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ABSTRACT The detection of vision problems in early childhood can prevent neurodevelopmental disorders
such as amblyopia. However, accurate clinical assessment of visual function in young children is challenging.
optokinetic nystagmus (OKN) is a reflexive sawtooth motion of the eye that occurs in response to drifting
stimuli, that may allow for objective measurement of visual function in young children if appropriate child-
friendly eye tracking techniques are available. In this paper, we present offline tools to detect the presence and
direction of the optokinetic reflex in children using consumer grade video equipment. Our methods are tested
on video footage of children (N = 5 children and 20 trials) taken as they freely observed visual stimuli that
induced horizontal OKN. Using results from an experienced observer as a baseline, we found the sensitivity
and specificity of our OKN detection method to be 89.13% and 98.54%, respectively, across all trials. Our
OKN detection results also compared well (85%) with results obtained from a clinically trained assessor.
In conclusion, our results suggest that OKN presence and direction can be measured objectively in children
using consumer grade equipment, and readily implementable algorithms.

INDEX TERMS Eye tracking, head tracking, optokinetic nystagmus, pupil/iris detection, video stabilization.

I. INTRODUCTION
The early detection of visual problems is beneficial in both
arresting and preventing disorders such as amblyopia. Unfor-
tunately, adult test of visual function are unsuitable as they
require cognitive, attentional and language skills that chil-
dren do not typically possess. Furthermore results of existing
pediatric vision tests can be variable [1]. Therefore, tools and
methods for the accurate assessment of visual function using
objective approaches in this age-group are desirable. The
detection of optokinetic nystagmus (OKN) offers a potential
solution to this problem. The optokinetic response is an invol-
untary sawtooth movement of the eye that occurs in response
to moving stimuli such as a rotating drum, or drifting bars on
a computer screen [2]. The response consists of an alternating
sequence of slow phases (SPs) during which the eyes track
a feature of the moving stimulus, and quick phases (QPs)
where the eyes move rapidly in the opposite direction to
the moving stimulus [2], [3] (see Fig. 1). As the response is
reflexive, the presence or absence of OKN indicates whether

FIGURE 1. Sample of OKN velocity and displacement signal with
indicated slow phase (SP) and quick phase (QP).

or not a moving stimulus was visible, without the explicit
cooperation of the observer. Determining the pres-
ence/absence of the optokinetic response is a recognized
technique for the subjective assessment of visual function that
has been used for both adults [4] and young children [5], [6].
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However, in children, the additional challenge is to ensure
that measurements are as robust and accurate as possible,
whilst being non-invasive, quick, and allowing unrestrained
head movement. Computer aided measurement and analy-
sis may facilitate the controlled, accurate and rapid clinical
measurement of visual function in this age group [7].

Camera based eye tracking is a non-invasive comput-
erized approach in which the eye signal is extracted
from (typically) infrared (IR) video [8]–[13]. Recently,
Hyon et al. [14] and Han et al. [15] used such a system for
the objective assessment of OKN. Distance visual acuity was
measured objectively by this method yielding good repro-
ducibility and significant correlation between distance visual
acuity measured using a standard eye chart and objective
visual acuity measured using OKN. Shin et al. [16] continued
this work, describing the relationship between OKN response
and visual acuity in adult humans with ocular disease using
the same approach. They showed that in subjects with 20/60
or worse visual acuities, objective visual acuity estimated by
OKN can predict subjective visual acuity.

Unfortunately, current generation eye tracking systems
(such as the setup described by Hyon et al. [14]) generally
employ chin rests or head-mounted cameras to account for
head movement. Furthermore, precise calibration procedures
are necessary before eye position data can be acquired. The
requirement for high levels of patient cooperation makes such
systems unsuitable for use with young children. Companies
such as Tobii (Tobii Technology) and SMI (SensoMotoric
Instruments) provide remote eye tracking (heads free) solu-
tions, but remain at present largely confined to the research
setting as they are expensive and expect careful calibration
which is difficult to achieve with young children. Moreover,
these systems do not readily compensate for rapid and large
head motions that often occur when a child views visual stim-
uli with an unrestrained head [8], [9]. Therefore, subjective
assessment of eye movement remains the current standard for
OKN detection in children [1].

