
RESEARCH ARTICLE

Development of hop transcriptome to

support research into host-viroid interactions
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Abstract

Viroids, the smallest known pathogens, unable to encode any proteins, can cause severe

diseases in their host plants. One of the proposed mechanisms of their pathogenicity

includes silencing the host’s genes via viroid-derived small RNAs, which are products of the

host’s immune response to the viroid’s double stranded RNA. Humulus lupulus (hop) plants

are hosts to several viroids; two of them, HLVd and CBCVd, are interesting models for

studying host-viroid interactions, due to the symptomless infection of the former and severe

stunting disease caused by the latter. To study these interactions, we constructed a deep

hop NGS transcriptome based on 35 Gb paired-end sequencing data assembled into over

74 Mb of contigs. These transcripts were used for in-silico prediction of target transcripts of

vd-sRNA of the two aforementioned viroids, using two different software tools. Prediction

models revealed that 1062 and 1387 hop transcripts share nucleotide similarities with

HLVd- and CBCVd-derived small RNAs, respectively, so they could be silenced in an RNA

interference process. Furthermore, we selected 17 transcripts from 4 groups of targets

involved in the metabolism of plant hormones, small RNA biogenesis, transcripts with high

complementarity with viroid-derived small RNAs and transcripts targeted by CBCVd-derived

small RNAs with high cellular concentrations. Their expression was monitored by reverse

transcription quantitative PCR performed using leaf, flower and cone samples. Additionally,

the expression of 5 pathogenesis related genes was monitored. Expression analysis con-

firmed high expression levels of four pathogenesis related genes in leaves of HLVd and

CBCVd infected hop plants. Expression fluctuations were observed for the majority of tar-

gets, with possible evidence of downregulation of GATA transcription factor by CBCVd- and

of linoleate 13S-lipoxygenase by HLVd-derived small RNAs. These results provide a deep

transcriptome of hop and the first insights into complex viroid-hop plant interactions.

Introduction

Viroids are the smallest known plant pathogens, consisting of a single-stranded, covalently

closed circular RNA molecule, which forms secondary structures. Current taxonomy (2015) of
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the International Committee on Taxonomy of Viruses (ICTV) [1] includes 32 confirmed

viroid species, while NCBI’s taxonomy comprises 45 species, including as yet unclassified

viroids. Their genome is smaller than an average plant transcript, usually in the size range

from 246 to 412 bp, with an average size of 337.2 bp, and they do not encode for any protein or

transcribed sequence. Phylogenetically, viroids are classified into two major groups: Avsunvir-
oidae and Pospiviroidae. The four viroid species of the first taxonomic group are localized to

the chloroplasts, with a rod-shape, branched structure, exhibit ribozyme-like catalytic activity

and follow a symmetric pathway of replication. The most abundant viroids, the Pospiviroidae
group, are localized to the nucleus, consist of rod-like secondary structures and follow an

asymmetric pathway of replication [2].

Although they are such insignificant RNA molecules, viroids can cause considerable dam-

age and economic losses in plant production agricultural systems. Probably the most well-

known example is the lethal Coconut cadang cadang viroid (CCCVd), the presence of which

almost eradicated coconut production in the Philippines, with up to half a million plants still

dying back on an annual scale [3]. Potato crop and seed losses of up to 1% in North America

due to the Potato spindle tuber viroid (PSTVd) should also be noted [3].

Hop (Humulus lupulus L.) is currently known to be host for three viroid species Hop latent
viroid (HLVd),Hop stunt viroid (HSVd) and Citrus bark cracking viroid (CBCVd) and a taxo-

nomically uncharacterized species of Apple fruit crinkle viroid (AFCVd). Infection caused by

HLVd has been reported worldwide [4]. Plants are symptomless, although HLVd free hop

plants have higher yields and higher alpha-acid content [5]. Reinfection of HLVd viroid free

plants in field conditions occurs very rapidly in a few years [6]. HSVd was first discovered in

Japanese hop fields, causing hop stunt disease, which appeared 3–5 years after infection as

plant stunting, small cone formation and a substantial reduction of alpha-acid content [7,8].

The occurrence of this viroid, which is nowadays known to be commonly present in several

woody hosts, including grapevine [9], was later also confirmed in other hop growing countries

[10–12]. AFCVd symptoms on hop resemble those of HSVd, and it is currently restricted to

Japan [13]. The latest viroid discovered on hop is CBCVd, which causes the most aggressive

symptoms among all 4 hop viroids. Infected plants show the first symptoms 4 months after

infection: severe stunting after first dormancy and complete dieback in 3–5 years [14,15].

Soon after the first viroid species discoveries [16], questions were raised about their ability

to trigger severe symptoms in some plants and about the mechanisms of their action. Being

plant pathogens with genomes of the smallest size and complexity, and well defined structures,

it was thought that answers would quickly be found, but this puzzle is still challenging the

viroid research community. There is growing experimental evidence that the model proposing

attenuation of host gene expression by viroid-derived sRNAs (vd-sRNAs) via directed RNAi,

actually takes place in viroid-host pathosystem models. The first evidence–the presence of vd-

sRNAs in infected plants—was revealed by hybridization approaches [17–19]. Subsequently,

the advent of NGS sequencing methodologies clearly confirmed an enormous accumulation of

vd-sRNA for both taxonomic groups of viroids in infected plant tissues [20,21]. The second

body of evidence supporting the role of RNAi mechanisms is the confirmed loading of PSTVd

derived sRNAs in RISC components; namely, association with selected Argonaute (AGO) pro-

teins, thus being capable of attenuating the levels of complementary targets [22]. The third

body of evidence–similarities between vd-sRNAs and the plant’s transcripts and confirmed

altered expressions of these targets—is also mounting. In a form of albinism called peach cal-

ico, caused by chloroplast-replicating Peach latent mosaic viroid (PLMVd), it was shown that

two PLMVd-sRNAs originate from the (-) strand of calico strain target for cleavage of the chlo-

roplast transcript of heat-shock protein 90 (cGSP90), which is in agreement with chloroplast

abnormalities caused by the viroid [23]. Analysis of PSTVd variants causing different levels of
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symptoms in tomato enabled researchers to discover molecular and biological evidence that

PTSVd-derived sRNAs target and silence at least two tomato callose synthase genes up to

1.5-fold and thus remove an important biological factor for the viroid’s cell-to-cell spread [24].

By using computational prediction of similarities between Arabidopsis genes and vd-sRNAs

from 29 species of the Pospiviroidae family, a tomato’s conserved WD40-repeat protein was

identified as a possible target of silencing [25].

Since plants are sessile living organisms, they develop sophisticated mechanisms of defence

against biotic stress. During pathogen infection and disease progression, several defence path-

ways are triggered and mainly regulated by hormone signalling pathways, such as salicylic acid

(SA), jasmonic acid (JA) and ethylene (ET) [26], including other phytohormone regulators,

such as abscisic acid (ABA), brassionsteroids (BR), auxins (IAA), cytokinins (CK) and strigo-

lactones [27]. In turn, pathogens have developed mechanisms to interfere with these signalling

pathways in order to overcome the plant defence for successful infection and propagation.

