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Abstract: Migraine is a common neurological disorder which affects 15–20% of the 
population; it has a high socioeconomic impact through treatment and loss of productivity. 
Current forms of diagnosis are primarily clinical and can be difficult owing to comorbidity 
and symptom overlap with other neurological disorders. As such, there is a need for better 
diagnostic tools in the form of genetic testing. Migraine is a complex disorder, encompassing 
various subtypes, and has a large genetic component. Genetic studies conducted on rare 
monogenic subtypes, including familial hemiplegic migraine, have led to insights into its 
pathogenesis via identification of causal mutations in three genes (CACNA1A, ATP1A2 and 
SCN1A) that are involved in transport of ions at synapses and glutamatergic transmission. 
Study of familial migraine with aura pedigrees has also revealed other causal genes for 
monogenic forms of migraine. With respect to the more common polygenic form of 
migraine, large genome-wide association studies have increased our understanding of the 
genes, pathways and mechanisms involved in susceptibility, which are largely involved in 
neuronal and vascular functions. Given the preponderance of female migraineurs (3:1), there 
is evidence to suggest that hormonal or X-linked components can also contribute to migraine, 
and the role of genetic variants in mitochondrial DNA in migraine has been another avenue 
of exploration. Epigenetic studies of migraine have shown links between hormonal variation 
and alterations in DNA methylation and gene expression. While there is an abundance of 
preliminary studies identifying many potentially causative migraine genes and pathways, 
more comprehensive genomic and functional analysis to better understand mechanisms may 
aid in better diagnostic and treatment outcomes. 
Keywords: migraine, migraine without aura, migraine with aura, familial hemiplegic 
migraine, X-linked, mitochondrial variants, epigenetics

Introduction
Migraine is a common neurovascular disorder which affects 15–20% of the 
population.1–5 Given the prevalence of the disorder, migraine has a large socio-
economic impact through treatment costs and loss of productivity, estimated at USD 
$19.6 billion, €27 billion and AUD$35.7 billion per annum in America, Europe and 
Australia, respectively.4–6 Migraine is characterised by severe headache, typically 
including unilateral throbbing, nausea, vomiting, photophobia and/or 
phonophobia.1–5,7,8 There are two common subtypes of migraine, which are deter-
mined by the presence or absence of aura.9 Migraine without aura (MO) is the most 
common, affecting around 70% of migraineurs, while approximately 30% suffer 
migraine with aura (MA).10,11 In MA, the migraine is accompanied by aura 
symptoms, largely manifested as visual disturbances, but can also include sensory 
and speech-related symptoms, muscle weakness and motor disturbances in some 
cases.7,12
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The Hereditary Nature of Migraine
It has long been established that there is a significant 
genetic component to migraine.13,14 Studies have in addi-
tion shown an increased familial risk for common 
migraine, which is considered to be polygenic, with herit-
ability estimates of 34–64%.8,12,15 Investigations into 
migraine families and twin studies have shown that a first- 
degree relative of an MO proband is twice as likely to 
have MO and 1.4 times as likely to have MA.12 However, 
a first-degree relative of an MA proband is four times 
more likely to have MA, but has no increased risk of 
MO.12 Furthermore, there are some rare subtypes of 
migraine which are considered to be monogenic, predomi-
nantly caused by autosomal dominant mutations in genes 
encoding ion channels. Owing to the complex nature of 
common migraine, determining all genes and their inter-
action with environmental factors that contribute to the 
disorder remains a challenge.16 Initial studies focused on 
genes involved in neuronal, vascular and hormonal func-
tions using candidate gene association studies (CGAS), 
testing for differences in frequency of genetic polymorph-
isms across particular genes between migraine cases and 
controls to determine whether they influence susceptibility 
to the disorder.17–20 An extensive study of 155 ion trans-
porter genes in 841 migraineurs and 884 controls21 identi-
fied 21 promising genes associated with migraine; 
however, these results failed to be replicated in a larger 
cohort of thousands, suggesting that the majority were 
potentially false positives.22 This could be for several 
reasons: CGAS tend to have modest sample sizes which 
are underpowered to detect genetic variants that have 
small effects; they also use a hypothesis-driven set of 
genes and polymorphisms for testing,23,24 and while the 
genes selected may have a likely role in the disease path-
way, they may not present a genetic risk, or only be 
a cofactor of the cause. Many of these issues have been 
tackled through advances in technology which allow for 
fast and cost-effective genotyping. Genome-wide associa-
tion studies (GWAS) use microarray platforms to test up to 
millions of single-nucleotide polymorphisms (SNPs) in 
one experiment. As GWAS are not hypothesis driven, 
they can identify novel genes and pathways, and with 
large sample sizes and statistical correction for multiple 
testing are less likely to produce the false positives of 
CGAS. The largest GWAS performed to date included 
59,674 migraineurs and 316,078 healthy controls to iden-
tify 44 SNPs mapped to 38 loci associated with common 

