifen or an aromatase inhibitor, based
on menopausal status. Clinical, histological, radiological and thera-
peutic data were retrospectively extracted from our facility’s digi-
tal records or collected by a clinical data monitor. Follow-up data
were either extracted from our facility’s digital records or retrieved
by telephone if patients had changed facilities during surveillance.
Written informed consent was obtained from all study partici-
pants. All procedures performed in this study involving tissue col-
lection and analyses were following the ethical standards of the
institutional and/or national research committee (French National
Commission for Informatics and Liberties N�17003 and National
Institute Health data N�1515251018).

2.2. Data-preprocessing, metabolite identification, statistical and
pathway analysis

Sample collection, preparation and data-processing using
MZmine [32,33] are shown in Supplementary Material S1 and Sup-
plementary Fig. 1 Metabolites obtained from positive and negative
ionization modes were combined. Only metabolites with no null
values after pre-processing were selected for analysis. When a
metabolite was detected in both positive and negative modes, only
the mode offering the highest average intensity was considered.
After these steps, 1271 metabolites were identified. To eliminate
noisy data, a filtering function was applied before statistical analy-
sis. Finally, statistical analysis was performed on 449 metabolites.
The identification of metabolic pathways was performed using
MetaboAnalyst database sources [34]. The impact score was deter-
mined by the relative pathway topological effect of the metabo-
lites, and -log(p) was used as the enrichment score, reflecting the
probability of the pathway being identified at random; the number
of ‘‘hits” was the actual number of matched metabolites in the
pathway. For the selection of the most relevant pathways, we
applied the following criteria: Impact >0, FDR < 0.25 and p < 0.05
[35].

A Venn diagram (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to display all possible logical relations between
the metabolites or pathways identified by the clustering methods.
Differences between clusters regarding the most active metabo-
lites were plotted using boxplots.

2.3. Clustering algorithms

Five unsupervised clustering methods were selected and com-
pared: Principal Component Analysis (PCA) k-means, Sparse k-
means, Single-cell Interpretation via Multi-kernel LeaRning
(SIMLR), k-sparse and Spectral clustering. Many clustering
approaches exist, among which two of the most popular are K-
means and spectral clustering [36]. PCA k-means and Sparse k-
means are two well established, K-means based methods fre-
quently used in computational. SIMLR and K-sparse are two
recently developed k-means based methods of particular interest
for omics data. These methods use different dimension reduction
steps with k-means. In order to apply these five unsupervised clus-
tering methods, the optimal number of clusters was determined in
advance using five criteria: gap [37], silhouette [38,39], Davies-
Bouldin [40], Calinski-Harabasz [41] and SIMLR method [42]. PCA
k-means clustering, combines PCA to reduce the number of dimen-
sions of a dataset and the k-means method to minimize the intra-
cluster variance for a chosen number of k clusters [43–45]. Spectral
clustering [46,47] is based on graph theory. It consists of identify-
ing dense regions in a multidimensional dataset, i.e. observations
that can form a non-convex set but are close to each other. Sparse
k-means clustering was developed in 2010 by Witten and Tibshi-
rani [8]. This method is based on a Least Absolute Shrinkage and
Selection Operator (LASSO) approach [48] and combines the LASSO
approach and the k-means method which simultaneously find the
clusters and select features. SIMLR clustering [42] was developed
to analyze scRNA-seq data. This method searches for appropriate
cell-to-cell similarity metrics to perform dimension reduction
and clustering. In multiple-kernel learning frameworks, this
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Table 1
Patients’ demographics and treatment characteristics.

Clinical characteristic No. of patients %

Age (median min – max) 63.2 (37–88)

Histology type
Invasive ductal carcinoma 48 92
Invasive lobular carcinoma 3 6
Microinvasive carcinoma 1 2

Tumor stage
T1 21 40.5
T2 24 46
T3 7 13.5

Axillary lymph node status
N0 28 54
N+ 24 46

Metastasis
M0 50 96
M1 2 4

Histological grade
I 5 10
II 22 43
III 24 47

Hormonal receptors status*
Negative 25 48
Positive 27 52

Her-2 status
Non-over-expressed 40 74
Over-expressed 12 24

Triple-negative status
No 37 71
Yes 15 29

Tumor phenotype
Her2 12 23
Luminal 25 48
Triple-Negative 15 29

Adjuvant Chemotherapy
No 13 25
Yes 39 75

Adjuvant Radiotherapy
No 9 17
Yes 43 83

Adjuvant Hormonotherapy
No 24 46
Yes 28 54

* Oestrogen and/or progesterone.
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method may be especially beneficial for data containing no identi-
fiable clusters. K-sparse clustering [49] is an algorithm combining
dimension reduction and relevant feature selection using a con-
straint in L1-norm rather than a lasso-type penalty to select the
features. The performance of an unsupervised clustering method
is measured by its ability to partition data. Partitioning is consid-
ered optimal when it minimizes the average distance between
patients within a cluster (homogeneity) and maximizes cluster dis-
tances 2 by 2 (separability). The performances of the five methods
were compared using the silhouettes index (SI) [39]. The SI ranges
between �1 and 1 and assesses whether a patient belongs to the
‘‘right” cluster. The closer the index is to 1, the more satisfactory
the assignment of a patient to a cluster. The t-SNE method was
used for data visualization [50]. Processing times were obtained
on a computer using an i5 processor (3.1 GHz).

2.4. Clinical evaluation

The relevance of the discovered clusters was assessed by com-
paring the clinical and survival characteristics between clusters
using v2 or Fisher’s exact tests for categorical data, analysis of vari-
ance or Mann-Whitney’s test for continuous variables and log-rank
test for censored data. Overall survival (OS) was defined as the
time between diagnosis and death due to any cause. Specific sur-
vival (SS) was determined by the time between diagnosis and
death due to BC. Recurrence-Free Survival (RFS) was defined as
the time between diagnosis and the first recurrence (local, regional
and metastasis). Patients showing no event (death or recurrence)
or lost to follow-up were censored at the date of their last contact.
OS, SS, and RFS were estimated using the Kaplan-Meier method.
Median follow-up with a 95% confidence interval was calculated
by reverse Kaplan–Meier method. All analyses were performed
with Matlab� R2018b for PCA k-means, Spectral clustering, SIMLR
(https://github.com/BatzoglouLabSU/SIMLR/tree/SIMLR/MATLAB)
and k-sparse clustering and R [51] using package Sparcl [52] for
sparse k-means clustering. The difference between clusters regard-
ing the most biologically significant metabolites was plotted using
boxplots. For clinical and biological analyses, all p-values <0.05
(two-sided) were considered statistically significant.

2.5. Prediction for 5- and 10-year overall and specific survival

Web-based prognostication PREDICT tool (https://breast.pre-
dict.nhs.uk/tool) [9,10,53] was used to estimate predicted OS
(pOS) and predicted SS (pSS) at 5 and 10 years, based on several
patient and tumor characteristics. For each patient, ten character-
istics were entered manually: age at diagnosis, menopausal status,
estrogen receptor status, Her-2 status, Ki-67 status, tumor stage,
histological grade, mode of detection, number of positive nodes
and presence of micrometastases. PREDICT tool can be used to esti-
mate expected overall survival at 5 years and 10 years in the
absence of available survival data due to short follow-up. If infor-
mation was missing for detection, bisphosphonate therapy or
menopausal status, patients were not excluded but the ‘‘unknown”
category was used. Only one patient was excluded because of miss-
ing tumor grade data. A 1000 resamples bootstrap was used to esti-
mate the 95% confidence interval.
3. Results