Bacterial, fungal, oomycete and viral pathogens mainly use a plethora of fast evolving protein

effector molecules for these manipulations [28]. Viroids are unable to produce any of these

effector proteins; it would therefore be intriguing to solve the enigma of whether they are also

capable of hijacking these plant defence pathways. Developmental changes associated with

some viroid caused diseases, such as stunting, leaf epinasty and alternation of flowering time,

support the idea of impaired hormonal balance in viroid infected plants [29]. The latest evi-

dence, obtained from plant-pathogen interactions, widens the effector repertoire to include a

role of sRNA molecules, such as was confirmed in fungus Botrytis cinerea interactions with the

plant host [30].

The aim of the present work was to investigate the role of two viroids of the Pospiviroidae
family, with different development of symptoms in hop plants. Infection by HLVd is visually

symptomless, while CBCVd causes severe visible disease symptoms and phenotypic changes.

This research focused primarily on expression analysis of host genes, which were selected

based on the predicted complementarity between vd-sRNA and the host transcript, their high

cellular concentration and their involvement in hormonal pathways and biogenesis of small

RNAs, based on a developed NGS hop transcriptome dataset. Since PR proteins are regarded

as biomarkers of plant health status, we have also included expression analysis of selected path-

ogenesis related (PR) proteins to compare their upregulation in symptomless HLVd and

severely affected CBCVd plants.

Materials and methods

Plant material

The hop variety ‘Celeia’ was chosen for sampling, since it is one of the most widely cultivated

and CBCVd affected varieties in Slovenia. Sampling was performed in the production fields of

the Slovenian Institute for Hop Research and Brewing (SIHRB) and in privately owned fields

near Šempeter in the 2013 growing season. The hop fields were maintained under standard

agricultural practice. If hop plants are not viroid free, they are always infected with HLVd, and

natural CBCVd infection is also always accompanied by HLVd infection.

Samples for hop transcriptome construction were collected from eight CBCVd free plants

(HLVd present) during the whole growing season, at 14 days intervals from the beginning of

sprouting until harvest (end of March until end of August). Sampled tissues included roots,

emerged shoots, leaves, stems, flowers and cones.

Leaves, flowers and cones from at least 5 different plants were collected for quantitative

reverse transcription PCR (RT-qPCR), from 1) viroid free plants, 2) HLVd infected plants

(CBCVd absent) and 3) CBCVd infected plants (HLVd also present), in which the viroid
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presence was confirmed by RT-PCR. Collected tissues samples were immediately put on dry

ice and transferred to the laboratory, in which RNA was isolated. Tissue samples were also

stored at -80˚C.

RNA isolation

Total RNA was extracted from collected plant material using a Spectrum™ Plant Total RNA Kit

(Sigma-Aldrich) following the manufacturer’s protocol A, followed by an on-column DNase

Digestion step. Eluted RNA samples were quantified by NanoVue spectrophotometer (GE

Healthcare) readings of absorbance at 260 and 280 nm. RNA integrity and quality were estab-

lished by formaldehyde gel electrophoresis and further by Bioinalayzer 2100 RNA integrity

number (RIN) determination using an RNA 6000 Nano Kit (Agilent). Samples with RINs >7

were used for further NGS sequencing or RT-qPCR analysis. Isolated RNA samples were

stored at -80˚C.

RT-PCR

Plant samples (viroid free, HLVd and CBCVd infected) were inspected for healthy status or

viroid presence using reverse transcription PCR (RT-PCR). Plants were tested for the presence

of HLVd and CBCVd using a OneStep RT-PCR Kit (Qiagen). Total RNA (1 ng) was mixed

with two viroid specific primers to yield a final concentration of 0.6 μM: a) for CBCVd primers

CVd-IV-F1 5'-GGGGAAATCTCTTCAGAC-3' and CVd-IV-R1 5'-GGGGATCCCTCTT
CAGGT-3' [31] and b) for HLVd primers HLVd-M 5'-TAGTTTCCAACTCCGGCTGG-3'
and HLVd-P 5'-GGATACAACTCTTGAGCGCC-3'were used [32]. Five μl of RNA and

primer mixture was denatured at 95˚C for 5 min and immediately chilled on ice. Components

of the RT-PCR kit were subsequently added, yielding a total volume of 12 μl, with final concen-

trations as follows: 1x OneStep RT-PCR Buffer, 0.4 mM of each dNTP, 1x Q-Solution and

0.48 μl of OneStep RT-PCR Enzyme Mix. Reactions were incubated in a PE9700 thermal cycler

with the following temperature profile: 50˚C for 30 min for the reverse transcription step, fol-

lowed by a PCR amplification step with initial denaturation at 95˚C for 15 min, followed by 40

amplification cycles starting at 94˚C 30 sec, 65˚C 30 sec, 72˚C 60 sec, whereby the annealing

temperature was lowered by 1˚C for the 9 subsequent cycles, then maintained at 56˚C and

amplification was finished by 10 min incubation at 72˚C. Amplification of PCR products was

confirmed by TBE electrophoresis on 1.5% agarose gels stained with ethidium bromide

(0.5 μg/ml) and visualized on an UV source.

Hop transcriptome NGS sequencing and analysis

Total RNA samples of whole season sampled ‘Celeia’ plants were pooled together in an equi-

molar amount to yield a final sample for sequencing, which was performed at IGA Technology

Services Srl (Udine, Italy). The sample was rRNA depleted using a Ribo-Zero rRNA Removal

Kit for Plants (Illumina). An RNA library (insert size 200–300 bp) was constructed following

the protocol of the TruSeq RNA-seq Sample Preparation Kit (Illumina Inc.). Sequencing was

performed on a single HiSeq2000 lane by a paired-end (PE) 100 bp set-up and raw sequences

were delivered in FASTQ format. They were submitted to Sequence Read Archive (SRA) [33]

for public availability.

NGS data were analysed with the CLC genomics Workbench or CLC Genomics Server

tools (CLC). First sequencing data quality control (QC) was performed using the tool ‘Create

Sequencing QC Report’. Quality, ambiguity and adapter sequence trimming was performed

with the ‘Trim Sequences’ tool, using a limit of 0.05 for quality score, with the maximum num-

ber of allowed ambiguities set to 3 and the minimum length of clean reads to 30 bp. If one
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sequence of a pair was removed due to the set threshold, the other sequence was kept as a sin-

gle end sequence and used in further analysis. The level of perfect duplicates was assessed with

the aid of the python script process-reads-fasta.py,as part of the miR-PREFeR pipe-

line [34]. De-novo assembly of trimmed sequences was performed using the ‘De-novo assem-

bly’ module of the CLC, using the following parameters: bubble size 50, word size 24 and

minimum contig length 150 with the scaffolding option ‘on’, remapping ‘yes’.

The completeness of the obtained hop transcriptome was assessed with the BUSCO tool,

which performs evolutionarily informed expectations of gene content from near-universal sin-

gle-copy orthologs using the plant early release dataset version [35].

The resulting assembled contigs were searched against Genbank protein ‘nr’ and nucleotide

‘nt’, Swiss-Prot protein, and Eukaryotic Orthologous Groups of proteins (KOG) databases,

using blastx or blastn algorithms of the standalone version of the blast+ tool [36]. Results were

stored in BLAST archive format for further processing with the blast_formatter tool as

needed.