polygenic migraine.25,26 This study largely supported pre-
vious GWAS performed by Anttila et al25 and Chasman 
et al27 identifying neuronal variants (Figure 1). Freilinger 
et al28 added a number of genes associated with vascular 
pathways and, finally, the Gormley study introduced 
a number of genes related to ion homeostasis.26

Monogenic Forms of Migraine
An alternative approach used to study the complex genetic 
pathways of this neurological disorder is to examine 
monogenic subtypes of migraine,12,27 and there have 
been a number of multigenerational studies performed on 
MA pedigrees29 and unrelated hemiplegic migraine 
probands.30,31

Familial Migraine with Aura
A study of particular families which show strong inheri-
tance of MA showed that a frameshift mutation of the 
KCNK18/TRESK gene segregated with migraine diagnosis, 
suggesting that it was causal.29 This was further corrobo-
rated in a study by Pettingill et al, which demonstrated 
through the use of CRISPR-Cas9 that frameshift mutations 
of TRESK are associated with migraine phenotypes.32 The 
TRESK gene is part of a two-pore domain family of 
potassium channels that regulate cellular excitability, and 
are themselves regulated by calcium-dependent phospha-
tase calcineurin.29,33 A study by Rainero et al has also 
shown that mutations in TRESK can be found in non- 
related probands in both MO and MA populations.34 In 
addition, mouse models have shown that knocking out 
TRESK modifies nociceptive afferentation.35 While some 
variants have been found in this gene that are causal of 
MA, other studies have shown loss of function variants in 
both migraine and control populations.33,36 This complex 
relationship may be explained by the findings that some 
TRESK frameshift mutations produce altered protein frag-
ments which can affect the function of other ion 
channels.37

Rasmussen et al used an approach where they first 
identified migraine-associated modules through analysis 
of RNAseq from brain and vascular tissues, and then 
performed analysis of the genes from these modules in 
whole genome sequencing (WGS) data from migraine 
families with Mendelian-like segregating patterns. They 
found that rare variants in genes involved in five pathways 
were over-represented: thyrotropin-releasing hormone 
receptor signalling, oxytocin receptor-mediated signalling, 
Alzheimer’s disease amyloid secretase, serotonin receptor 

http://doi.org/10.2147/NDT.S282562                                                                                                                                                                                                                                   

DovePress                                                                                                                                    

Neuropsychiatric Disease and Treatment 2021:17 1184

Bron et al                                                                                                                                                             Dovepress

http://www.dovepress.com
http://www.dovepress.com


signalling, and heterotrimeric G-protein signalling path-
way-Gq alpha and Go alpha-mediated pathways, and 
furthermore identified the ATXN1, FAM153B and 
CACNA1B genes as being the most frequently mutated 
among migraine families.38

Hemiplegic Migraine
Hemiplegic migraine (HM) is a rare and severe MA sub-
type, with patients also having symptoms of hemiparalysis 
accompanying the migraine or motor disturbances.12 

A typical aura attack can last anywhere from 10 
minutes to a few hours, with paraesthesia and speech 
disturbances.39 In addition to this, 66% of HM patients 
report that they suffer from normal MO (without paralysis) 
on occasion.40 There is variability within cases; some with 
symptoms that last days or weeks, and some with 
increased severity that can result in coma or 

seizures.41–43 HM has both sporadic (SHM) and familial 
forms (FHM), with the latter typically inherited in an 
autosomal dominant fashion with a 70–90% 
penetrance.44 To date, three main genes have been impli-
cated in the cause of FHM, all of which encode for ion 
channels (Table 1). FHM1 is caused by mutations in the 
CACNA1A gene on chromosome 19p13, which encodes 
for the α1A subunit of P/Q-type voltage-gated calcium 
channels.45 These particular channels are responsible for 
the control of calcium in the neuron as a response to 
membrane depolarisation.46 The second gene associated 
with FHM is the ATP1A2 gene (FHM2) on chromosome 
1q23, which encodes for a glial sodium/potassium pump.47 