3.1. Patient characteristics

Tumor and treatment features of the 52 patients were described
in Table 1. Median age was 63 years (range: 37–88). The main his-
tological type was invasive ductal carcinoma (92%), and the main
tumor stages were T1 (40.5%) and T2 (46%). Twenty-four patients
(46%) presented axillary lymph node invasion. Two patients (4%)
were oligometastatic at diagnosis. Forty-three percent of patients
had histological grade II tumors and 47% had grade III tumors. Half
of the patients had negative hormone receptor status (48%) and
24% of patients had Her-2 over-expression. Median follow–up
was 48.5 months (95%CI [43–54.5]). Twenty-one patients pre-
sented a recurrence: 4 local recurrences (7.5%), 6 regional recur-
rences (11.5%) and 11 metastatic recurrences (21%). Three-year
OS was 90% [82–99], 3-year SS was 92% [85–100] and 3-year RFS
was 82% [72–93] (Supplementary Fig. 2). Median OS, SS, and RFS
were not reached.
3.2. Clustering results

3.2.1. Estimated number of clusters
Using four methods (Gap statistic, Calinski-Harabasz, Silhouette

and SIMLR criterion), the optimal number of clusters was equal to
three (k = 3) (Supplementary Fig. 3). Only for Davies-Bouldin crite-
rion, the optimal number of clusters was equal to four (k = 4). It
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seems reasonable, therefore, to conclude that the optimal number
of clusters is equal to 3.
3.2.2. Patient distribution
Three clusters were identified with each of the five clustering

methods, (Fig. 1). In terms of processing times, PCA k-means was
the fastest and K-sparse was the longest (Supplementary Table 1).
SIMLR and k-sparse methods were the most discriminants with an
average silhouette value of 0.85 and 0.91, respectively (Fig. 2).
Seventy-three percent of patients (38/52) were ranked in the same
clusters by the five methods, 17.5% of patients (9/52) were classi-
fied in the same clusters by 4 methods and 9.5% of patients
(5/52) were classified in the same clusters by 3 methods.
3.2.3. Comparison of clinical characteristics between clusters
As shown in Table 2, the 5 methods revealed significant inter-

cluster differences. Patients in cluster 3 had mainly unfavorable
prognostic factors: tumor stage T2/T3, histological grade III, high
mitotic score and triple-negative phenotype. In contrast, patients
in cluster 1 had mainly favorable prognosis factors: tumor stage
T1, histological grade I/II, lower mitotic score and luminal pheno-
type, whereas patients in cluster 2 constitute an intermediate
Fig. 1. Visualization of each cluster b
group presenting both good and poor prognostic factors. Clusters
defined by PCA k-means were significantly different for 5 charac-
teristics: tumor stage, mitosis, tumor phenotype, Her-2 status
and luminal. Clusters defined by Spectral Clustering were signifi-
cantly different for 6 characteristics: tumor stage, histological
grade, mitosis, Ki67, tumor phenotype and luminal. Clusters
defined by Sparse k-means were significantly different for 4 char-
acteristics: histological grade, tumor phenotype, Her-2 status and
luminal. Clusters defined by SIMLR were significantly different
for 6 characteristics: tumor stage, histological grade, mitosis,
Ki67, tumor phenotype and luminal. Clusters defined by K-Sparse
were significantly different for 6 characteristics: tumor stage, his-
tological grade, mitosis, Ki67, tumor phenotype and luminal. From
a strictly clinical point of view, Spectral clustering, SIMLR and K-
sparse are the 3 most discriminating methods. Indeed, for these
3 methods, six prognostic factors (tumor stage, histological grade,
mitosis score, Ki-67, tumor phenotype and luminal) were dis-
tributed significantly different between the 3 clusters.
3.2.4. Comparison of survival and predicted survival between clusters
None of the methods created clusters showing significant differ-

ences for OS, SS or RFS. Analysis of patients’ simulated survival data
y clustering method using T-sne.



Fig. 2. Silhouette value (SI) representation for each patient by clustering method.
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using PREDICT tool are presented in Table 3 and show a predicted
survival gradient for clusters obtained with the 5 methods for OS
and SS. There were significant differences for 5-year pOS between
clusters obtained with K-sparse (p = 0.021), Sparse K-means
(p = 0.049), Spectral and clustering (p = 0.021). The five methods
showed a significant difference for 5-year pSS between clusters.
In terms of 10-year pOS, there were no significant differences
between clusters obtained by any of the 5 methods. In contrast,
for 10-year pSS, the 5 methods showed significant differences
between clusters. Patients in cluster 3 clearly showed the poorest
predicted survival.
3.2.5. Comparison of the most impactful metabolites according to the
five methods

To relate the impact of 449 metabolites to cluster construction,
we ranked these metabolites extracted from each of the five meth-
ods based on their functional contributions to outputs. With this
approach, we classified the relative impact of metabolites on clus-
ter construction and on the identification of metabolic signatures.
The highest-ranked metabolites were those that provided relevant
information to the signature versus those that provided redundant
information or no information. Among a total of 449 metabolites,
116 (26%) were selected by K-sparse clustering and 69 (15%) by
Sparse K-means clustering. As for the three other methods, which
don’t select sparse features, the number of metabolites remained
equal to 449. The 50 most effective metabolites identified by the
five methods are presented in Supplementary Table 2. Further-
more, a comparison of the top 50 metabolites in each of the 5
methods is presented using a Venn diagram (Fig. 3). Two metabo-
lites were shared by the 5 methods (Creatine, L-Proline), 9 were
shared by 4 methods (Betaine, Glutathione, Humulinic Acid A,
Isoleucyl-Methionine, L-Carnitine, L-Methionine, L-Phenylalanine
Triethanolamine, Alnustone), 28 were shared by 3 methods and
38 were shared by 2 methods (Table 4).
3.2.6. Comparison between 5 methods of identified metabolic
pathways

For a better understanding of metabolic dysregulation among
BC subtypes, pathway analysis was performed. Identification of
all the metabolic pathways highlighted by each of the 5 methods
as shown in Supplementary Table 3. The most relevant pathways
for each of the 5 methods are shown in Table 5. Sparse K-means
identified only one statistically significant pathways, ‘‘cysteine
and methionine metabolism”, involved in amino acid metabolism.
K-Sparse identified 3 different pathways: ‘‘glycerolipid
metabolism”, ‘‘Starch and sucrose metabolism” involved in carbo-
hydrates metabolic pathway and ‘‘Aminoacyl-tRNA biosynthesis”
involved in translation pathway. Spectral clustering identified 17
pathways, the 3 most important being ‘‘Glycine, serine and thre-
onine metabolism”, ‘‘Alanine, aspartate and glutamate
metabolism” and ‘‘Histidine metabolism and glutathione
metabolism” involved in amino acid metabolic pathway. PCA K-



Table 2
Clinical comparison of 52 patients between clusters.

Clinical
characteristic

PCA-K-means Spectral Clustering Sparse K-means SIMLR K-Sparse

C1
(N = 21)

C2
(N = 10)

C3
(N = 21)

P-
value

C2
(N = 19)

C1
(N = 12)

C3
(N = 21)

P-
value

C1
(N = 24)

C2
(N = 8)

C3
(N = 20)

P-
value

C1
(N = 17)

C2
(N = 12)

C3
(N = 23)

P-
value

C1
(N = 19)

C2
(N = 12)

C3
(N = 21)

P-
value

Age a 62.7
(15.2)

64.8(16) 62.9(15) 0.93 64.8
(14.3)

62.5
(16.5)

62 (15.3) 0.8 64.1(15) 60.5 (17.2) 63 (14.9) 0.85 64.3
(14.1)

64.9
(16.1)

61.4
(15.6)

0.755 64.8
(14.3)

62.5
(16.5)

62(15.3) 0.827

Histology type 1 0.392 0.106 0.752 0.392
Ductal carcinoma 19(90.5) 10(1 0 0) 19(90.5) 17(89.5) 11(91.7) 20(95.2) 21(87.5) 7(87.5) 20(1 0 0) 15(88.2) 12(1 0 0) 21(91.3) 17(89.5) 11(91.7) 20(95.2)
Lobular carcinoma 2(9.5) 0(0) 1(4.8) 2(10.5) 1(8.3) 0(0) 3(12.5) 0(0) 0(0) 2(11.8) 0(0) 1(4.3) 2(10.5) 1(8.3) 0(0)
Microinvasive
carcinoma