A number of related systems for measuring eyemovements
(with free head movement) have also been described.
Eizenman [17], [18] and Model [19] proposed point gaze
estimation using Purkinje images including methods for
calibration with infants (6-, 8-, 9-, 15-, and 16 month-old).
Zhu and Ji [20] used a method to evaluate gaze with a
table mounted stereoscopic system without using any user-
dependent eyeball parameters. The system compensated
head movements and gave an estimation of the gaze direc-
tion with respect to a reference head position. To estimate
3D configuration of cameras, lights, screen, head and eyes,
the stereo vision system was calibrated a priori. However,
these methods require a customized setup and are not readily
available in the clinical setting.

In this study, we report offline methods that were
developed to retrospectively analyze videos collected from
children as they underwent an assessment in which they
viewed drifting stimulus patterns. Our aim in doing this
was to test whether a low-cost recording setup, using

semi-automated approaches could replicate the assessment of
an experienced clinical assessor who judged the direction of
the quick phase eye movements in the video footage. The
authors are not aware of similar studies to date, in which
attempts have been made to automate the measurement of the
optokinetic response in children using consumer grade video
equipment in particular.

In this work we present simple to implement techniques
for detecting the absence/presence of OKN, using footage
obtained from a consumer grade video recorder. The work
includes the novel application of known techniques to the
issue of OKN detection in young children, as well as the
implementation of a new feature based stabilization technique
which allows for precise head stabilization. In particular, we
describe methods that extract the motion of the eyes with
respect to the head, and processing of that signal in order to
estimate the presence or absence of OKN. Two methods for
extracting the eye movement signal from video are proposed:
(1) a method based on stabilization of the head and sub-
sequent eye motion analysis (the stabilization method), and
(2) direct subtraction of the head signal from the combined
head and eye signal (the direct subtraction method). We com-
pare these methods with (3) Visage SDK, a commercial grade
head and eye tracking system. The performance of the head
stabilization process is further assessed by comparison with
manual tracking of markers, in the form of stickers that the
participants wore on their faces.

II. METHOD
We developed readily usable tools that would facilitate eye
tracking (in the frame of the head) in RGB video. Fig. 2 shows
the entire procedure that we adopted. The steps involved
are head tracking, head stabilization and pupil center and
limbus edge tracking. These are explained in the following
sub-sections.

A. HEAD TRACKING AND STABILIZATION METHOD
Video stabilization is the process of removing camera
or unwanted movement within the scene [21]. Recently
Bai et al. [22], [23] described a method that tracked general
features (or specific features within a region of interest)
and warped the video frames to remove unwanted move-
ment. Kinsman et al. [24] reported a technique using head
mounted cameras, which compensated head motion, in order
to improve eye fixation detection in a wearable device.
That algorithm was based on maximizing cross correlation
between two consecutive frames, and was used to estimate
the global motion of the scene resulting from camera
movement. Rothkopf and Pelz developed a method that
compensated rotational motion of the head by using an
omnidirectional camera in a wearable device [25]. We imple-
mented an approach to stabilize head movement in which
Shi-Tomasi Features [26] were detected in a mask, and
then tracked (using the Kanade Lucas Tomasi (KLT) point
tracking [27]) to obtain the transformation required to
stabilize the video.
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FIGURE 2. (a) Shi-Tomasi features detected and tracked on the face region. Features in the region of markers are removed. (b) Stabilized face in which the
video is now transformed with the head fixed. (c) Eye region cropped. (d) Detected pupil center, limbus edge and Starburst features. (e) Resulted eye
velocity and displacement signal.

1) HEAD TRACKING
A semi-automated method was implemented to enable head
motion tracking. An initial face mask was manually selected
within the facial region in a way that excluded eye regions.
By doing this we sought to avoid contaminating the head
signal with eye movement information. Shi-Tomasi features
were detected in the initial frame, within the selected face
region only. These features were tracked across frames with
the Kanade Lucas Tomasi (KLT) point tracker. During our
testing we observed that a proportion of features (around 6%)
were detected in the region of the manually applied markers
(i.e., the stickers on the participant’s faces). As we did not
intend to use these markers as a tool for facilitating face fea-
ture detection, we removed these features from the analysis.
We found that sufficient features remained for the tracking
step of the algorithm to be effective. Fig. 2(a) shows the
remaining features.