The Blast2GO command line software tool [37] was used for automatic functional annota-

tion of assembled transcripts to obtain the Gene Ontology (GO) terms, which describe biologi-

cal processes, molecular function and cellular components.

Prediction of vd-sRNA targets

RNA sequences of HLVd (GenBank X07397) and CBCVd (GenBank KM211546) viroids were

in-silico cut to all possible (+) and (-) 21 bp, 22 bp and 24 bp mers representing vd-sRNAs,

bearing in mind the circular nature of viroids. Small RNAs were searched for similarity against

the hop transcriptome, using two tools designed to identify possible targets of sRNAs action

with default parameters: 1) the UEA sRNA Toolkit [38], which was used as a standalone appli-

cation (version May 18, 2012) and 2) the Plant Small RNA Target Analysis Server (psRNA Tar-

get) [39], which was used as a WWW application available at: http://plantgrn.noble.org/

psRNATarget/.

In the selection of targets for RT-qPCR analysis, we focused on four different groups of hop

genes: 1) genes involved in the metabolism of plant hormones, e.g., ethylene, gibberellins, jas-

monates and salicylic acid, due to their involvement in plant defence pathways against patho-

gens [40–43]. The list of Arabidopsis genes involved in these metabolic pathways was taken

from the RIKEN Plant Hormone Research Network (http://hormones.psc.riken.jp/pathway_

hormones.shtml) and corresponding protein sequences were used for tblastn search against

the hop transcriptome, 2) genes of the RNAi machinery, 3) genes with complete or almost

complete complementarity between the target and vd-sRNAs and 4) targets of CBCVd derived

sRNAs with high cellular concentrations, as revealed by NGS mapping profiles [14]. The cov-

erage statistics were obtained from BAM files using samtools [44].

Primer design

To avoid creating primers in the regions of conserved protein domains, all sequences were

searched using NCBI’s CD-Search tool against the CDD database. Regions of the revealed

domains were avoided for primer design where possible in order to increase amplification

specificity. Primer Express 3.0 software (90 bp amplicon length, optimal Tm at 60˚C, GC%

between 30% and 80%) was used to design primers from selected targets of either HLVd or

CBCVd derived sRNA action. DEAD box RNA helicase (DRH1), TIP41-like family protein

(TIP41) and Yellow leaf specific protein 8 (YLS8) [45] primers were used for reference gene

amplification. Hop specific primers for monitoring the expression of five pathogenesis related
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(PR) proteins were also used: PR-1, PR-2 (β-1,3-glucanase), PR-3-EX (extracellular type chiti-

nase), PR-3-VAC (vacuole type chitinase), and PR-5 (thaumatin-like protein)[46].

Two-step reverse transcription quantitative PCR (RT-qPCR) and data

analysis

Single stranded cDNA was synthesized from isolated total RNA. One microgram of each RNA

sample, represented by at least 3 biological replicates per experiment point, was reverse tran-

scribed to cDNA with a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

Foster City, USA) using random hexamers. Real-time PCR in three technical replicates was

performed using Fast SYBR Green Technology in the ABI PRISM 7500 Fast Sequence Detec-

tion System (Applied Biosystems, Foster City, USA). A master mix for each PCR run was pre-

pared using a 10 μl reaction volume and containing 5 μl of FastStart Universal SYBR Green

Master (Roche, Switzerland), 2 μl cDNA (corresponding to 5 ng of total RNA) and 300 nM

(0.6 μl) of each primer on MicroAmp Optical 96-well PCR plates (Applied Biosystems, USA).

The following amplification protocol was used: 95˚C 10 min, 40 cycles at 95˚C for 10 s fol-

lowed by 60˚C for 30 s. The specificity of amplification was confirmed by melting curve analy-

sis. All the reactions with a single primer pair were performed on the same plate to minimize

variation between runs and a standard curve included on each plate. The efficiency for each

target was calculated using the slope of the regression line in the standard curve performed on

bulked cDNA samples of five serial dilutions in a ratio 1:4 in a range from 12.5 to 0.05 ng.

Statistical analysis of RT-qPCR results was performed using the delta-delta-Ct method

(ΔΔCt), which is the method of choice for analysing relative changes in gene expression [47].

Using this method, the data are presented as fold change values (FC) in gene expression nor-

malized to the endogenous reference genes used (DRH1, TIP41 and YLS8), which were

defined as optimal in previous hop biotic stress studies [45] and relative to the untreated con-

trol, which in our case were viroid free plants.

Results

NGS sequencing and de-novo assembly of the transcriptome

Illumina sequencing of ribosomal depleted hop RNA in a single lane yielded 348,065,384 reads

in paired orientation, each 100 bp long, totalling over 35 Gb of raw transcriptome data. The

number of unique reads when perfect duplicates were clustered in the set was 50,200,620, and

56,117,015 reads for each single file of the paired end data. The GC content of the raw sequenc-

ing data was estimated at 45.5%. The raw sequences were deposited in NCBI’s SRA archive for

public availability under BioProject number PRJNA342762, BioSample SAMN05767836, SRA

run SRR4242068.

Trimming, which included removing low quality and ambiguous regions, removal of adap-

tor sequences and removal of too-short reads, resulted in a total of 343,559,950 sequences

(98.7% of total), of which 339,494,248 in paired-end orientation and 4,065,702 as single end

sequences of an average read length of 97.2 bp, corresponding to about 33.4 Gb of cleaned

sequence data. These were considered to be of high quality and were used for further analysis.

De-novo assembly with the scaffolding option and mapping reads back to contigs produced

150,443 contigs (including scaffolds), with a total length of the assembled transcriptome being

over 74 Mbp, which represented a reference expressed whole plant transcriptome ofH. lupu-
lus. The number of sequences with a length� 200 bp (length constraint for NCBI’s Transcrip-

tome Shotgun Assembly archive) was 92,464, although all sequences were considered in

further downstream analysis. The N50, N75 value and average length were calculated as 984
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bp, 296 bp and 494 bp, respectively. The longest contig assembled was 23,284 bp. Since the de-
novo assembly step used remapping of the reads, coverages for transcriptome contigs were cal-

culated as 145X on average. Assembly metrics for the hop transcriptome are presented in

Table 1.

Transcriptome annotation

The transcriptome completeness was assessed against 956 BUSCO groups using the BUSCO

software package [35]. Comparison revealed it to be 78% complete, taking into account simi-

larities of complete single-copy (553) and complete duplicated (194) BUSCOs, or 89% com-

plete also taking into account 106 fragmented BUSCOs. Eleven percent (103) of BUSCOs were

missing in the assembled hop transcriptome.

The transcriptome was further annotated by comparison of theH. lupulus transcriptome

with several public sequence databases. BLASTx query against the NCBI nr database did not

return any significant protein hits for 106,798 sequences (71%). Sequences without hits

belonged to the group of shorter sequences with an average length of 284 bp and with quartile

2 value of 206 bp. The remaining 43,465 sequences, with BLAST hits, had significantly (t-test,

p<0.01) longer average length and quartile 2 value of 1006 bp and 512 bp, respectively. Similar

results were obtained with searches against Swiss-Prot and KOG protein databases, whereby

116,951 and 109,172H. lupulus transcripts, respectively, did not reveal any significant hits.