0(0) 0(0) 1(4.8) 0(0) 0(0) 1(4.8) 0(0) 1(12.5) 0(0) 0(0) 0(0) 1(4.3) 0(0) 0(0) 1(4.8)

Tumor stage 0.005 0.018 0.063 0.045 0.018
T1 14(66.7) 3(30) 4(19) 12(63.2) 5(41.7) 4(19) 14(58.3) 2(25) 5(25) 10(58.8) 6(50) 5(21.7) 12(63.2) 5(41.7) 4(19)
T2/T3 7(33.3) 7(70) 17(81) 7(36.8) 7(58.3) 17(81) 10(41.7) 6(75) 15(75) 7(41.2) 6(50) 18(78.3) 7(36.8) 7(58.3) 17(81)

Axillary lymph node 0.162 0.075 0.526 0.387 0.075
N0 14(66.7) 6(60) 8(38.1) 14(73.7) 6(50) 8(38.1) 15(62.5) 4(50) 9(45) 11(64.7) 7(58.3) 10(43.5) 14(73.7) 6(50) 8(38.1)
N+ 7(33.3) 4(40) 13(61.9) 5(26.3) 6(50) 13(61.9) 9(37.5) 4(50) 11(55) 6(35.3) 5(41.7) 13(56.5) 5(26.3) 6(50) 13(61.9)

Metastasis 0.667 1 1 0.497 1
M0 21(1 0 0) 10(1 0 0) 19(90.5) 18(94.7) 12(1 0 0) 20(95.2) 23(96) 8(1 0 0) 19(95) 17(1 0 0) 12(1 0 0) 21(86.9) 18(94.7) 12(1 0 0) 20(95.2)
M1 0(40) 0(0) 2(9.5) 1(5.3) 0(0%) 1(4.8) 1(4) 0(0%) 1(5) 0(0%) 0(0%) 2(13.1) 1(5.3) 0(0) 1(50)

Histological grade 0.109 0.025 0.008 0.007 0.025
I/II 13(61.9) 7(70) 7(35) 12(63.2) 9(75) 6(30) 15(62.5) 5(71.4) 7(35) 11(64.7) 9(75) 7(31.8) 12(63.2) 9(75) 6(30)
III 8(38.1) 3(30) 13(75) 7(36.8) 3(25) 14(70) 9(37.5) 2(28.6) 13(65) 6(35.3) 3(25) 15(68.2) 7(36.8) 3(25) 14(70)

Mitosis 0.024 0.016 0.133 0.005 0.016
1 11(52.4) 4(40) 2(10) 10 (52.6) 5 (41.7) 2 (10) 11 (45.8) 2 (28.6) 4 (20) 10 (58.8) 5 (41.7) 2 (9.1) 10 (52.6) 5 (41.7) 2 (10)
2 3(14.3) 4(40) 7(35) 3 (15.8) 5 (41.7) 6 (30) 4 (16.7) 4 (57.1) 6 (30) 2 (11.8) 5 (41.7) 7 (31.8) 3 (15.8) 5 (41.7) 6 (30)
3 7(33.3) 2(20) 11(55) 6 (31.6) 2 (16.7) 10 (60) 9 (37.5) 1 (14.3) 10 (50) 5 (29.4) 2 (16.7) 13 (59.1) 6 (31.6) 2 (16.7) 12 (60)

Ki67 a 25
(5,100)

27.5
(10,90)

60
(10,90)

0.066 41.1
(30.6)

33(22.6) 58.8
(27.2)

0.027 30 (19.2,
80)

35 (23.8,
45)

60 (28.8,
90)

0.196 38 (31) 32.8
(22.7)

59.7
(25.9)

0.009 41.1
(30.6)

33 (22.6) 58.8
(27.2)

0.027

Tumour phenotype 0.024 0.012 0.006 0.018 0.012
Her-2 over-expressed 1(4.8) 4(40) 7(33.3) 1(5.3) 4(33.3) 7(33.3) 2(8.3) 4(50) 6(30) 1(5.9) 4(33.3) 7(30.4) 1(5.3) 4(33.3) 7(33.3)
Luminal 14(66.7) 5(50) 6(28.6) 13(68.4) 7(58.3) 5(23.8) 16(66.7) 4(50) 5(25) 12(70.6) 7(58.3) 6(26.1) 13(68.4) 7(58.3) 5(23.8)
Triple-Negative 6(28.6) 1(10) 8(38.1) 5(26.3) 1(8.3) 9(42.9) 6(25) 0(0) 9(45) 4(23.5) 1(8.3) 10(43.5) 5(26.3) 1(8.3) 9(42.9)

Hormonal receptors
status

0.178 0.075 0.112 0.071 0.075

Negative 7(33.3) 5(50) 13(61.9) 6(31.6) 5(41.7) 14(66.7) 8(33.3) 4(50) 13(65) 5(29.4) 5(41.7) 15(65.2) 6(31.6) 5(41.7) 14(66.7)
Positive 14(66.7) 5(50) 7(38.1) 13(68.4) 7(58.3) 7(33.3) 16(66.7) 4(50) 7(35) 12(70.6) 7(58.3) 8(34.8) 13(68.4) 7(58.3) 7(33.3)

Her-2 status 0.028 0.061 0.031 0.115 0.061
Non-over-expressed 20(95.2) 6(60) 13(66.7) 18(94.7) 8(66.7) 14(66.7) 22(91.7) 4(50) 14(70) 16(94.1) 8(66.7) 16(69.6) 18(94.7) 6(66.7) 14(66.7)
Over-expressed 1(4.8) 5(40) 6(33.3) 1(5.3) 4(33.3) 7(33.3) 2(8.3) 4(50) 6(30) 1(5.9) 4(33.3) 7(30.4) 1(5.3) 4(33.3) 7(33.3)

Triple-Negative status 0.272 0.104 0.051 0.087 0.104
No 15(71.4) 9(90) 13(61.9) 14(73.7) 11(91.7) 12(57.1) 18(75) 8(1 0 0) 11(55) 13(76.5) 11(91.7) 13(56.5) 14(73.7) 11(91.7) 12(57.1)
Yes 6(28.6) 1(10) 8(38.1) 5(26.3) 1(8.3) 9(42.9) 6(25) 0(0) 9(45) 4(23.5) 1(8.3) 10(43.5) 5(26.3) 1(8.3) 9(42.9)

Luminal 0.047 0.014 0.018 0.015 0.014
No 7(33.3) 5(50) 15(71.4) 6(31.6) 5(41.7) 16(76.2) 8(33.3) 4(50) 15(75) 5(29.4) 5(41.7) 17(73.9) 6(31.6) 5(41.7) 16(76.2)
Yes 14(66.7) 5(50) 6(28.6) 13(68.4) 7(58.3) 5(23.8) 16(66.7) 4(50) 5(25) 12(70.6) 7(58.3) 6(26.1) 13(68.4) 7(58.3) 5(28.8)

Adjuvant
Chemotherapy

0.52 0.423 0.459 0.459 0.423

No 7(33.3) 3(30) 4(19) 7(36.8) 2(16.7) 4(19) 6(25) 2(25) 5(25) 6(35.3) 3(25) 4(17.4) 7(36.8) 2(16.7) 4(19)
Yes 14(85.7) 7(70) 17(81) 12(63.2) 10(83.3) 17(81) 18(75) 6(75) 1575) 11(64.7) 9(75) 19(82.6) 12(63.2) 10(83.3) 17(81)

Adjuvant Radiotherapy 0.561 0.803 0.69 1 0.803
No 3(14.3) 3(30) 3(14.3) 3(15.8) 3(25) 3(14.3) 3(12.5) 2(25) 4(20) 3(17.6) 2(16.7) 4(17.4) 3(15.8) 3(25) 3(14.3)
Yes 18(85.7) 7(70) 18(85.7) 16(84.2) 9(75) 18(85.7) 21(87.5) 6(75) 16(80) 14(82.4) 10(83.3) 19(82.6) 16(84.2) 9(75) 18(85.7)

C1: cluster 1; C2: cluster 2; C3: cluster 3; a: mean (sd) or median (min, max).
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Table 3
Comparison of prediction for overall and specific survival between clusters at 5 and 10-year.