The third FHM gene is SCN1A (FHM3) located on chro-
mosome 2q24, which encodes a neuronal voltage-gated 
sodium channel.48 The symptoms of the three FHM sub-
types are similar, although the functional effect and 

Figure 1 GWAS-identified genes associated with migraine. The figure shows the major studies identifying the genes associated with polygenic forms of migraine, which 
largely fall into either neuronal or vascular function. Genes displayed in black text were new discoveries of each study, while the grey text highlights those that have been 
replicated for existing studies.25–28
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mechanism of FHM-causing mutations for each gene 
vary (Table 1). A fourth causal gene for FHM, the proline- 
rich transmembrane protein 2 (PRRT2), was suggested by 
Riant et al.49 PRRT2 is located on chromosome 16p11.2 
and encodes for a type II transmembrane protein which 
interacts with SNARE complexes to regulate voltage-gated 
calcium channels in glutamatergic neurons.50–53 Various 
studies have suggested that PRRT2 could be considered 
a fourth FHM gene,49,54–56 although there is some contro-
versy on that front, and Riant et al suggested that PRRT2 
may only act as a modifier because of complex heteroge-
neity and pleiotropy of phenotypes.49 Suzuki et al have 
also shown that homozygous mutations in the SLC4A4 
gene can cause syndromic HM, but as yet it has not been 
included as a known FHM gene.57

Aside from their role as the three FHM genes, these genes 
have also been implicated in many other disorders. Specific 
types of mutations in CACNA1A have been linked to spino-
cerebellar ataxia type 6, episodic ataxia, progressive cerebel-
lar ataxia and epilepsy; ATP1A2 has been linked with 
cerebellar ataxia and epilepsy, but also confusion, coma and 
mental retardation; and finally, SCN1A is associated with 
more severe epilepsy syndromes, such as myoclonic epilepsy 
in infants and epilepsy with febrile seizures.2 Currently, 
migraine and FHM are diagnosed through extensive patient 
interview, family history and pedigrees.7,61 Patients are diag-
nosed based on the specifications of the International 
Classification of Headache Disorders (ICHD), which out-
lines the age of disorder onset, the severity and frequency 

of the attacks, and the presence of aura symptoms.7 However, 
this form of diagnosis is complicated owing to the variability 
between patients and symptoms.41–43 This has also contrib-
uted to the difficulty in identifying genes associated with 
classical migraine for diagnosis. The common genetic 
mechanisms behind these disorders often lead to clinical 
presentation with similar symptoms, making molecular diag-
nosis through limited gene sequencing difficult. In recent 
years, the advent of next generation sequencing (NGS) tech-
nologies has allowed for better screening for neurological 
diseases, which has, in turn, increased diagnostic rates. NGS 
allows for millions of small fragments of DNA to be 
sequenced at once, allowing for entire gene sets or even the 
whole genome to be investigated, rather than targeted exons 
or regions.15,62,63 Several research groups have reported 
increased diagnostic rates for several neurological diseases, 
through the use of whole exome sequencing (WES)64–66 and 
targeted gene panels.67–69 WES analysis has shown that not 
all suspected HM cases have exonic mutations in the known 
FHM genes,30,31 or genes that cause overlapping disorders, 
which suggests that additional genes or other factors as yet 
unknown are causative of HM,12 some of which may be 
revealed through WES or whole genome sequencing and 
structural analysis.

Migraine and Circadian Rhythms
Environmental factors such as sleep and stress have been 
cited as leading triggers for migraine attacks.70,71 This can be 
attributed to the fact that there are several hormones and 
neurotransmitters that play a role in both sleep disruption 
and migraine;71 there is evidence to show that dopamine, 
serotonin, gamma-aminobutyric acid and gonadotropin- 
releasing hormone changes are involved in both 
disorders.71–73 There are also studies showing that migraine 
and sleep disorders tend to co-segregate within family 
pedigrees.74,75 Brennan et al showed that a mutation in 
CSNK1D, which has been shown to cause familial advanced 
sleep phase syndrome, was found in two large independent 
migraine pedigrees. The study also demonstrated that mice 
with a transgene CKIδ-T44A mutation display increased 
sensitisation to nitroglycerin infusions, particularly in female 
mice. In addition, they showed that the CKIδ-T44A mice 
have reduced thresholds for cortical spreading depression 
(CSD) compared to the wild type.74