2) HEAD STABILIZATION
A non-reflective similarity transformation allowing rotation,
scaling, and translation was estimated by Maximum Like-
lihood Estimation Sample Consensus (MLESAC) [28] by
using the Shi-Tomasi feature points generated in the current
and previous frames.MLESAC is a generalized version of the
Random Sample Consensus (RANSAC) algorithm [29]. This
algorithm extends upon the RANSACmethod bymaximizing
the likelihood of a solution based on the outliers’ and inliers’
distribution.

 x ′i
y′i
1

 = Hj

 xi
yi
1

 (1)

Hj =

 sjr1j −sjr2j Txj
sjr2j sjr1j Tyj
0 0 1

 (2)

Here (xi, yi) and (x ′i , y
′
i) are feature points in the previous and

current frame respectively, sj is the scaling factor, Txj, Tyj and
r1j, r2j are translation and rotation components between the
previous and current frames respectively.

HTotal = Hj × ...× H1 (3)

Using (3) the total transformation HTotal between the current
frame and the first frame was calculated, thereby allowing
registration of the face to its position in the initial frame by
way of the inverse transformation (H−1Total). The processing
pipeline for the stabilization method is shown in Fig. 3(a).
Our semi-automatic stabilization method was validated using
two approaches. Firstly, the results were compared to the
stabilization achieved by replacing the feature selection
and tracking with manual selection (across frames) of the
four markers placed on the participant’s face during video
recording (Fig. 2(a)). For each frame, four corner points and
the center of each marker were selected manually. The order
in which the features were selected was consistent across
frames to maintain correspondence of features from frame to
frame [30]. Secondly, the results of the stabilization method
were compared to those obtained from a commercial grade
head and eye tracking product (Visage SDK, Visage Tech-
nologies). In this case Visage SDK detected facial landmarks
that were tracked by the SDK.

3) PUPIL CENTER AND LIMBAL EDGE TRACKING
Given the head transformation, we next sought to determine
the motion of the eye, with respect to the estimated head
motion. Eye region bounding box was selected manually in
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FIGURE 3. (a) Work flow of stabilization method. (b) Work flow of direct subtraction method.

FIGURE 4. (a) Original Frame. (b) Processed by Gabor filter. (c) After thresholding and morphological operation. (d) Detected Pupil region and center.
(e) Detected limbal edge by Starburst method.

the first frame of the stabilized video. This bounding box
was then applied to crop the eye region across all subse-
quent (stabilized) frames. In this way the eye region was
isolated from the headmovement thereby serving a simplified
analysis.

A number of methods have been described for
pupil/iris detection and tracking including edge detec-
tion and gradient based methods [31]–[33], deformable
models based methods [34]–[36], and machine learning
algorithms [37]–[40]. Most of these methods are not suit-
able for use with standard RGB video footage and they are
often computationally intensive, particularly those based on
deformable models and machine learning algorithms. In this
work we used a method utilizing simple Gabor filters to
locate the pupil centroid, which was followed by the Starburst
algorithm [41], [42] to locate limbus edge features.

The pupil was located using multiple oriented (θ )
Gabor filters [43] applied to the image.

g(x, y; λ, θ, φ, σ, γ ) = exp(−
x ′2 + γ 2y′2

2σ 2 ) cos(2π
x ′

λ
+ φ)

(4)

where x ′ = x cos θ + y sin θ , y′ = −x sin θ + y cos θ .
Here λ is the number of cycles/pixel (wavelength), θ is the
angle of the normal to the sinusoid (orientation), φ is the
offset of the sinusoid (phase), and γ is the spatial aspect
ratio. The spatial envelope of the Gaussian is controlled by
the bandwidth. After thresholding, standard morphological
operations were used to find the centroid of the pupil region
(see Fig. 4(b)-(d)).