Predict 5-year Predict 10-year

Overall Survival Specific Survival Overall Survival Specific Survival

Methods No. of patients % [95% CI] P-value % [95% CI] P-value % [95% CI] P-value % [95% CI] P-value

K-sparse 0.021 0.002 0.077 0.004
Cluster 1 (n = 19) 77% [67–82] 87% [80–91] 58% [48–65] 80% [73–86]
Cluster 2 (n = 12) 71% [57–82] 81% [69–90] 53% [38–66] 75% [60–85]
Cluster 3 (n = 20) 59% [47–69] 68% [60–74] 41% [29–52] 62% [53–69]

SIMLR 0.1 0.011 0.241 0.009
Cluster 1 (n = 17) 75% [64–82] 85% [77–91] 55% [45–64] 77% [65–84]
Cluster 2 (n = 12) 72% [56–82] 83% [69–91] 55% [40–67] 79% [65–87]
Cluster 3 (n = 22) 61% [50–70] 71% [63–77] 43% [32–53] 64% [55–70]

Sparse K-means 0.049 0.027 0.203 0.024
Cluster 1 (n = 24) 74% [64–80] 84% [76–89] 54% [43–63] 80% [73–86]
Cluster 2 (n = 7) 72% [58–87] 83% [70–94] 56% [37–72] 75% [60–85]
Cluster 3 (n = 20) 61% [49–69] 70% [61–78] 42% [32–52] 62% [53–69]

Spectral clustering 0.021 0.002 0.077 0.004
Cluster 1 (n = 19) 77% [68–83] 77% [80–91] 58% [48–65] 82% [73–86]
Cluster 2 (n = 12) 71% [57–81] 71% [69–90] 52% [32–64] 75% [60–85]
Cluster 3 (n = 20) 59% [47–68] 69% [60–76] 41% [29–52] 62% [53–69]

PCA K-means 0.055 0.009 0.085 0.008
Cluster 1 (n = 21) 77% [67–81] 86% [79–91] 58% [48–65] 79% [71–85]
Cluster 2 (n = 10) 69% [53–81] 80% [66–90] 52% [32–64] 77% [63–86]
Cluster 3 (n = 20) 60% [47–69] 69% [61–78] 41% [29–52] 63% [54–70]

Fig. 3. Venn diagram of metabolic that were in common or unique to the five
clustering methods.
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means identified 10 pathways the 3 most important of which are
‘‘Alanine, aspartate and glutamate metabolism” involved in amino
acid metabolic pathway, ‘‘Pyruvate metabolism” involved in carbo-
hydrates metabolic/glucose oxidation pathway and ‘‘Citrate cycle
(TCA cycle)” involved in energy metabolic pathway.

Finally, with 30 identified pathways, SIMLR is the method that
identified the most metabolic pathways. Of these, the 3 most
important highlighted metabolic pathways are ‘‘arginine and pro-
line metabolism”, ‘‘glycine, serine and threonine metabolism”
and ‘‘alanine, aspartate and glutamate metabolism”, involved in
amino acid metabolic pathways. The Venn diagram (Fig. 4) shows
the overlap of pathways detected by the five methods. Amino acid
metabolism appeared to be the most frequently modified pathway.
Enrichment and pathway analyses also showed modifications in
glucose metabolism. From the biological point of view, SIMLR
and spectral clustering are the two methods that identified the
most relevant metabolic pathways.

3.2.7. Comparison of intensity of metabolites between the 5 methods
Among amino acid and glucose metabolisms, fourteen related

metabolites were selected as potential biomarkers in BC [54–57].
As shown in Supplementary Fig. 4, the intensities of these 14
metabolites were compared between the 3 clusters for each of
the 5 methods. The intensity of Uridine diphosphate (UDP)
glucose, Guanine, L-Glutamine, L-Glutamic acid, L-Isoleucine,
L-Proline, L-Methionine, L-Phenylalanine, Pyruvic acid, Spermine,
Glutathione, Creatine, L-Carnitine and L-Acetylcarnitine were
statistically significant between at least one of the clusters. The
five methods agree that cluster 3 patients have low levels of
Creatine, L-acetylcarnitine, L-Glutamic acid and high levels of
Guanine, L-Isoleucine, L-Phenylalanine, Pyruvic acid and Spermine
(Fig. 5). These metabolite levels seem to be predictive of poor
prognosis [57–59].
4. Discussion

4.1. From a machine learning perspective

To the best of our knowledge, this proof-of-concept study is the
first to compare different unsupervised ML methods to identify
metabolomics-based prognostic signatures in BC. Analyses were
performed intentionally without any prior clinical or biological
assumptions. Clinical and biological interpretations were per-
formed only after cluster identification. The objective of our study
was to compare different unsupervised ML algorithms for feature
selection from untargeted metabolomic data and to evaluate the
capacity of these methods to select relevant features for further
use in prediction models. This study did not seek to highlight sig-
nificant differences but rather to assess how unsupervised meth-
ods might behave with high-dimension metabolic data and to
open up new perspectives in the particularly active domain of BC



Table 4
Table indicating which metabolites are in each intersection or are unique to a certain list.

Clustering
Methods

Nbr Metabolites

5 K-Sparse
PCA K-means
SIMLR
Sparse K-means
Spectral clustering

2 Creatine; L-Proline;

4 K-Sparse
SIMLR
Sparse K-means
Spectral clustering

1 Triethanolamine;

K-Sparse
PCA K-means
SIMLR
Sparse K-means

2 L-Methionine; L-Phenylalanine

K-Sparse
PCA K-means
Sparse K-means
Spectral clustering

2 L-Carnitine; Betaine;

PCA K-means
SIMLR
Sparse K-means
Spectral clustering

4 Glutathione; Isoleucyl-Methionine; Humulinic acid A; Alnustone;

3 K-Sparse
SIMLR
Sparse K-means

1 Hydroxyprolyl-Valine;

K-Sparse
PCA K-means
Sparse K-means

20 Aminoadipic acid; Methylmalonic acid; 1b-Furanoeudesm-4(15)-en-1-ol acetate; Glycerophosphocholine; Lidocaine;
Adenosine monophosphate; 2-Methyl-3-ketovaleric acid; Liqcoumarin; p-Cresol sulfate; 2-Methylbutyroylcarnitine;
Methoxsalen; Citramalic acid; Hypoxanthine; L-Acetylcarnitine; Ethyl aconitate; Guanine; L-Glutamic acid; Uridine 50-
monophosphate; N1,N12-Diacetylspermine; 5-Aminoimidazole ribonucleotide

SIMLR
Sparse K-means
Spectral clustering

4 2,5-Dichloro-4-oxohex-2-enedioate; Histidinyl-Isoleucine; 3-(4-Methyl-3-pentenyl)thiophene; (�)-Epigallocatechin

PCA K-means
Sparse K-means
Spectral clustering

3 L-Isoleucine; Ascorbic acid; Neurine;

2 K-Sparse
Sparse K-means

3 5-Hydroxyisourate; Hexanoylcarnitine; L-Glutamine;

K-Sparse
PCA K-means

9 Creatinine; Proline; betaine; Erythronic acid; Garcinia acid; Thiolutin; 4-Chloro-1H-indole-3-acetic acid; Niacinamide 3-
Dehydroxycarnitine; Dihydrothymine;

SIMLR
Spectral clustering

21 5b-Cyprinol sulfate; 20 ,4-Dihydroxy-40 ,60-dimethoxychalcone; Propenoylcarnitine; 5-Hydroxyindoleacetic acid; Phaseolic
acid Lisuride; 2-Bromophenol; (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine isoform B (protein);
Plastoquinone 3; 2,2,4,4,-Tetramethyl-6-(1-oxopropyl)-1,3,5-cyclohexanetrione; 1-Pyrroline; Gingerol; Prehumulinic acid; 1-
Methylpyrrolo[1,2-a]pyrazine; 5-(methylthio)-2,3-Dioxopentyl phosphate; Propionic acid; Isosakuranin; Phenmetrazine;
Methionine sulfoxide; Glycerol; Carboxyphosphamide