Farahani et al have also shown a link between the 
circadian clock and migraine; genotyping of 200 migrai-
neurs and 200 healthy controls showed that a variant in the 
RAR-related orphan receptor (RORA), which regulates 

Table 1 Known FHM Causal Genes and Functional Effects of 
Mutations Identified in FHM

Gene Location Function Mechanism

CACNA1A 
(FHM1)

19q13 Gain of 

function

Results in excessive Ca2+ 

influx, resulting in increased 

glutamatergic 
neurotransmission

ATP1A2 
(FHM2) 

1q23 Loss of 
function

Results in decreased Na+/K+ 

exchange, increasing 

extracellular K+ and 

neuronal excitability

SCN1A 
(FHM3) 

2q24 Gain or 
loss of 

function*

Increased firing of inhibitory 
GABAergic neurons, higher 

extracellular potassium, 

leading to enhanced 
glutamate release58

Note: *Some mutations result in a loss of function,59 some gain and loss of 
function,60 and others a gain of function through rescue mechanisms.58
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both inflammation and circadian rhythm, was associated 
with circadian rhythm dysfunction and migraine.76 Further 
research by Baksa et al suggests that variations in the 
circadian locomotor output cycles kaput (CLOCK) gene 
may influence the risk of migraine in response to financial 
stress.77 In addition to circadian rhythm, Kim et al posited 
that various sleep disorders can be linked to migraine; 
subjects with insomnia, for example, have significantly 
higher prevalence of migraine compared to those 
without.78 Kilic et al similarly showed that insufficient 
glycogen-derived energy (or lack of sleep) can cause 
synaptic stress and lower the threshold for CSD, suggest-
ing that this lack of synaptic energy may predispose 
subjects to migraine attack.79 Thus, genes related to sleep 
disorders may be a promising target for migraine diagnosis 
and treatment, although further investigations with larger 
cohorts are required.

Role of X-Chromosome Loci in Migraine
While studies have shown that there are genetic components 
to all forms of migraine, there is also evidence to suggest that 
gender plays a fundamental role in the disorder. Numerous 
migraine studies demonstrate a preponderance of migraine in 
females.12,16,27,80–82 A population study by Stewart et al83 

showed that in 1992, 18% of women suffered from migraine 
compared to 6% of men, setting the incidence rate at 3:1. 
This unequal distribution of gender in migraine sufferers is 
common to both MO and MA,81,83–87 suggesting either 
a hormonal link to migraine or possibly an X-chromosomal 
link if there is a dominant inheritance pattern. The presence 
of X-linked migraine loci is supported by results from link-
age analysis by Nyholt et al81,85,88 in several studies showing 
localisation of migraine susceptibility to the X chromosome. 
Further refinement through haplotype analysis suggested that 
a migraine susceptibility locus may be localised to the Xq24- 
28 region.89 In addition, a study by Maher et al90 using the 
genetically isolated Norfolk Island population showed evi-
dence of migraine susceptibility loci at Xq27 and Xq12. 
However, genes and variants within these regions that may 
contribute to migraine risk are yet to be identified. Another 
study of a migraine family and the X chromosome conducted 
by Weiser et al82 suggests that a migraine susceptibility locus 
resides at Xp22. A case–control study performed by Quintas 
et al reported a link between migraine and the synapsin 
I (SYN1) gene, which is on the X chromosome.91 Utilising 
a cohort of 188 migraine patients and 286 healthy controls, 
and genotyping 119 SNPs in genes related to pathways 
involving synaptic vesicle molecular machinery or 

neurotransmission, the study determined that in females the 
rs5906437 GC genotype acts as a protective factor for 
migraine, while the rs5906435 G allele conferred increased 
migraine susceptibility,91 but the same effect was not 
observed in males. A larger sample size may be necessary 
to determine whether this is a true reflection of a gender- 
specific effect.91

Role of the Mitochondrial Genome in 
Migraine
Another avenue of exploration of migraine susceptibility is 
through the genetic analysis of mitochondrial DNA 
(mtDNA). As mtDNA does not undergo recombination and 
it is passed exclusively through the maternal line, it allows 
mutations in the mtDNA sequence to be tracked across multi-
ple generations. Through the use of family studies, research-
ers have been able to find clear causal variants in various 
mitochondrial diseases.92,93 There are various justifications 
for an investigation into the mitochondrial genome in relation 
to migraine. The primary role of the mitochondria is to create 
ATP via the electron transport chain, providing all the energy 
required for cellular processes.94 Mitochondrial disorders 
result in decreased ATP production which, in turn, causes 
oxidative stress. Given that the muscles and brain are highly 
dependent on oxidative metabolism, it stands to reason that 
these tissues will be the most adversely affected by any 
variations in mtDNA.94 It has also been shown that decreased 
ATP resulting from mitochondrial disease can decrease the 
threshold for CSD, which has been extensively linked to 
migraine (Figure 2).95–97 Furthermore, mitochondria play 
an essential role in calcium ion homeostasis, which is 
a necessary requirement for normal neuronal function.98 