As mentioned, once this was determined, we used the
readily available, Starburst algorithm [41] to find limbus
edge features. We found that it was fast and worked well
on our RGB video footage. This approach tests derivative
along radial rays extending away from pupil center until a
threshold is exceeded. A distance filter is used to remove
outlier features. The starting point is then replaced with the
geometric center of the remaining features and the filtering
repeated again. An ellipse can be fitted to the limbus feature
points using RANSAC algorithm [29]. (see Fig. 4(e)) KLT
tracked the detected pupil centers and limbus edge features in
every frame. This procedure was restarted when tracking was
lost or a blink occurred. A simple automatic blink detection
was developed based on pupil area measurement. When a
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blink occurred, the pupil area decreased to zero (when the eye
lid closed completely) and then started increasing to full size
again. Analysis of the resulting pupil area signal was used
to identify the entire blink duration [44], [45]. Horizontal
velocity of the eyeVx(t) in the frame of the facewas estimated
by finding the velocity of the tracked pupil centers and limbus
edge in the stabilized image.

B. DIRECT SUBTRACTION METHOD
Fig. 3(b) shows the work flow for the direct subtraction
method. For this method an interactive tool was developed
in MATLAB (Natick, MA: The Math Works Inc.), to initiate
and track head and eye movements. Points were selected
on the face and pupil centers to initialize tracking. Pupil
tracking was used as it is a standard method of eye tracking.
These points were then tracked (using KLT), from which
the head and eye velocities could be calculated separately.
In particular, the eye velocity was the combination of head
and eye motion (eye in space) because head movement (head
in space) had not been compensated for [46].

Veye = Vhead−eye − Vhead (5)

Pure eye motion (eye in head) was calculated from (5).
There was no need for frame transformation in this method,
therefore yielding a less computationally expensive method.
On the other hand, it did not provide a convenient visualiza-
tion of the eye region as per the stabilization method.
We processed video frames again with Visage SDK, using

the SDK’s ability to detect facial landmarks (including pupil
centers) and track movements of the head and eye robustly.
Direct measurement of the eye movement (eye in head) was
determined by subtracting the head motion (head in space)
from the eye signal (eye in space), which comprised of mixed
head and eye movement. Fig. 5 shows landmarks identified
by Visage SDK.

FIGURE 5. Facial landmarks detected by Visage SDK.

C. OKN DETECTION
In this work we used the eye velocity signal to estimate
the presence of OKN [46]. After obtaining the velocity sig-
nal Vx(t) by three different methods (stabilization, direct
subtraction and Visage SDK), we used a recently proposed

OKN detection approach proposed by Turuwhenua et al. [47]
in which quick phases fitting heuristic criteria were averaged,
and then result used to identify the presence and direction of
OKN. All peaks within the eye velocity signal were detected
and thresholded by an empirical value. Peaks which were less
than a given number of frames apart (obtained empirically
based on stimulus velocity) were rejected. We assumed that
an isolated peak was not enough evidence to indicate the
presence of OKN. Therefore peaks with no other maxima of
the same sign in the trial were rejected. The resulting peaks
were averaged and scaled using (6) to calculate an OKN
consistency value K̄ .

K̄ =


1
Nσv

N∑
j=1

Q(j) N > 0

0 N = 0

(6)

Where Q(j) are peak velocities, N is the number of peaks
and σv is an empirical threshold. All peaks were classified
to positive and negative peaks. Values of K̄ of greater than 1
indicated the presence of OKN and less than 1 meant no
consistent OKN was detected. The sign of K̄ indicated the
OKN direction. It is noted that in Turuwhenua et al.’s work,
the velocity signal was determined using a method based on
optical flow of the limbus. In this application we applied
the algorithm to the velocity signal obtained by our pupil
center and limbus edge feature tracking (using KLT)
approach. For validation purposes, the quick phase periods
of OKN were identified by an experienced observer viewing
the same videos but masked to the results of the detection
algorithm. The observer annotated a range of frames in which
quick phases appeared to be present (using QuickTime 7.6.6
on a MacBook Pro (15-inch)). This observer had three years
of experience in viewing and interpreting OKN in adults
and children. From this analysis we sought to determine the
method’s sensitivity, specificity and predictive values (posi-
tive/negative). Secondly a clinically trained assessor observed
the videos and decided the direction (right/left) and pres-
ence of OKN (yes/no) in each trial. The assessor was an
optometrist with over three years of experience in recording
and assessing OKN responses in young children and was also
masked to the results of the detection algorithm. Rather than
focusing only on the quick phase eye movements (which was
what the experienced observer was instructed to do). The
clinically trained assessor made a holistic judgment of OKN
presence and direction based on both quick and slow phase
eye movements and clinical experience.