This is evident from BLASTn searches of transcripts against NCBI’s nt database, in which a

lower number of transcripts (88,101; 58.56%) remained unannotated. The final percentage of

all hop transcripts annotated with the BLAST comparison was 54.83% (Table 2).

Further annotation and gene ontology classification was performed with Blast2GO analysis

augmented by InterPro domain searches ofH. lupulus transcripts. The comparison of hop

transcripts against NCBI’s nr proteins revealed the top BLAST hit matches to Prunus persica
(21.77%), Vitis vinifera (16.10%) and Theobroma cacao (9.61%), followed by other plant species

(panel A in S1 Fig). The e-values for each sequence showed a peak at 10−200 and a distribution

from 10−5 to 10−30 (panel B in S1 Fig). The hop transcript similarity values with database pro-

teins were distributed from 45 to 100%, with a peak around 75%-85% (panel C in S1 Fig). The

Table 1. Hop transcriptome assembly metrics of Illumina paired end reads.

Number of contigs 162,889

Number of contigs including scaffolded regions 150,443

N50 contigs 743 bp

N50 contigs including scaffolded region 984 bp

Maximum length contigs 23,284 bp

Maximum length scaffolds 23,284 bp

Average length contigs 452 bp

Average length scaffolds 494 bp

Total length contigs 73,699,989 bp

Total length including scaffolded regions 74,308,957 bp

Total reads used in assembly 343,559,950

Matched reads 295,962,373 (86.1% of all)

Not matched reads 47,597,577 (13.9% of all)

Reads in pairs 245,947,392 (83.1% of all)

Maximum coverage 345,180X

Average coverage 145X

Coverage SD ±1918X

https://doi.org/10.1371/journal.pone.0184528.t001
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BLAST2GO annotation process is summarized in panel D in S1 Fig, with a total of 32,063 tran-

scripts (21.31%), with 216,301 assigned GO term annotations. The majority of functional pre-

dictions (1,392,999) were obtained from the UniProt Knowledge Base (KB) (1,200,324) and

the Arabidopsis Information Resource (TAIR) (126,085) (panel E in S1 Fig).

The assigned GO terms were distributed into three GO classes: Biological Processes

(128,942 terms, 59.61%), Cellular Function (33,418 terms, 15.45%) and Molecular Function

(53,941 terms, 24.94%). Major sub-categories for GO level 2 classifications are presented in Fig

1. In Biological Processes, three GO level 2 categories represented 52.96% of all 27 assigned

GOs: ‘metabolic process’ (GO:0008152, 19.48%), ‘cellular process’ (GO:0009987, 19.22%), and

‘single-organism process’ (GO:0044699, 14.25%). The class Cellular Component contained

four major GO level 2 categories, amounting to 75.32% of 22 assigned GOs: ‘cell’

(GO:0005623, 23.47%), ‘cell part’ (GO:0044464, 23.44%), ‘organelle’ (GO:0043226, 16.96%)

and ‘membrane’ (GO:0016020, 11.46%). Two main GO level 2 categories (85.09%) out of 17

were characteristic of the class Molecular Function: ‘binding’ (GO:0005488, 43.23%) and ‘cata-

lytic activity’ (GO:0003824, 41.85%).

Scheme numbers (ECs) could be assigned for 12,226 (38.13%) annotated sequences with

GO term classification. The top level codes assigned to enzymes were distributed as follows:

38.99% to transferase activity, 27.69% to hydrolase activity, 20.86% to oxidoreductase activity,

4.87% to ligase activity, 4.60% to lyase activity and 2.97% to isomerase activity (Fig 2). InterPro

search revealed that 27,714 hop transcripts had a hit to at least one InterPro database entry rep-

resented by domain (2479), family (2341), repeat (60) or site (403). An eukaryotic signal pep-

tide cleavage site (signal-P) was predicted in 6,785 hop transcripts, while 6,287 transcripts

were characterized by the presence of transmembrane helices.

Target prediction and target selection of vd-sRNA

For hop target prediction of vd-small RNAs, we took into account possible lengths of HLVd-

and CBCVd- derived sRNAs of 21, 22 and 24 bp long, the circular nature of viroid molecules

and the presence of both orientations in the cell due to the (-) intermediate rolling circle ampli-

fication. In-silico cutting of the HLVd 256 nt sequence (GenBank X07397) yielded 512 possible

21, 22 or 24 nt sequences, while the CBCVd 284 nt sequence (GenBank KM211546) yielded

568 possible 21, 22 or 24 nt sequences. Two target prediction tools, UEA sRNA Workbench

[38] and psRNA Target [39], predicted 1,062 and 1,387 unique targets for HLVd and CBCVd

vd-sRNAs action. However, the tools significantly differed in the number of revealed hop tar-

gets, with psRNA Target predicting approximately three times more targets than the UEA

sRNA tool, for both viroids, and approximately half of the targets predicted by the UEA sRNA

tool were also revealed by the psRNA Target tool (Fig 3A and 3B). Between the two groups of

vd-sRNAs only a small proportion of predicted targets were in common (81), revealing alto-

gether 2,368 unique hop targets for possible sRNA action of these two studied viroids (Fig 3C).

Table 2. BLAST annotation summary of assembled H. lupulus transcripts.

Transcripts annotated

Database / BLAST algorithm Number Percentage

NCBI nt / BLASTn 62,342 41.44%

NCBI nr / BLASTx 43,645 29.01%

SWISS-Prot / BLASTx 33,492 22.26%

KOG / BLASTx 41,271 27.43%

All unique annotated sequences 82,482 54.83%

https://doi.org/10.1371/journal.pone.0184528.t002
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Fig 1. GO classification level 2 of H. lupulus annotated transcripts for three main GO categories:

Biological process (BP), cellular component (CC) and molecular function (MF). Only classifications

with > 100 sequences are shown.

https://doi.org/10.1371/journal.pone.0184528.g001
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As expected, shorter vd-sRNAs (21 bp) revealed more targets than 22 and 24 bp ones, with a

high proportion of mutual sharing (Fig 3D and 3E).

Comparison of Blast2GO annotation statistics of the set of predicted targets with the whole

transcriptome revealed twice as high a proportion of predicted targets with B2GO parameters

of annotation (S2 Fig). However, in a comparison of the most abundant proportions of the

three GO level 2 classes of the whole transcriptome data with classes of predicted target data

for HLVd and CBCVd vd-sRNAs action, only slight enrichment for some classes could be

noted (S3 Fig), implying that a particular vd-sRNA may target some of these processes. Com-

parison of the proportion of assigned enzyme codes did not reveal any relevant increase in spe-

cific classes of enzyme codes for vd-sRNA predicted targets (S4 Fig).

Altogether, 17 hop targets were selected based on their annotation, with an emphasis on

selecting genes of hormonal pathways (4), genes involved in small RNA biogenesis (2), genes

targeted by CBCVd-derived sRNAs exhibiting high cellular concentrations (7) as revealed by

viroid mapping data, and genes targeted by vd-sRNAs showing the highest level of comple-

mentarity with the target (4). Three targets were predicted as potential HLVd- and 14

sequences as potential targets of CBCVd-derived sRNA actions (Table 3, S1 Table). Five hop

PR genes were additionally included (S2 Table).