There is also an abundance of studies showing that migraine 
is often a by-product or comorbidity of many mitochondrial 
disorders.99,100 Imaging techniques have been used to show 
that migraine patients show disturbances in mitochondrial 
metabolism in specific regions of the brain.101 There are also 
various studies linking mitochondrial dysfunction with other 
neurological disorders, such as Alzheimer’s disease,102 

Parkinson’s disease103 and amyotrophic lateral sclerosis.104 

Given the role of mitochondria in these and other disorders, it 
is reasonable to explore potential genetic aspects in relation 
to migraine. A systematic review by Smeitink et al105 sug-
gested a tentative genetic link between migraine and several 
mitochondrial disorders, such as mitochondrial encephalo-
pathy, lactic acidosis, and stroke-like episodes (MELAS) and 
maternally inherited diabetes and deafness (MIDD). More 
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specifically, these mitochondrial diseases have a particular 
mutation in the mitochondrial transfer of RNA leucine; 
patients with the m.3243A>G mutation seem to have 
a significantly higher prevalence of migraine than the general 
population.106 Cohort studies showed that in the general 
population there was an 18–29% prevalence of migraine.107 

−109 However, similar research using the m.3243A>G muta-
tion population showed migraine prevalence to be 38–89%, 
with migraine being the only visible symptom in some 
patients.110,111 These studies suggest that there may be 
a link between mitochondrial dysfunction and migraine pre-
valence, even just as a starting point of the neurological 
cascade of events that cause migraine. Conversely, 
a GWAS of mitochondrial migraine using the HUNT study 
cohort did not find any common genetic variants associated 
with migraine.112 The study used a cohort of 18,309 partici-
pants, with 4021 migraine cases and 14,288 healthy controls, 
examining 775 variants, but none was significant after cor-
rection for multiple testing.112 This was also reflected in the 
haplogroups, which showed no significant association with 
migraine.112 The study acknowledges that there may be 
a limitation based on the questionnaire used for selection 

criteria, and only focused on current migraine participants 
(the last 12 months); this may have introduced past migrai-
neurs into the control group, which would skew the 
results.112 Several aspects require further study, for example, 
distant maternal relatives will share mtDNA but will not 
necessarily share other genetic risk factors, such as nuclear 
variants or environmental factors.113 At this stage, there are 
no known methods to adjust for close maternal relatedness in 
mitochondrial association studies, and this may have an 
impact on the results.112 Another aspect to consider is the 
presence of heteroplasmy, as most mitochondrial diseases 
can be impacted by the presence of heteroplasmy. While 
mitochondrial dysfunction in migraine patients merits inves-
tigation, the role of rare variants, nuclear-encoded mitochon-
drial variants and environmental factors needs further 
exploration.

Migraine Epigenetics
While there is clearly a genetic component to migraine sus-
ceptibility, there is also significant evidence to suggest that 
environmental factors also contribute to the disorder.12,114,115 

Monozygotic twin studies have shown that MO heritability is 

Figure 2 Mitochondrial dysfunction leads to CSD. The image demonstrates how mechanical disruptions to the mitochondrion’s energy production could cause migraine by 
lowering the threshold for propagation of CSD.
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up to 60% genetic, while 40% can be attributed to environ-
mental factors.114,115 Commonly held environmental contri-
butors to migraine range from stress, lack of sleep and eating 
habits, to the changes in hormones during menstruation, preg-
nancy and menopause.116 The hormonal theory has received 
great traction in the field given that migraines are three times 
more common in women than men.117 Furthermore, many 
women experience migraines more often during menstruation 
and pregnancy, but have significantly fewer migraines when 
not influenced by the hormonal changes associated with these 
conditions,118 and the changes in hormones during menopause 
have been linked with decreased migraine frequency.116 These 
variations in hormones can lead to changes in neuronal activity 
and inflammation; these can result in remodelling of the 
chromatin, which then affects gene expression.119 