D. EXPERIMENT
1) ETHICS STATEMENT
The study was approved by The University of Auckland
Human Participants Ethics Committee (reference
no. 2011 066).

2) PARTICIPANTS
Five children (two female and three male) with normal vision
(ages = 21-25 months) participated in this study.
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FIGURE 6. (a) and (b) Experiment setup. (c) A random dot kinematogram stimulus (white dots are signal dots which all moving in same direction,
black dots are noise dots which moving in random direction).

3) VISUAL STIMULI
The visual stimuli used to elicit OKNwere a random dot kine-
matograms (RDKs) presented on a cathode ray tube monitor
(Dell E772p, 1280 × 1024 resolution, 60Hz refresh rate)
placed 60cm from the observer. The stimulus was designed to
elicit horizontal OKN. A program written in MATLAB using
the Psychtoolbox on a Macbook Pro (15-Inch) was used to
generate the stimuli. The RDK was presented within a circu-
lar stimulus aperture with a radius of 8.3◦ and was made up of
250 white dots (138cd/m2) presented on a grey background
(42cd/m2) (dot density= 1.16 dots per degree). Each dot had
a diameter of 0.5◦, a speed of 8◦/second (generated by dis-
placing each dot by 0.13◦ on every frame ) and a limited life-
time defined as a 5% chance of disappearing on each frame
and being redrawn in a random location. The duration of each
RDK presentation was 8 sec. The noise dots had a constant
speed and direction. Signal dot direction (left or right) was
randomized for each trial. Coherence levels (the proportion
of signal motion to noise motion in the stimuli) were in the
range of 84% to 100% and leftward vs. rightward motion was
randomized across trials. See [48] for further details. These
stimuli were designed to measure global motion perception
in young children [48], and the parameters were therefore
selected to optimize global motion processing, at the expense
of an optimal OKN response. These were useful stimuli for
our purposes as they provided a conservative test of the
performance of our system.

4) PROCEDURE
Video footage was collected and our methods were developed
to retrospectively analyze the results. Video format, with a
spatial resolution of 1440 × 1080 pixels and temporal reso-
lution of 25 frames/sec. The camera was placed beside the
monitor. The children’s heads were unrestrained and
therefore exhibited a natural range of movements within the
cameras field of view. To evaluate accuracy and performance
of head tracking method, markers were added to participants
face where possible. Fig. 6 shows the experimental setup.

20 trials were collected in total. Prior to the measurement,
training was conducted. The child was asked to follow a
single dot with a finger. Directly prior to the presentation of

TABLE 1. Standard deviation of tracked feature location before and after
stabilization with three different methods.

an RDK, a flashing fixation point accompanied by a beeping
sound was presented in the center of the screen to attract
the child’s attention. Each trial was then initiated by the
experimenter when the child was looking at the screen. The
characteristics of OKN vary depending on whether observers
are asked to simply look at themoving visual stimulus or stare
at a central point within the display. Although wewere unable
to instruct the children whether to look or stare at the screen
due to their young age, it is most likely that our procedure
generated ‘‘look OKN’’ rather than ‘‘stare OKN’’ [49].