RT-qPCR experiment on selected targets

PCR primers for the amplification of 17 selected hop transcripts were developed from anno-

tated transcripts. In addition, 5 primers for expression analysis of hop PR genes were included

[46] (S2 Table). Primers were designed to amplify a region of transcripts of an exact length of

Fig 2. Top level enzyme codes assigned to 12,226 sequences.

https://doi.org/10.1371/journal.pone.0184528.g002
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Fig 3. Results of target predictions for CBCVd and HLVd derived small RNAs. (A) Unique and shared targets for HLVd derived small RNAs

predicted by UEA sRNA workbench (HLVd UEA) and psRNA Target (HLVd ps). (B) Unique and shared targets for CBCVd derived small RNAs

predicted by UEA sRNA workbench (CBCVd UEA) and psRNA Target (CBCVd ps). (C) Only 81 of targets were in common predicted by two

groups of vds-RNAs. (D) and (E) Shorter class of vd-sRNA for both viroids (21 nt, HLVd and CBCVd) revealed more targets than 22 and 24 nt

class.

https://doi.org/10.1371/journal.pone.0184528.g003
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90 bp, except for two transcripts (DCL1 62 bp and Ppol 67 bp), and to avoid annealing to

regions of conserved protein domains. Optimal conditions for qPCR were defined during the

optimization step as a 5 ng concentration of cDNA template and 300 nM concentrations of

primers. For defined targets, successful amplification was achieved with a single dissociation

curve and gel analysis confirming a single amplicon. All 17 successfully amplified targets and 5

hop PR genes showed no PCR inhibitions, with appropriate PCR efficiencies between 91.29%

and 106.26%, as obtained from five-fold dilution series from bulked cDNA samples (S2 Table).

Expression analysis (FC>1.5) of PR genes (Fig 4) showed extremely high expression com-

pared to viroid free plants for four out of five of these genes in leaves (PR1, PR2, PR3-VAC

and PR5), being highest for the PR1 gene (HLVd: 28.6 and CBCVd: 10.5 FC), while for the

other three genes, FC values were between 5.53 (PR3-VAC CBCVd) and 8.22 (PR5 CBCVd).

The PR3-EX gene exhibited the smallest upregulation in leaves (HLVd: 2.08 and CBCVd: 1.68

FC), showing the smallest effect of viroid infection on expression of this particular gene. Inter-

estingly, analysis of these genes in flower and cone tissues did not reveal strong up or down

expression differences (>1.5 FC), except for PR1 and PR3-VAC, which were slightly upregu-

lated in cones and flowers, respectively (HLVd: 2.82 and CBCVd: 1.67 FC for PR1 and

CBCVd: 1.58 FC for PR3-VAC), while PR2 and PR3-EX were slightly downregulated in cones

and flowers, respectively (CBCVd: 1.63 FC for PR2 and HLVd: 1.71 for PR3-EX). Tissue differ-

ences were highest for PR1 in the case of HLVd infection, whereby the difference in response

between leaves and flowers and leaves and cones was 25.4 and 10.1 FC, respectively.

Expression analysis was further performed for selected hormonal pathway targets with

modelled evidence of interaction between the hop transcript and vd-sRNA. Downregulation

of expression is expected in the case of confirmed silencing. These four targets, phospholipase

A1 (PLA1), linoleate 13S-lipoxygenase (LOX), gibberellin 2-oxidase (GA2ox) and jasmonic

acid-amino acid synthetase (JAR1) (Table 3, S1 Table, Fig 5) are involved in jasmonate and

Table 3. Seventeen selected hop transcripts as potential targets of vd-sRNA actions analysed by RT-qPCR.

No Contig Seq

length

Viroid/vd-sRNA

orientation

Prediction

Tools

Transcript annotation Group

1 30192 2042 HLVd / - psRNATarget phospholipase A1 (PLA1) Metabolism of plant hormones

2 316 2396 HLVd / + Both linoleate 13S-lipoxygenase (LOX)

3 51543 1395 CBCVd / - psRNATarget gibberellin 2-oxidase (GA2ox)

4 24780 2290 CBCVd / + psRNATarget jasmonic acid-amino acid synthetase (JAR1)

5 4643 5027 CBCVd / + psRNATarget endoribonuclease dicer homolog 3a (DCL3a) Small RNA biogenesis

6 2112 9228 CBCVd /-,+ Both endoribonuclease dicer homolog 1 (DCL1)

7 29806 1124 CBCVd / + psRNATarget cold-regulated 413-plasma membrane

protein 2 (COR413PM2)

CBCVd targets of vd-sRNAs with high

cellular presence

8 44350 820 CBCVd / + Both GATA transcription factor (GATA)

9 7166 2536 CBCVd / - psRNATarget acyl-CoA-binding domain-containing protein

5 (ACBD5)

10 8499 1990 CBCVd / - psRNATarget uncharacterized protein 1 (UP1)

11 11357 813 CBCVd / - Both multiprotein-bridging factor 1c (MBF1c)

12 20309 4464 CBCVd / -, + Both putative polyprotein (Ppol)

13 71362 215 CBCVd / - Both uncharacterized protein 2 (UP2)

14 18517 7611 CBCVd / + Both uncharacterized protein 3 (UP3) Genes with high complementarity with

vd-sRNAs15 21090 537 CBCVd / + Both AP-3 complex subunit sigma (AP3)

16 24148 1065 CBCVd / + Both splicing factor 3B subunit 4 (SF3B)

17 10708 1747 HLVd / + Both protein trichome birefringence-like 24

(TBL24)

https://doi.org/10.1371/journal.pone.0184528.t003

Hop plant and viroid interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0184528 September 8, 2017 12 / 25

https://doi.org/10.1371/journal.pone.0184528.t003
https://doi.org/10.1371/journal.pone.0184528


gibberellin hormonal pathways. Two of them are targeted by HLVd- and two by CBCVd-

derived sRNAs (Table 3). LOX (HLVd targeted) showed a trend of downregulation in all three

tissues for both viroid infected groups of plants, with the highest FC in leaves (HLVd: 3.47,

CBCVd: 5.06), while flowers and cones exhibited FC in a range from 2.42 (HLVd flowers) to

1.72 (CBCVd cones). Downregulation in both viroid infected groups of plants may be due to

HLVd derived sRNA action, since CBCVd plants are also HLVd infected. Expression of the

next transcript PLA1 (HLVd targeted) was characterized by upregulation in leaves for both

groups of viroid infected plants (HLVd: 1.88 and CBCVd: 2.47 FC), with a minimum effect of

downregulation in flowers and cones (<1.5 FC). JAR1 (CBCVd targeted) showed minimum

downregulation in leaves and minimum upregulation in flowers and cones (<1.5 FC) in ana-

lysed tissues and groups of viroid infected plants. GA2ox (CBCVd targeted) was upregulated

in leaves for both viroid infected groups of plants with a higher trend in HLVd infected plants

(HLVd: 3,78 and CBCVd: 1,76 FC). Interestingly, although the transcript was predicted as a

CBCVd sRNA target, it showed very strong downregulation in flowers of HLVd infected

plants (12.05 FC), and a much smaller one in cones of the same plants (1.51 FC). In cones of

CBCVd infected plants, expression analysis did not reveal a difference from viroid free plants,

while it showed a trend of downregulation in flowers (<1.5 FC).