Alternatively, rat studies have shown that hormonal treatments 
can alter the activity of the trigeminal nociceptive pathway via 
nuclear receptors, which adjust the epigenetic programming of 
targeted genes.120,121 Glucose transport Glut4 is regulated by 
oestrogen receptor β through maintaining low levels of DNA 
methylation at the promoter.122 Using oestrogen receptor-β 
agonists in mice increased GABA synthesis,123 while oestro-
gen receptor-α activation enhanced expression of SLC1a3 and 
Eaat1, changing the balance between inhibitory and excitatory 
neurotransmission;124 all of which has been linked to FHM1 
through transgenic mouse models.125 Animal studies have also 
shown that female mice with an FHM mutation are more 
susceptible to CSD.126,127 There is also the comorbidity factor; 
migraine has been shown to have comorbidity with depres-
sion, epilepsy and stroke, all of which have been shown to 
have an epigenetic component.128,129 Further evidence sug-
gests that epigenetics may contribute to CSD by changing 
neuronal plasticity and neuroprotection.130–132 Stress is 
a common modulator for migraine attack, which is highly 
sensitive to epigenetic programming. Rat models have 
shown that early life stress can have lasting effects on beha-
viour, as a result of increased DNA methylation of Nr4a3.133 

Research in humans as also shown that stress during early life 
and adulthood can be linked to a variety of epigenetic altera-
tions at stress effector genes such as BDNF, NR3C1 and CRH, 
all of which affect structural and functional aspects of synaptic 
plasticity and stress reactivity.134 Some of the genetic factors 
linked to migraine have also been linked to epigenetic 
mechanisms; for example, functional polymorphisms in 
MTHFR (a gene involved in the pathway for generating the 
methyl donor required for DNA methylation) have been found 
to be associated with migraine in some studies.135,136 MTHFR 
is not the only gene related to epigenetic processes that has 

been linked to migraine pathophysiology; genes such as 
MTDH, MEF2D and PRDM16 have also been implicated in 
the disorder.25,27,28 Winsvold et al showed that changes in 
episodic to chronic migraine can be associated with changes 
in the DNA methylation profile compared to healthy controls; 
they further showed that the most strongly associated CpG site 
was at the SH2D5 gene, which is involved in the regulation of 
synaptic plasticity.137 Terlizzi et al show changes in methyla-
tion for catechol-O-methyltransferase (COMT), zinc finger 
protein 234 (ZNF234) and suppressor of cytokine signalling 
1 (SOCS1) in chronic migraine.138 Gerring et al identified 63 
differentially methylated regions in genes largely involved in 
solute transport and cellular homeostasis (SLC2A9, SLC38A4 
and SLC6A5).139 Each of these studies has various limitations 
and weaknesses, such as small sample sizes and the lack of 
consideration of medication regimes, as many drugs can influ-
ence the epigenetic profile of the subjects. Thus, while several 
genes have been implicated in relation to epigenetics and 
migraine, research is still required to fully understand the 
impact of environmental factors on migraine risk.

Conclusions
Migraine is a complex neurological disorder with a genetic 
basis, although we do not fully understand all the genes 
and the mechanisms behind the disorder. Genetic studies 
of migraine are further complicated by variation in patient 
symptoms and comorbidity with other complex neurologi-
cal diseases. Linkage studies and sequencing in family 
pedigrees, as well as GWAS to identify common variants 
associated with migraine, have shed light on some of the 
suspected genes and pathways involved in migraine, 
although there is still a need for further research using 
larger participant numbers. The advent of more cost- 
effective NGS approaches has allowed researchers to 
more readily explore population cohorts and family pedi-
grees for rare variants. Migraine is genetically complex 
and is likely to have a combination of factors contributing 
to risk and cause; unravelling these will lead to better 
diagnosis and treatment for the disorder.
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MO, migraine without aura; MA, migraine with aura; 
CGAS, candidate gene association studies; GWAS, gen-
ome-wide association studies; SNP, single-nucleotide 
polymorphism; WGS,whole genome sequencing; HM, 
hemiplegic migraine; SHM, sporadic hemiplegic migraine; 
FHM, familial hemiplegic migraine; NGS, next generation 
sequencing; WES, whole exome sequencing; CSD, 
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DNA; MELAS, mitochondrial encephalopathy, lactic 
acidosis, and stroke-like episodes; MIDD, maternally 
inherited diabetes and deafness.
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