III. RESULTS
A. STABILIZATION RESULTS
Table 1 compiles the standard deviations (σx, σy) of a tracked
feature location (within the face region) before and after
stabilization, using our proposed method, manual selection
of marker stickers on the face and Visage SDK. The results
indicate a dramatically decreased standard deviation after
stabilization for all threemethods. The final error was roughly
equivalent between the proposed method and the manual
selection approach stabilization (the gold standard), but both
methods improved upon results obtained by Visage SDK.
An example of head trajectory for one of the subjects before
and after stabilization is shown in Fig. 7.

B. DIRECT SUBTRACTION RESULTS
Eye velocity signal produced by the stabilization method
and the direct subtraction method had a low error and
high correlation (MSE = 0.197 ± 0.0474 pixels/frame,
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FIGURE 7. Head trajectory before (red-plus) and after (blue-star)
stabilization with proposed method.

FIGURE 8. Horizontal velocity and displacement of pupil center by direct
subtraction method (red), stabilization method (blue).

FIGURE 9. Horizontal velocity of head and eye measured by stabilization
method (blue) and by Visage SDK (black). Visage SDK signal does not start
from the beginning because it takes time for Visage SDK to initialize
tracking.

correlation = 95.94% ± 3.25%) over all children.
Fig. 8 shows the OKN velocity and displacement
signal before (with direct subtraction method) and after
stabilization. Fig. 9 shows the horizontal velocity of the head
and pupil measured by the Visage SDK in comparison with
the stabilization method. We found that the Visage SDK
required a certain duration of video to initialize tracking
(12 frames on average), as it attempted to find the best frame

for facial landmark detection. Hence the figures show a period
in which no data was collected. The pupil center signal was
noisy in comparison to our methods.

C. OKN DETECTION RESULTS
Our experiment in which an experienced observer iden-
tified OKN-like movements in video revealed a sensitiv-
ity and specificity for our OKN peak detection of 89.13%
and 98.54% respectively across all children in stabilization
method (true positives = 82, true negatives = 2094, false
positives= 31, false negatives= 10). The positive predictive
value and negative predictive value was 72.57% and 99.52%
respectively.

By comparing the presence or absence of OKN indicated
by the value with the trial by trial yes/no responses of the
clinically trained observer, we found that the OKN detection
algorithm agreed with the subjective assessment in 17 of
20 trials. The direction of OKN indicated by the K̄ value
correlated exactly with that identified by both the experi-
enced observer and the clinically trained assessor. OKN and
OKN-like detection results were exactly the same for pupil
center and limbus edge tracking methods.

Fig. 10 shows examples of the horizontal velocity and
displacement of the pupil with periods of OKN. Red regions
indicate periods of OKN identified by the experienced
observer, whilst the computer detected peaks are shown with
black dots.

IV. DISCUSSION
The assessment of pediatric visual function in the clinic poses
significant challenges. We have presented, for the first time,
offline tools and methods for the purpose of analyzing OKN
in children, using readily available algorithms and con-
sumer grade equipment. Our key additional contributions are:
(1) a method for stabilizing the head based on random
facial feature detection (without using specific facial land-
marks such as eye corners, nose tip, lips corners and etc.),
and (2) a demonstration of a method able to estimate the
presence and direction of the optokinetic reflex from the
stabilized video footage of young children with unrestrained
heads.

The head stabilization methodwas compared against alter-
nate methods based on: (2) direct subtraction of the head
signal from the eye signal (combined head and eye motion),
and (3) a commercially available head tracking and eye
gaze estimation system (Visage SDK). Our head stabilization
method produced slightly lower error than a gold standard
method in which markers placed on the face were manually
tracked (the difference in error between the two was sub-
pixel). Both of these methods out-performed the Visage SDK
which generated errors that would have interfered with the
detection of OKN. The inclusion of stabilization in our pro-
cessing also facilitated the detection of the pupil center, and
subjective assessment of eye movements, as reported by an
experienced observer. We believe that head stabilization is a
valuable tool in the analysis of OKN-like movements.
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FIGURE 10. Horizontal velocity and displacement of pupil center (pixels/sec) with detected peaks (black-balls) and with OKN presence regions identified
by experienced observer (red bars). (a) A left direction OKN, =−1.38. (b) Not consistent OKN, =0.5.