SIMLR
Sparse K-means

1 Phosphoric acid;

PCA K-means
Sparse K-means

4 I(�); L-Tyrosine; Gravelliferone; Valganciclovir;

1 K-Sparse 10 Prolylhydroxyproline; Guanidoacetic acid; Histamine; PC-M6; L-Histidine; N-Acetyl-L-aspartic acid; 3-Mercaptohexyl
hexanoate; Trimethylamine N-oxide; Pantothenic acid; Flunitrazepam

SIMLR 14 3-Hydroxy-6,8-dimethoxy-7(11)-eremophilen-12,8-olide; Glycerol tripropanoate; Alanyl-Isoleucine; 1-(2,4,6-
Trimethoxyphenyl)-1,3-butanedione; 1-Oxo-1H-2-benzopyran-3-carboxaldehyde; 1,3,11-Tridecatriene-5,7,9-triyne; N-
Acetyl-L-methionine; 3-Methyl sulfolene; 5-(4-Acetoxy-3-oxo-1-butynyl)-2,20-bithiophene; Ac-Ser-Asp-Lys-Pro-OH; Cyclic
AMP; Benzothiazole; (±)-2-Methylthiazolidine; 2-Methylcitric acid

Spectral clustering 13 2,3-diketogulonate; 2,5-Furandicarboxylic acid; Pyrrolidine; Piperidine; Beta-Alanine; Aspartyl-L-proline; Erythro-5-hydroxy-

L-lysinium(1 + ); Acrylamide; 5-Hydroxylysine; S-Nitrosoglutathione; 2,2-dichloro-1,1-ethanediol; Valerenic acid;
Dichloromethane

Sparse K-means 3 Erinapyrone C; Ergothioneine; N-Methylethanolaminium phosphate
PCA K-means 4 Dimethylglycine; Pipecolic acid; Methyl (9Z)-100-oxo-6,100-diapo-6-carotenoate; N-Desmethylvenlafaxine
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phenotype predictors. We demonstrated that the K-sparse and
SIMLR methods have a higher clustering performance compared
with the three other popular unsupervised ML methods in detect-
ing groups of patients with BC using metabolomic data. Interest-
ingly, even though the spectral method is a little less clinically
efficient than the k-sparse and SIMLR methods, it identified rele-
vant metabolic pathways.

Our study suffers from various limitations, namely the rela-
tively small number of patients and the monocentric and retro-
spective nature of the study. Besides, our results could not be
validated on an external cohort. The clustering performances were
assessed only by internal validation based on silhouette value.
Indeed, we could not compare the labels obtained from our classi-
fication with the true labels to calculate the accuracy of the classi-
fication since the true labels were unknown.

Other unsupervised ML methods such as model-based cluster-
ing, bi-clustering and deep learning may be of value in this analysis
and should be further explored. Yet it is worth noting that, even



Table 5
List of significant relevant pathways identified by 5 methods.

K-Sparse method

Clusters
Comparaison

Interaction metabolite Pathway Name Total
Cmpda

Match
Statusb

Raw Pc -log(p) Impactd

C1 vs C3 UDP – glucose Starch and sucrose
metabolism

50 1 0,0107 4,5388 0,1390

UDP – glucose Amino sugar and
nucleotide sugar
metabolism

88 1 0,0107 4,5388 0,0928

UDP - glucose; Glyceric acid Glycerolipid
metabolism

32 2 0,0153 4,1831 0,0206

SIMLR method

Clusters
Comparaison

Interaction metabolite Pathway
Name

Total
Cmpd

Match
Status

P
Value

-log(p) Impact

C1 VS C2 Glutathione; Oxidized glutathione; Glycine; L-Glutamic acid; Pyroglutamic
acid; Spermidine; Ornithine; Putrescine; Spermine; Cadaverine;
Aminopropylcadaverine; Ascorbic acid

Glutathione
metabolism

38 12 0 12,826 0,3628

Ascorbic acid; Uridine diphosphate glucose; Pyruvic acid; D-Glucuronic
acid 1-phosphate; Oxoglutaric acid;

Ascorbate and aldarate
metabolism

45 5 0 12,469 0,1383

L-Tryptophan; N-Acetylserotonin; 5-Hydroxyindoleacetic acid; 2-
Aminomuconic acid semialdehyde; 3-Hydroxyanthranilic acid; L-
Kynurenine; Acetyl-N-formyl-5-methoxykynurenamine; Isophenoxazine;

Tryptophan
metabolism

79 8 0,0001 9,1233 0,2741

50-Methylthioadenosine; N-Formyl-L-methionine; L-Homocysteine; L-
Methionine; Glutathione; Phosphoserine; 3-Sulfinoalanine; L-Aspartyl-4-
phosphate; Pyruvic acid;

Cysteine and
methionine
metabolism

56 9 0,0008 7,1674 0,2509

L-Glutamine; Phosphoribosylformylglycineamidine; Cyclic AMP; Adenosine
monophosphate; Adenosine; Inosine; Adenine; Hypoxanthine; Guanine;
Uric acid; 5-Hydroxyisourate; Guanosine; Adenosine diphosphate ribose;
5-Aminoimidazole ribonucleotide; Glyoxylic acid; Glycine; Adenosine 30 ,50-
diphosphate;

Purine metabolism 92 17 0,0011 6,8091 0,2048

Glyoxylic acid; Oxoglutaric acid; N-Formyl-L-methionine; Glycolic acid;
Glyceric acid; Pyruvic acid;

Glyoxylate and
dicarboxylate
metabolism

50 6 0,0027 5,9281 0,268

L-Glutamine; Ornithine; Citrulline; L-Arginine; L-Glutamic acid; N-
Acetylornithine; L-Proline; Hydroxyproline; Guanidoacetic acid; Creatine;
4-Guanidinobutanoic acid; N2-Succinyl-L-ornithine; Putrescine;
Spermidine; N-Acetylputrescine; Pyruvic acid; Glyoxylic acid; Spermine;

Arginine and proline
metabolism

77 19 0,0053 5,238 0,6514

Oxoglutaric acid; Oxalosuccinic acid; Pyruvic acid; Citrate cycle (TCA
cycle)

20 3 0,0075 4,8991 0,176

D-Xylose; Uridine diphosphate glucose; D-Glucuronic acid 1-phosphate;
Pyruvic acid;

Pentose and
glucuronate
interconversions

53 4 0,0076 4,8821 0,0394

2-Hydroxyethanesulfonate; Pyruvic acid; 3-Sulfinoalanine; Taurine and
hypotaurine
metabolism

20 3 0,0154 4,1754 0,0324

Glyceric acid; Betaine; Guanidoacetic acid; Dimethylglycine; Glycine;
Phosphoserine; L-Threonine; O-Phosphohomoserine; L-Aspartyl-4-
phosphate; Creatine; Glyoxylic acid; Pyruvic acid; L-Tryptophan

Glycine, serine and
threonine metabolism

48 13 0,018 4,0154 0,46986

Uridine diphosphate glucose; D-Glucuronic acid 1-phosphate; N-Acetyl-D-
Glucosamine 6-Phosphate; Uridine diphosphate-N-acetylglucosamine;
Cytidine monophosphate N-acetylneuraminic acid; D-Glucose; D-Xylose

Amino sugar and
nucleotide sugar
metabolism

88 7 0,0187 3,9783 0,1417

Formiminoglutamic acid; L-Glutamic acid; Urocanic acid; L-Histidine;
Histamine; D-Erythro-imidazole-glycerol-phosphate; Ergothioneine;
Hydantoin-5-propionic acid; Imidazole acetol-phosphate; Oxoglutaric acid;