Two transcripts with in-silico evidence of interaction with CBCVd derived sRNA belonged

to hop RNAi biogenesis machinery (Table 3, S1 Table, Fig 6): endoribonuclease dicer homolog

3a (DCL3a) and endoribonuclease dicer homolog 1 (DCL1). Interestingly, both genes showed

very stable expression, with minimum expression fluctuations in different tissues and in the

two groups of viroid infected plants (<1.5 FC).

The next group of seven targets, cold-regulated 413-plasma membrane protein 2

(COR413PM2), GATA transcription factor (GATA), acyl-CoA-binding domain-containing

Fig 4. Relative expression levels (log2 scale) of five hop PR genes in leaves, flowers and cones in HLVd and CBCVd infected hop plants is

strongly upregulated for 4 PR genes in leaves. The expression is relative to viroid-free plants. Error bars represent standard error of the mean (SEM) of

biological replicates.

https://doi.org/10.1371/journal.pone.0184528.g004
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Fig 5. Relative expression levels (log2 scale) of four hop hormonal pathway transcripts in leaves, flowers and cones in

HLVd and CBCVd infected hop plants. The expression is relative to viroid-free plants. Error bars represent standard error of

the mean (SEM) of biological replicates.

https://doi.org/10.1371/journal.pone.0184528.g005

Fig 6. Relative expression levels (log2 scale) of two hop DCL transcripts involved in RNAi biogenesis in leaves, flowers

and cones in HLVd and CBCVd infected hop plants displays stable expression profiles. The expression is relative to

viroid-free plants. Error bars represent standard error of the mean (SEM) of biological replicates.

https://doi.org/10.1371/journal.pone.0184528.g006
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protein 5 (ACBD5), multiprotein-bridging factor 1c (MBF1c), putative polyprotein (Ppol) and

two uncharacterized proteins (UP1 and UP2) (Table 3, S1 Table, Fig 7) were selected based on

CBCVd-derived sRNAs, which were characterized by high cellular presence in infected hop

plants, as revealed by mapping profiles [14]. For this group of targets, one of them—GATA

transcription factor (GATA)—exhibited an effect of downregulation by CBCVd derived

sRNAs in all three tissues. It was downregulated in leaves of CBCVd infected plants (1.65 FC),

while upregulated in leaves of HLVd infected plants (1.65 FC). The effect of downregulation

was seen in cones of both groups of plants, being stronger in CBCVd (>1.5) infected plants

(HLVd: 1.38 and CBCVd: 2.73 FC), while in flowers, downregulation was almost negligible

(<1.5) (HLVd: 1.27 and CBCVd: 1.05 FC). ACBD5 showed small downregulation in leaves of

CBCVd infected plants (<1.5) (1.16 FC) but was upregulated in leaves of HLVd infected plants

(1.65 FC), while both group of plants showed stronger downregulation in flowers and cones,

being higher in cones of HLVd infected plants (HLVd: 1.90 and CBCVd: 1,55 FC).

Fig 7. Relative expression levels (log2 scale) of seven hop transcripts selected based on high cellular presence evidence of CBCVd derived

sRNAs in HLVd and CBCVd infected hop plants in leaves, flowers and cones. Expression profile of GATA transcription factor for CBCVd infected

plants is showing possible vd-sRNA action of downregulation. The expression is relative to viroid-free plants. Error bars represent standard error of the

mean (SEM) of biological replicates.

https://doi.org/10.1371/journal.pone.0184528.g007
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COR413PM2 showed either slightly increased or decreased expression levels in all tissues com-

pared to viroid free plants (<1.5 FC). A similar trend was seen for UP1, with slight downregu-

lation of transcript in leaves and flowers in both groups of plants (up to 1.30 FC in CBCVd)

and minimum change in cones. Interestingly, in contrast to our hypothesis of downregulation

of targets by vd-sRNA, transcript MBF1c was highly expressed in leaves of CBCVd infected

plants (3.16 FC), while slightly downregulated in HLVd infected plants (1.20 FC) and with

minimum expressed fluctuations in flowers and cones. Ppol and UP2 showed the same expres-

sion trend in tissues of both groups of viroid infected plants. While the first target had higher

expression in leaves (HLVd: 1.52 and CBCVd: 1.74 FC), it was slightly downregulated in flow-

ers and cones, and the second target showed higher expression in all tissues compared to viroid

free plants, with the highest expression in flowers of CBCVd infected plants (3.62 FC) and in

leaves and cones of HLVd infected plants (HLVd leaves: 2.28 and HLVd cones: 1.77 FC).

The last four targets were selected on the basis of the lowest computed expected scores pro-

vided by the psRNA target algorithm [39] between hop transcripts and vd-sRNAs uncharacter-

ized protein 3 (UP3), AP-3 complex subunit sigma (AP3), splicing factor 3B subunit 4 (SF3B)

and protein trichome birefringence-like 24 (TBL24) (Table 3, S1 Table, Fig 8). All three

CBCVd derived sRNA targets exhibited unexpectedly high downregulation in flowers of

HLVd infected plants (5.67, 2.65 and 2.47 FC), while the expected downregulation effect in

flowers of CBCVd infected plants was negligible (FC<1.5) (1.10, 1.10 and 1.12 FC). A similar

effect was also characteristic for HLVd derived sRNA target TBL24, in which downregulation

in flowers of HLVd infected plants showed 5.13 FC compared to viroid free plants. Both up-

and downregulation was observed for these targets in leaves and cones. The first transcript,

uncharacterized protein UP4, was upregulated in the leaves of both groups of viroid infected

plants, with comparable fold changes (HLVd: 1.47 and CBCVd: 1.46 FC) and similarly

Fig 8. Relative expression levels (log2 scale) of four hop transcripts showing the lowest expectation scores of three CBCVd and one HLVd

derived sRNAs in infected hop plants in leaves, flowers and cones in HLVd and CBCVd infected hop plants. The expression is relative to viroid-

free plants. Error bars represent standard error of the mean (SEM) of biological replicates.

https://doi.org/10.1371/journal.pone.0184528.g008
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downregulated in cones. The second CBCVd derived sRNA target, AP3, was slightly downre-

gulated in the leaves of both groups of viroid infected plants (HLVd: 1.15 and CBCVd: 1.32

FC) and showed minimum up- and downregulation in cones (HLVd upregulation: 1.15 and

CBCVd downregulation: 1.32 FC). SF3B, also a predicted target of CBCVd derived sRNA

action, was slightly upregulated (<1.5) in the leaves of both groups of viroid infected plants

(HLVd: 1.21 and CBCVd: 1.31 FC) and showed negligible downregulation in cones (HLVd:

1.05 and CBCVd: 1.14 FC). The target of HLVd derived sRNA, TBL24, had comparable

expression in leaves of HLVd infected plants (1.07 FC) and was slightly downregulated in

CBCVd infected plants (1.28 FC), while it was downregulated in cones, with a stronger effect

in CBCVd infected plants (HLVd: 1.19 and CBCVd: 1.44 FC).