We found a high correlation (MSE = 0.099±
0.0574 pixels/frame, correlation= 95.94%±3.25%) between
the eye signals obtained using the stabilization method and
the direct subtraction method. The peaks of the eye velocity
signal were matched exactly for both methods and hence
there was no difference in OKN detection results obtained
using either method. The stabilization method was as
effective as the direct subtraction method for the robust
detection of OKN. Our results indicated no meaning-
ful difference between the pupil center and limbus edge
approaches (MSE = 0.0512 ± 0.009 pixels/frame,
correlation = 96.28%± 2.156%).

The OKN detection results correlated highly with an expe-
rienced observer (17 of 20 trials, correlation = 85%). The
direction of OKN was easily determined by finding the OKN
consistency sign and it was identical to the assessment of
a clinically trained assessor who viewed the same video
footage. The three trials for which the OKN detection results
did not correlate with human observers were characterized
by very large head and body movements (N = 2 trials)
and the presence of a care-giver’s hand in the frame which
temporarily obscured the face and eyes (N = 1 trial). Under
these conditions, the OKN detection results indicated no
OKN whereas the human observers reported the presence
of OKN.

Our proof-of-concept analysis suggests that the techniques
described here could form the central component of a vision
screening tool. Specifically, the OKN detection algorithms
could be combined with the presentation of visual stimuli to
measure acuity and contrast sensitivity in young children.

V. FUTURE WORK AND IMPROVEMENTS
The stabilization method provides a stable visualization of
the eye, which is advantageous to the operator. On the other
hand, whilst effective, it is a more computationally expensive
way to process eye velocity (as opposed to direct subtraction
method). In some instances, we found that the head signal

could not be measured, leading to baseline shifts in the
observed eye displacement signal.

Here, our methods were presented with manual selection
of the face region, and an interactive process to initiate the
eye velocity estimation. We found that the interactive nature
of the process was not particularly onerous. Our subsequent
experimentation with automated face detection methods such
as Zhu and Ramanan face detection algorithm [50] suggests
that automated methods will provide further improvements
in terms of robustness and usability of the algorithms. In this
work our main focus was on head stabilization based on
fast and simple approaches, and therefore the inclusion of
automated face detectionmethodswill be the subject of future
work.

An obvious improvement would be the incorporation of the
Visage SDK head signals into our methods. With additional
work, it is likely that our methods could be combined to
improve the robustness of the approaches we have developed.
Visage SDK allows real-time processing, that could be used
to develop a real-time system. Recently, free options such as
Face++ [51] have also been proposed, that in our experience
are likely to be effective as well. Notably, a face tracking
option is available for mobile devices with limited frame rate
and face size options.

There were some failures in face and pupil detection and
tracking. In those cases the software attempted to find a
next valid frame. Parallax error was present in our videos,
due to the fact that our camera was placed to the side
of the head in some cases. According to our results, it
did not affect detection of OKN presence and direction
but for precise analysis of OKN parameters such as gain
and quick phase velocity, parallax free, 3D measurement
would be useful. As the head rotates, the number of fea-
tures tended to decrease, thereby resulting in a less effec-
tive stabilization. We note that yaw and pitch rotations
were not well compensated for, due to the nature of these
motions. In the future, we will investigate how multiple
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cameras could be used to enable continuous monitoring
of the 3D eye position during rotation. Advanced signal
processing methods for analyzing the OKN waveform and
assessment of the impact of camera frame rate and resolution
role on detailed analysis of the eye movement signal will also
be the subject of future work. A fully automated real-time
implementation of the method is a long-term goal.

VI. CONCLUSION
We developed tools that improved the visualization of the
eye, and facilitated the measurement of OKN related eye
movements from videos of children. There was no need for
special hardware, multiple cameras or infrared lights for this
purpose. Our results in five participants indicated that our
simple semi-automated method based on general face region
features was sufficient for this purpose. The presence and
direction of OKN was assessed objectively and validated
by an experienced observer and a clinically trained assessor
viewing the same video footage. The results here suggest that
consumer grade equipment can be used for the assessment
of eye movements in young children which may help in the
diagnosis of visual disorders.
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