Histidine metabolism 44 10 0,0412 3,1903 0,3705

Pyridoxamine; Oxoglutaric acid; 3-Hydroxy-2-methylpyridine-4,5-
dicarboxylate; Pyruvic acid;

Vitamin B6 metabolism 32 4 0,0412 3,1898 0,0773

C1 VS C3 Formiminoglutamic acid; L-Glutamic acid; Urocanic acid; L-Histidine;
Histamine; D-Erythro-imidazole-glycerol-phosphate; Ergothioneine;
Hydantoin-5-propionic acid; Imidazole acetol-phosphate; Oxoglutaric acid;

Histidine metabolism 44 10 0,0139 4,2752 0,3705

Phenylpyruvic acid; L-Phenylalanine; L-Tyrosine; 3-Dehydroquinate; L-
Tryptophan;

Phenylalanine, tyrosine
and tryptophan
biosynthesis

27 5 0,0189 3,9687 0,099

L-Tryptophan; N-Acetylserotonin; 5-Hydroxyindoleacetic acid; 2-
Aminomuconic acid semialdehyde; 3-Hydroxyanthranilic acid; L-
Kynurenine; Acetyl-N-formyl-5-methoxykynurenamine; Isophenoxazine;

Tryptophan
metabolism

79 8 0 16,409 0,2741

C2 VS C3 Glutathione; Oxidized glutathione; Glycine; L-Glutamic acid; Pyroglutamic
acid; Spermidine; Ornithine; Putrescine; Spermine; Cadaverine;
Aminopropylcadaverine; Ascorbic acid;

Glutathione
metabolism

38 12 0 16,133 0,3628

Ascorbic acid; Uridine diphosphate glucose; Pyruvic acid; D-Glucuronic
acid 1-phosphate; Oxoglutaric acid

Ascorbate and aldarate
metabolism

45 5 0 13,096 0,1383

50-Methylthioadenosine; N-Formyl-L-methionine; L-Homocysteine; L-
Methionine; Glutathione; Phosphoserine; 3-Sulfinoalanine; L-Aspartyl-4-

Cysteine and
methionine

56 9 0,0001 9,8548 0,2509

(continued on next page)
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Table 5 (continued)

SIMLR method

Clusters
Comparaison

Interaction metabolite Pathway
Name

Total
Cmpd

Match
Status

P
Value

-log(p) Impact

phosphate; Pyruvic acid; metabolism
Phenylpyruvic acid; L-Phenylalanine; L-Tyrosine; 3-Dehydroquinate; L-
Tryptophan;

Phenylalanine, tyrosine
and tryptophan
biosynthesis

27 5 0,0001 8,9814 0,099

L-Histidine; L-Phenylalanine; L-Arginine; L-Glutamine; Glycine; L-
Methionine; L-Lysine; L-Isoleucine; L-Threonine; L-Tryptophan; L-Tyrosine;

L-Proline; L-Glutamic acid; Phosphoserine;

Aminoacyl-tRNA
biosynthesis

75 14 0,0002 8,758 0,1127

Glyoxylic acid; Oxoglutaric acid; N-Formyl-L-methionine; Glycolic acid;
Glyceric acid; Pyruvic acid;

Glyoxylate and
dicarboxylate
metabolism

50 6 0,0004 7,7271 0,268

L-Glutamine; Phosphoribosylformylglycineamidine; Cyclic AMP; Adenosine
monophosphate; Adenosine; Inosine; Adenine; Hypoxanthine; Guanine;
Uric acid; 5-Hydroxyisourate; Guanosine; Adenosine diphosphate ribose;
5-Aminoimidazole ribonucleotide; Glyoxylic acid; Glycine; Adenosine 30 ,50-
diphosphate;

Purine metabolism 92 17 0,0007 7,306 0,2048

Malonic acid; Beta-Alanine; Spermine; Spermidine; Dihydrouracil;
Pantothenic acid; Uracil; L-Histidine

beta-Alanine
metabolism

28 8 0,0012 6,7568 0,3577

Uridine 50-monophosphate; L-Glutamine; Dihydrouracil; Cytidine
monophosphate; Cytidine; Cytosine; Uracil; Dihydrothymine; Uridine
diphosphate glucose; Malonic acid; Ureidosuccinic acid; Beta-Alanine;
Methylmalonic acid;

Pyrimidine metabolism 60 13 0,0014 6,5817 0,2756

Pantothenic acid; Dihydrouracil; Beta-Alanine; Pyruvic acid; Adenosine
30 ,50-diphosphate; Uracil;

Pantothenate and CoA
biosynthesis

27 6 0,0023 6,0879 0,2736

L-Phenylalanine; Phenylpyruvic acid; Benzoic acid; Hippuric acid; Pyruvic
acid; L-Tyrosine;

Phenylalanine
metabolism

45 6 0,0072 4,9364 0,2468

L-Glutamic acid; L-Glutamine; Oxoglutaric acid D-Glutamine and D-
glutamate metabolism

11 3 0,0124 4,39 0,139

L-Glutamine; Ornithine; Citrulline; L-Arginine; L-Glutamic acid; N-
Acetylornithine; L-Proline; Hydroxyproline; Guanidoacetic acid; Creatine;
Creatinine; 4-Guanidinobutanoic acid; N2-Succinyl-L-ornithine; Putrescine;
Spermidine; N-Acetylputrescine; Pyruvic acid; Glyoxylic acid; Spermine;

Arginine and proline
metabolism

77 19 0,0169 4,082 0,6514

2-Hydroxyethanesulfonate; Pyruvic acid; 3-Sulfinoalanine; Taurine and
hypotaurine
metabolism

20 3 0,0215 3,8411 0,0324

N-Acetyl-L-aspartic acid; Pyruvic acid; Ureidosuccinic acid; Oxoglutaric
acid; L-Glutamine; L-Glutamic acid; 2-Keto-glutaramic acid;

Alanine, aspartate and
glutamate metabolism

24 7 0,0221 3,8108 0,4122

Pyridoxamine; Oxoglutaric acid; 3-Hydroxy-2-methylpyridine-4,5-
dicarboxylate; Pyruvic acid;

Vitamin B6 metabolism 32 4 0,0267 3,6235 0,0773

Oxoglutaric acid; Oxalosuccinic acid; Pyruvic acid Citrate cycle (TCA
cycle)

20 3 0,0302 3,5015 0,176

Glyceric acid; Betaine; Guanidoacetic acid; Dimethylglycine; Glycine;
Phosphoserine; L-Threonine; O-Phosphohomoserine; L-Aspartyl-4-
phosphate; Creatine; Glyoxylic acid; L-Tryptophan

Glycine, serine and
threonine metabolism

48 13 0,0372 3,2914 0,4699

Uridine diphosphate glucose; Glycerol 3-phosphate; Glycerol; Glyceric
acid; Galactosylglycerol;

Glycerolipid
metabolism

32 5 0,0427 3,1546 0,2162

D-Xylose; Uridine diphosphate glucose; D-Glucuronic acid 1-phosphate;
Pyruvic acid;

Pentose and
glucuronate
interconversions

53 4 0,0427 3,1536 0,0394

Sparse K-means method

Clusters
Comparaison

Interaction metabolite Total
Cmpd

Match
Status

Raw p -log(p) Impact

C1 VS C2 L-Methionine; Glutathione Cysteine and
methionine
metabolism

56 2 0.007 4.9 0.0454

C1 VS C3 L-Methionine; Glutathione; Cysteine and
methionine
metabolism

56 2 0.0020 6.2 0.00454

Spectral clustering method

Clusters
Comparaison

Interaction metabolite Pathway Name Total
Cmpd

Match
Status

Raw p -log(p) Impact

C1 VS C3 Iminoaspartic acid; Quinolinic acid; Niacinamide; Pyruvic acid; Propionic
acid;

Nicotinate and
nicotinamide
metabolism

44 5 0,0024 6,0206 0,0712

Glyceric acid; Betaine; Guanidoacetic acid; Dimethylglycine; Glycine;
Phosphoserine; L-Threonine; O-Phosphohomoserine; L-Aspartyl-4-
phosphate; Creatine; Glyoxylic acid; L-Tryptophan