Discussion

We de-novo assembled an RNA-seq derived hop transcriptome, defined targets of HLVd and

CBCVd derived sRNAs and selected a panel of potential targets together with PR genes, whose

expression was monitored using RT-qPCR. This allowed us to compare the hop response to

infection by the aforementioned two viroids. Indeed, in-silico target prediction showed that

possible targets exist in the hop transcriptome for vd-sRNAs and the majority of selected tar-

gets showed differential expression in viroid infected plants compared to viroid-free plants,

suggesting transcriptome changes due to the infection.

To elucidate possible pathogenicity mechanisms of aggressive CBCVd and symptomless

HLVd infections of hop plants, we started with computational predictions of vd-sRNAs tar-

geted genes of hop. For this purpose, we developed a detailed hop plant NGS transcriptome

represented by 150,443 transcripts expressed in different hop tissues from several developmen-

tal stages. Hop transcriptomes were already assembled and studied in the past by Sanger chem-

istry, but mainly focused on glandular trichomes to study lupulin specific transcripts [48,49].

A similar study employing an NGS Illumina RNA-seq approach further expanded knowledge

about lupulin gland-specific biosynthesis of precursors for the production of bitter acids. In

that study, a transcriptome from leaves, cones and lupulin glands was assembled and ~

170,000 contigs were obtained, which is a similar number to our study. The authors reported

745 bp to be the average length of the transcripts, which is better than was achieved in our

study (494 bp) [50]. The number of hop assembled transcripts is fairly high compared to some

Illumina transcriptome de-novo assembly studies of other crops, such as peanuts (59,077) [51],

celery (42,280) [52] or carrots (58,751) [53]. The higher number of assembled transcripts prob-

ably results from the highly heterozygous nature of outcrossing hops, which contributed to

separate assemblies of some allelic variants, the presence of alternative spliced transcripts, and

transcripts being assembled into several split contigs. The recently available unannotated draft

assembly of the hop genome will certainly improve future efforts in hop transcript reconstruc-

tion [54]. Further BLAST analysis against the available nucleotide and protein databases

showed that 41.4%, 29%, 22.3% and 27.4% of hop transcripts have similar sequences in NCBI

nt, NCBI nr, SWISS-Prot and KOG databases, respectively. If transcripts shorter than 200 bp

were not taken into account, the numbers improved, especially for protein databases (nr

39.0%, SWISS-Prot 30.2%, KOG 36.9%). Similar observations about shorter contigs lacking

hits in protein databases have also been made in other de-novo assembly transcriptome studies

[55]. Transcripts without revealed similarities to known proteins probably belong to noncod-

ing RNA species, 5’ or 3’ untranslated regions, short sequences with non-significant protein

hits or are simply assembly artefacts. BUSCO analysis [35] of the transcriptome achieved 89%

and confirmed its near completeness. This software, intended to assess transcriptome assembly

and annotation completeness by comparison of transcripts to selected Universal Single-Copy
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Orthologs expected to be always present in all cells, is becoming a popular tool for NGS gener-

ated transcriptomes [56]. Functional annotation assigned different GO categories to the hop

transcripts (Fig 1). These data are valuable for researchers interested in specific pathways or in

transcripts controlling traits of interest. This part of the research clearly showed that NGS

sequencing is an efficient strategy for transcriptome reconstruction of a highly heterozygous

non-model organism such as hop. The sequences generated in this study can be used for addi-

tional studies, such as SNP or microsatellite marker development, mapping studies or in hop

breeding programs aided by marker assisted selection tools.

In the next step, we performed in-silico target prediction for HLVd and CBCVd derived

sRNAs. There are many small/micro RNA target prediction computational tools available

(reviewed in [57]) and some of them have also been extensively and systematically evaluated

[58]. They focus on different parameters of the target recognition process, which are usually

plant or animal specific, and methods of discovery, which are either similarity based or based

on machine learning approaches. Two different software packages were used, ps-RNA target

[39] and UEA sRNA workbench [38], both of them classified as plant specific tools. However,

they predicted widely different numbers of targets (Fig 3A and 3B). Comparison of various

small RNA target predication tools has already highlighted different efficiencies and sensitivi-

ties for the tested tools. Authors have also indicated the diversity of newly discovered and non-

conventional small RNA-mRNA interaction features, which can also be species specific and

not included in predicting algorithms [58]. While UEA sRNA workbench did not provide any

selection parameters, some are available for the ps-RNA target tool, which can affect the num-

ber of predictions. We used the default parameters for the ps-RNA target tool. When the ‘max-

imum expectation’ value was lowered to more stringent prediction values, set at 2, 1 and 0,

significantly fewer numbers were predicted.

We selected the qRT-PCR method for monitoring expression of selected hop transcripts

(Table 3, S1 Table) in three tissues (leaves, flowers and cones), since it is the method of choice

for precise measurement of a smaller number of targets [59].

Expression of PR-genes, which are known to be part of the general host defence response

activated against pathogens, including bacteria, fungi and viruses [60], has been investigated in

hop-viroid interactions. Four hop PR genes (Fig 4) showed strong accumulation of PR tran-

scripts for both groups of viroid infected plants in leaves, while their activation was not trig-

gered in flowers or cones, except for gene PR-1 activation in cones. Tissue and developmental

specific expression of A. thaliana PR-1 proteins were confirmed in a microarray experiment of

healthy plants [60], which might also be the cause of the lower expression that we encountered

in flowers and hop cones. It has already been shown in several tomato-viroid studies that

plants infected by PSTVd or CEVd have elevated expression of several PR proteins [61,62]. In

our case, even symptomless HLVd hop plants showed elevated expression of PR proteins.

Although HLVd does not cause visible symptoms, it presumably interferes with secondary

metabolite production of lupulin glands [63], and its cellular replication probably activates a

PR protein response. Interestingly, it was recently suggested by RNA-seq analysis that sensitiv-

ity to HSVd in hops is related to a PR protein downregulation expression profile, in a study of

affected and tolerant hop cultivars [64], a phenomenon not observed in our case.

Traditionally, based on pioneering articles on the discovery of HLVd by Puchta et al. [4] or

on HLVd testing by Barbara et al. [5], it is widely assumed that hop cones are the most infected

organs in the case of HLVd, since cone tissue was used for RNA isolation in most samples.

However, no research has to date been published in terms of the concentration distribution of

hop viroids in different parts of hop plants or organs using qPCR measurements. Small RNA

NGS sequencing of bulked RNA tissue of plants infected by both viroids by our research group

confirmed extremely high and comparable cellular concentrations of vd-sRNAs for both
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viroids, totaling up to 3% of all reads, although this does not answer the question of their spa-

tial distribution [14]. Research papers studying the distribution of viroids in other plant-viroid

pathosystems have in fact shown evidence of viroids’ uneven distribution in the plant; for

example, for peach latent mosaic viroid (PLMVd) [65]. Since both viroids, HLVd and CBCVd,

in hops can easily be detected throughout the growing season in different sampled tissues, we

believe that their concentration is comparable between different tissues. Our assumption was

therefore that for transcripts targeted by vd-sRNAs, downregulation should be observed in all

analyzed tissues.