Glycine, serine and
threonine metabolism

48 13 0,0040 5,5100 0,4699
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Table 5 (continued)

Spectral clustering method

Clusters
Comparaison

Interaction metabolite Pathway Name Total
Cmpd

Match
Status

Raw p -log(p) Impact

50-Methylthioadenosine; N-Formyl-L-methionine; L-Homocysteine; L-
Methionine; Glutathione; Phosphoserine; 3-Sulfinoalanine; L-Aspartyl-4-
phosphate; Pyruvic acid;

Cysteine and
methionine
metabolism

56 9 0,0098 4,6232 0,2509

Formiminoglutamic acid; L-Glutamic acid; Urocanic acid; L-Histidine;
Histamine; D-Erythro-imidazole-glycerol-phosphate; Ergothioneine;
Hydantoin-5-propionic acid; Imidazole acetol-phosphate; Oxoglutaric acid;

Histidine metabolism 44 10 0,0101 4,5961 0,3705

xoglutaric acid; Oxalosuccinic acid; Pyruvic acid; Citrate cycle (TCA
cycle)

20 3 0,0171 4,0710 0,1760

Pyruvic acid; L-Threonine; L-Isoleucine; Valine, leucine and
isoleucine biosynthesis

27 3 0,0178 4,0277 0,0350

D-Xylose; Uridine diphosphate glucose; D-Glucuronic acid 1-phosphate;
Pyruvic acid;

Pentose and
glucuronate
interconversions

53 4 0,0210 3,8609 0,0394

D-Glucose; Glyceric acid; Pyruvic acid; Pentose phosphate
pathway

32 3 0,0232 3,7622 0,0218

Pyruvic acid; L-Lactic acid; D-Glucose; Glycolysis or
Gluconeogenesis

31 3 0,0249 3,6928 0,0953

Pyruvic acid; L-Lactic acid; Pyruvate metabolism 32 2 0,0274 3,5955 0,3201

L-Glutamic acid; Pyruvic acid; Butyric acid; Oxoglutaric acid; Butanoate metabolism 40 4 0,0283 3,5644 0,0852

2-Hydroxyethanesulfonate; Pyruvic acid; 3-Sulfinoalanine; Taurine and
hypotaurine
metabolism

20 3 0,0287 3,5525 0,0324

Glyoxylic acid; Oxoglutaric acid; N-Formyl-L-methionine; Glycolic acid;
Glyceric acid; Pyruvic acid;

Glyoxylate and
dicarboxylate
metabolism

50 6 0,0303 3,4966 0,2680

Ascorbic acid; Uridine diphosphate glucose; Pyruvic acid; D-Glucuronic
acid 1-phosphate; Oxoglutaric acid;

Ascorbate and aldarate
metabolism

45 5 0,0330 3,4104 0,1383

Epinephrine; Dopamine; L-Tyrosine; Homovanillic acid; Pyruvic acid; Tyrosine metabolism 76 5 0,0385 3,2580 0,1750
N-Acetyl-L-aspartic acid; Pyruvic acid; Ureidosuccinic acid; Oxoglutaric
acid; L-Glutamine; L-Glutamic acid; 2-Keto-glutaramic acid;

Alanine, aspartate and
glutamate metabolism

24 7 0,0390 3,2431 0,4122

Pyridoxamine; Oxoglutaric acid; 3-Hydroxy-2-methylpyridine-4,5-
dicarboxylate; Pyruvic acid;

Vitamin B6 metabolism 32 4 0,0447 3,1074 0,0773

PCA K-means method

Clusters
Comparaison

Interaction metabolite Pathway Name Total
Cmpd

Match
Status

Raw p -log(p) Impact

C1 vs C3 Iminoaspartic acid; Quinolinic acid; Niacinamide; Pyruvic acid; Propionic
acid;

Nicotinate and
nicotinamide
metabolism

44 5 0,003 5,9412 0,0712

Oxoglutaric acid; Oxalosuccinic acid; Pyruvic acid; Citrate cycle (TCA
cycle)

20 3 0,011 4,4865 0,1760

Epinephrine; Dopamine; L-Tyrosine; Homovanillic acid; Pyruvic acid; Tyrosine metabolism 76 5 0,024 3,7311 0,1750
Pyruvic acid; L-Lactic acid; Pyruvate metabolism 32 2 0,043 3,1507 0,3201
D-Xylose; Uridine diphosphate glucose; D-Glucuronic acid 1-phosphate;
Pyruvic acid;

Pentose and
glucuronate
interconversions

53 4 0,044 3,1214 0,0394

Pyruvic acid; L-Threonine; L-Isoleucine; Valine, leucine and
isoleucine biosynthesis

27 3 0,045 3,1107 0,0350

Ascorbic acid; Uridine diphosphate glucose; Pyruvic acid; D-Glucuronic
acid 1-phosphate; Oxoglutaric acid;

Ascorbate and aldarate
metabolism

45 5 0,045 3,0926 0,1383

L-Glutamic acid; Pyruvic acid; Butyric acid; Oxoglutaric acid; Butanoate metabolism 40 4 0,046 3,0843 0,0852

D-Glucose; Glyceric acid; Pyruvic acid; Pentose phosphate
pathway

32 3 0,046 3,0769 0,0218

N-Acetyl-L-aspartic acid; Pyruvic acid; Ureidosuccinic acid; Oxoglutaric
acid; L-Glutamine; L-Glutamic acid; 2-Keto-glutaramic acid

Alanine, aspartate and
glutamate metabolism

24 7 0,048 3,0446 0,4122

a Total cmpd is the total number of compounds in the pathway.
b Hits is the actual matched number from the uploaded data.
c Raw p is the original p-value calculated from the pathway analysis.
d Impact is the pathway impact value calculated from pathway topology analysis.
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though deep learning methods are of particular interest in many
fields, they necessitate a very large number of patients to be effi-
ciently trained and may therefore not be suitable for small metabo-
lomics datasets obtained on real life patients, such as the one we
have used. While obtaining imaging or clinical data concerning
several thousands of patients seems achievable, obtaining metabo-
lomics data for that many patients is currently much more compli-
cated. Furthermore, even though some efforts are being made to
tackle this issue [60], it is currently impossible to understand
which features are responsible for the outcome when using
deep-learning clustering techniques. It would therefore be impos-
sible to understand the metabolic differences underlying different
patient clusters if deep learning clustering was used.

These considerations raise important questions: in the future,
on what basis should decisions be made? On results from a single
method? Or on results provided by several methods? In view of the



Fig. 4. Venn diagram of pathways that were in common or unique to the five clustering methods.
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findings we have highlighted, it seems that decisions should be
taken collegially, i.e. based on the results of a set of methods, as
at multidisciplinary consultation meetings involving health profes-
sionals from different disciplines and whose skills are essential to
take decisions ensuring patients the best possible care according
to the state of the science.

4.2. From a clinical perspective

From a clinical point of view, the methods were able to high-
light three distinct groups of patients with different clinical pro-
files. Patients identified in cluster 1 may be considered to have
the best prognosis, patients in cluster 2 an intermediate prognosis,
while patients in cluster 3 may be considered to have the worst
prognosis. The results in Table 2 show that the tumors of patients
in cluster 1 were predominantly non-invasive and non-
proliferative, whereas the tumors of cluster 3 patients were mainly
invasive and proliferative. Tumors in cluster 2 were rather invasive
but not proliferative, hence the intermediate prognosis. We
hypothesize that these patients would have an intermediate (atyp-
ical) biological profile, which is why the methods are discordant.
We further evidence heterogeneity within the triple-negative BC
subpopulation with most of the patients classified in cluster 3.
However, a third of the triple-negative patients were in cluster 1
Recent molecular profiling studies of triple-negative BC using par-
allel sequencing and other ‘‘omics” technologies have also uncov-
ered an unexpectedly high level of heterogeneity as well as a
number of common features [61,62].

In addition, no significant difference between clusters could be
demonstrated in terms of age, histologic type, lymph node involve-
ment, metastasis or survival (OS, SS or RFS). Indeed, with a median
follow-up of only 48.5 months, this duration is insufficient to
demonstrate a significant difference in terms of OS, SS, or RFS. Nev-
ertheless, it is quite easy to predict that patients in cluster 3 have
the highest risk of progression and that, conversely, patients in
cluster 1 have the lowest risk of progression. To confirm this intu-
ition and try to reduce this short follow-up limitation, we analyzed
simulated survival data obtained with the PREDICT tool. With a 5-
year pOS rate at around 75% for cluster 1, 70% for cluster 2 and 60%
for cluster 3, in-silico analyses have demonstrated their high poten-
tial value [28,63,64] and confirmed that patients in cluster 3 have a
poorer prognosis [65,66]. One limitation of our study could be the



Fig. 5. Boxplot of the 8 metabolites extracted from 5 ML methods.
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representativity of our population, e.g. it is recognized that BCs in
younger patients (<40 years) are more aggressive [67]. Our study
did not include a large number of young patients, which could
explain why no significant difference was demonstrated in terms
of age between clusters. Similarly, with only three patients with
invasive lobular carcinoma (6%), our results did not identify a
metabolic signature associated with this phenotype. Previous stud-
ies have shown a survival benefit in favor of invasive lobular carci-
noma [68,69] and metabolomic studies focused on this particular
type of BC could provide valuable biological information. Further-
more, due to the over-representation of hormonal-receptor nega-
tive tumors (48%) in our population compared to the literature
[70], our population could have had unfavorable prognosis. This
bias may result from our method of tumor selection. We decided
to analyze frozen samples available in our biobank. Obviously,
hormonal-receptor negative, triple-negative, Her-2-positive
tumors are more often frozen and stored for further molecular test-
ing and inclusion in clinical trials. In the present study, it is inter-
esting to note that the five methods classified 73% of the patients in
the same cluster. Among the 27% of patients classified differently
by at least one of the methods, 9.5% of patients were classified
heterogeneously by the five methods. Indeed, for each of these 5
patients, three methods classified them in one cluster and 2 others
in another cluster without any connection between the types of
methods used. Moreover, it is interesting to note that the different
methods classified patients, on the one hand, in either the good
prognostic cluster or the intermediate prognostic cluster or, on
the other, in either the intermediate prognostic cluster or the poor
prognostic cluster, but never in the good prognostic cluster or the
poor prognostic cluster. A clinical analysis of these 5 patients
showed that they had atypical clinical profiles, probably due to
particular biological profiles. These atypical profiles would explain
why no classification consensus could be highlighted. Overall, ML
methods must remain a decision-making tool for the clinician,
especially in cases where patients have particular clinical and bio-
logical characteristics. To avoid possible medical errors, the final
responsibility for the decision lies with the clinician [71].

Finally, the initial clinical objective of this study was to define a
metabolomic signature to refine the current classification and help
the clinician in his chemotherapy prescription. This paper is the
result of methodological research analyzing the best ML methods
to develop this new tool. The patients selected were therefore
patients eligible for adjuvant chemotherapy. An analysis of the
metastatic population could help define a specific signature of
metastatic status and/or a signature associated to survival. How-
ever, the use of biopsy faces two practical difficulties: 1) the intra-
tumoral and inter-site heterogeneity that could be overcome
through the analysis of blood or urine samples; and 2) the amount
of material available once the pathologic analyses essential for
patient management have been performed. Metabolomic analysis
on paraffin slides could facilitate access to specimens and limit
the amount of material required.

4.3. From a biological perspective

From a physiological point-of-view, this study extends the
molecular stratification of BC to metabolomic profiles. Indeed,
our results suggest that dysregulation of metabolic pathways
exists between BC subtypes and that a particular amino acid profile
characterizes the different BC histologic subtypes. Dysregulations
of amino acid metabolism are well-known key events during can-
cer development [72] and are emerging hallmarks of cancers
[73,74]. Amino acids serve not only as building blocks in protein
synthesis but also as energy sources favoring cancer cell prolifera-
tion and growth [75]. Of interest, we identified significant differ-
ences between the BC subtypes of three metabolic pathways (i.e.
Glycolysis and lactate production, Glutaminolysis, and amino acid)
that play a pivotal role in BC growth [76,77]. Using the five meth-
ods, we consistently found that patients in cluster 3 showed higher
levels of Guanine, L-Isoleucine, L Methionine, L-Phenylalanine,
Pyruvic acid, Spermine and low levels of Creatine, L-
Acetylcarnitine and L-Glutamic acid. Our results suggested that
these metabolites could be candidate biomarker predictors of
poorer prognosis [78–82]. All these results are consistent with
the literature [57,83–86].

Given the exploratory nature of our study, we decided to use an
FDR rate of 0.25 as a threshold in order to identify relevant candi-
date pathways (https://software.broadinstitute.org/cancer/soft-
ware/gsea/wiki/index.php/FAQ).

A validation of these pathways, during a study whose main
objective will be to evaluate the usefulness of our metabolomics
signatures for decision-making, will need to be established with
the use of a lower False Discovery Rate or Family Wise Error Rate
(<0.05).

Indeed, tomeet thebiosyntheticneeds associatedwith rapidpro-
liferation, cancer cells must increase the import of nutrients. Two
main metabolites are essential for biosynthesis and survival in
mammalian cells, and particularly in cancer cells: glucose [87] and
glutamine [88]. The increased glucose uptake in tumors compared
to other healthy and non-proliferative tissues was first described
more than90years agobyOttoWarburg [89]. Glucose is theprimary
energy source of all cells because of its involvement in many pro-
cesses such as glycolysis or the Krebs cycle [90] in mitochondria.
Unlike healthy cells that adapt to available substrates (glucose/fatty
acids/proteins), some tumor cells are addicted to glucose. The other
important point is that, once metabolized, tumor cells will prefer
lactic fermentation to the Krebs cycle.

Lastly, the precise etiology of BC is still unknown even though
some genetic, epigenetic and environmental factors have been
identified [91]. It has been conclusively demonstrated that cancer
cell metabolism is heavily influenced by microenvironmental fac-
tors, including nutrient availability. Sullivan and coworkers [92]
found that diet affects local nutrient availability. This effect can
lead to substantial changes in the metabolism of tumor cells,
thereby modifying the response of these cells to drugs targeting
metabolism. Drugs capable of inhibiting tumor proliferation may
then become ineffective. Therefore, knowledge of microenviron-
mental nutrient levels is essential to a better understanding of
tumor metabolism.

Outcomes for cancer patients vary greatly. The classification of
BC into subtypes has been was defined in the literature on the basis
of molecular characterization of proteomics (single omic). This has
helped improve prognosis and personalized treatment. These con-
siderations have motivated efforts to produce large amounts of
multi-omic data such as TCGA [93] and ICGC [94]. However, cur-
rent algorithms still face challenges and need to integrate omic
data [95–98]. Defining BC subtypes using multi-omic data could
help to better understand some of the dark areas that still persist
in the field of tumor mechanisms in order to offer even more per-
sonalized treatments.
5. Conclusion

In the era of personalized medicine, OMICS science (genomics,
transcriptomics, proteomics, and metabolomics) must contribute
to the quest for cancer-specific biomarkers. The present study
argues in favor of further research in this domain. Metabolomics
is emerging as a relevant and promising tool for the classification
of BC to enable more precise diagnosis [54,99–101]. Even though
it is less accurate than the targeted approach, untargeted metabo-
lomics nevertheless permits identification and quantification of a

https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ
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vast number of major metabolites. Thus, this approach presents a
particular interest in the search for new candidate biomarkers
[102–104] and could be applied in everyday medical practice given
that the cost and duration of metabolomic analyses are relatively
low. However, due to the retrospective design of our study and
the small number of patients recruited, our results need to be val-
idated in a larger cohort and in the context of a prospective clinical
trial.
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