It is well known that viral pathogens produce suppressors of the RNA silencing pathway in

order to inhibit or target proteasome mediated proteins, important for degradation, of this

antiviral part of the plant immune system [66,67]. For example, a plant’s DCL proteins can be

inhibited by P38 or P1 suppressors of Turnip crinkle virus [68] and Rice yellow mottle virus
[69]. The target prediction step indicated that two CBCVd-derived sRNAs may targets hop’s

DCL3a and DCL1 transcripts (Table 3, S1 Table). However, expression analysis showed very

stable and unchanged expression of these two genes in all analysed organs, demonstrating

uncompromised activity of these two DCLs in infected plants (Fig 6). Therefore vd-sRNAs do

not compromise the activity of these two important genes of the RNA silencing pathway.

Their very stable expression suggests their possible use as biotic stress reference genes in hop

RT-qPCR experiments [45].

Due to the sessile lifestyle of plants, their defence strategies against pathogens also depend

on fine-tuned hormonal pathways, including three pillars of stress hormones (salicylic acid,

jasmonates and ethylene), as well as growth hormones such as cytokinins, gibberellins and

brassinosteroids. On the other hand, pathogens have evolved numerous virulence strategies

targeting the accumulation of hormones or their signalling [70]. We therefore hypothesize that

vd-sRNAs may target and silence any of the genes involved in the aforementioned hormonal

pathways. It is already known from a microarray experiment on PSTVd infected tomato

plants, that viroid infection induces complex changes affecting hormone signalling [71]. Com-

plementarity between vd-sRNAs and 3 genes involved in the jasmonate pathway (PLA1, LOX

and JAR1), and GA2ox involved in gibberellin production, was predicted and their expression

was monitored by RT-qPCR (Fig 5). The first gene, PLA1, targeted by HLVd derived sRNA,

had elevated expression in the leaves of both groups of viroid infected plants, confirming that a

plant defence response was triggered but not silenced. However, expression of this gene was

not impaired in flowers or cones, probably due to their specialized biological function. A grow-

ing body of evidence indicates that phospholipase A, as well as other phospholipid hydrolyzing

enzymes, plays an important role in control of the plant defence response to attack by invading

pathogens [72]. The second gene, LOX, targeted by HLVd derived sRNA, was downregulated

in both groups and all tissues of viroid infected plants, with the highest effect in leaves (Fig 5).

Downregulation of this particular enzyme was also confirmed in a tomato transgenic line

expressing PSTVd derived sRNAs in the absence of viroid replication. Moreover, the expres-

sion change was similar to the change we detected in hop leaves (log2 expression change

tomato -1.96, HLVd hop -1,80 and CBCVd hop -2,34) [71]. Our observation for this gene may

be due to HLVd-derived sRNA targeting, since both groups of hop plants were HLVd infected.

The third gene of the JA pathway, jasmonic acid-amido synthethase JAR1, targeted by CBCVd

derived sRNA, showed minor fluctuations of expression compared to viroid free plants and

seems not to be influenced by the disease status of the plant. Mutants with a defective JAR1

gene are of special interest and are important experimental models due to the reduced sensitiv-

ity to JA in studies of plant resistance [73]. The last gene, GA2-oxidase, was predicted to be tar-

geted by CBCVd-derived sRNAs. However, expression profiles were different among tissues

and viroid infected plants and did not show the expected trend of downregulation in all tissues
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(Fig 5). GA2-oxidase is known to be a dominant gibberellin catabolism gene and its overex-

pression contributes to dwarf genotypes in many plants, such as poplar [74] or Solanum [75]

species. Dwarfism of hop plants is particularly exhibited in CBCVd infection, while plants are

of normal height in the case of HLVd viroid infection. Upregulated expression of this gene in

leaves in both groups of plants is probably not a major contributor to the dwarfism of the

CBCVd infected plants.

It is known that siRNAs require higher complementarity with the target than do miRNAs

[76]. We therefore selected the vd-RNAs (3 CBCVd and 1 HLVd derived) that were most iden-

tical to the targets and monitored their expression. The targets were annotated as uncharacter-

ized protein UP3, AP3 (involved in intracellular protein transport and vesicle-mediated

transport), SF3B (involved in mRNA splicing) and TBL24 (involved in cell wall organization

or biogenesis) (Table 3, S1 Table). Unexpectedly, all four targets, even the three predicted as

being targeted by CBCVd-derived sRNAs, were particularly downregulated in flowers of

HLVd infected plants (Fig 8). Other biological processes than silencing by vd-sRNAs probably

interfere with the downregulation of these targets in flower tissue of HLVd infected plants.

It is well documented that vd-sRNAs exist in hosts in varying numbers and those with

higher prevalence come from defined hot-spot regions of the viroid’s genome [14]. In in-vitro
studies of siRNA silencing, it was shown that there is a concentration-dependent gene silenc-

ing effect, with a higher concentration of sRNAs more successfully decreasing gene activity

[77]. Seven hop targets were therefore chosen, based on CBCVd-derived sRNAs with sup-

ported evidence of having a high cellular content in-planta [14]. These hop transcripts are pre-

sumably involved in important processes, such as response to cold stress (COR413PM2) [78],

regulation of transcription (GATA) [79], tolerance to heat and osmotic stress by partially acti-

vating the ethylene-response signal transduction pathway (MBF1c) [80,81], while two others

are either poorly annotated (uncharacterized protein UP2) or show a probable retrotranspo-

son origin (Ppol) (Table 3, S1 Table). Interestingly, we found evidence of possible downregula-

tion of the GATA transcription factor (GATA) in this group of transcripts, in CBCVd infected

plants showing decreased expression in leaves (1.65 FC) and in cones (2.73 FC), while in

HLVd infected plants, this phenomenon was, as expected, not observed (Fig 7). A similar level

of expression suppression of target mRNAs by PSTVd derived sRNAs was observed in tomato

plants, in which callose synthase gene expression was suppressed 1.5-fold [24]. Suppression of

expression of the transcription factor regulating an important biological process—the rate of

transcription of genetic information—could probably manifest in severe disease symptoms,

which are observed in the case of CBCVd infected hop plants.

The data presented in this paper demonstrate that NGS technology is an appropriate

method of choice for quickly acquiring transcriptomes for non-model organisms such as hop.

Furthermore, an in-silico approach revealed the existence of a high level of sequence similarity

of vd-sRNAs of CBCVd causing severe stunt disease and non-harmful HLVd with hop tran-

scripts. Elevated expression of PR proteins confirmed the disease status of both viroid infected

groups of hops, even in the case of non-symptomatic HLVd. Expression analysis of targets

selected based on several criteria showed altered expressions in different hop tissues, demon-

strating that viroid infection can re-program the transcriptomic plan of healthy plants. More-

over, for two transcripts, we found evidence of possible downregulation of transcripts by

HLVd and CBCVd derived sRNAs. This evidence will be further confirmed by an RLM-RACE

or degradome experiment. However, a better understanding of vd-sRNA action is needed,

together with defined methodologies on selection criteria for their action, for precise selection

of the targets. We also have to take into account the possibility of other actions of vd-sRNAs,

which might be different to the PTGS model. The results acquired in this research will pave

new research paths in strategies to fight viroid diseases in hop production.
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Supervision: Branka Javornik, Nataša Štajner, Jernej Jakše.

Writing – original draft: Tine Pokorn, Jernej Jakše.
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