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Recent Ebola virus disease (EVD) outbreaks have been limited not only to the interactions between humans but also to the
complex interplay of the environment, human and socio-economic factors. Changes in human behaviour as a result of fear can
also affect disease transmission dynamics. In this paper, a compartmental model is used to study the dynamics of EVD
incorporating fear and environmental transmission. We formulate a fear dependent contact rate function to measure the rate
of person to person, as well as pathogen to person transmissions. The epidemic threshold and the model equilibria are
determined and, their stabilities are analysed. The model is validated by fitting it to data from the 2019 and 2020 EVD
outbreaks in the Democratic Republic of Congo. Our results suggest that the fear of death from EVD may reduce the trans-
mission and aid the control of the disease, but it is not sufficient to eradicate the disease. Policymakers need to also
implement other control measures such as case finding, media campaigns, Quarantine and increase in the number of beds in
the Ebola treatment centers, good laboratory services, safe burials and social mobilisation, to eradicate the disease.
1. Introduction

Ebola virus is a filovirus that causes severe hemorrhagic fever in humans and is believed to be transmitted to humans by
animals, (Chowell et al., 2004; Van den Driessche & Watmough, 2002). Individuals at risk of infection can also contract EVD
).
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from the environment by handling or coming into physical contact with pathogen infested objects. Once an individual is
infected with the disease, they can develop symptoms after 2e21 days of being contaminated, and the infection can last from
4 to 10 days, (Muyembe-Tamfumet al., 2012). Infected individuals usually have symptoms like headaches, anorexia, lethargy,
aching muscles or joints, breathing difficulties, vomiting, diarrhoea, stomach pain, inexplicable bleeding or any sudden
inexplicable death, (LaSalle & Artstein, 1976). Depending on the strength of their immune system, an infected individual can
either die immediately or recover after treatment. Recovered individuals become immune to the virus strain they were
infected by for at least 10 years, (Gallagher, 2015). However, studies of viral persistence indicate that in a small percentage of
survivors, some body fluids (semen, eye and central nervous system fluids, amniotic fluid, breast milk) may test positive on
reverse transcriptase polymerase chain reaction (RT-PCR) testing for Ebola virus for longer than 9 months (Legrand et al.,
2007).

Several mathematical modelling studies have been carried out to understand the dynamics and control of EVD (Lewnard
et al., 2014), used a deterministic SEIHR (Susceptible-Exposed-Infected-Hospitalised-Recovered) model which differentiates
high-risk (e.g. health-workers) and low-risk populations. They estimated the effective contact rate by using an ordinary least-
squares estimation to obtain the optimal value of the transmission rate and an estimate of the reproduction number, R0. In
some studies, SEIRmodels were proposed to fit data from the outbreaks in Congo and Uganda, (Barbarossa et al., 2015; Khan
et al., 2015). The model in (Khan et al., 2015) was extended by (CDC, 2014), by adding two new compartments for the hos-
pitalised and Ebola deceased individuals who have not yet been buried. In other studies, (Feldmann & Geisbert, 2011;
Astacioet al., 1996;WHO, 2014a, 2014b, 2014c; Juga&Nyabadza, 2020), the effect of anti-EVD control measures such asmedia
campaigns, increasing hospitalization, timely burial of people who died from EVD, distribution and use of protective kits in
households were incorporated.

Due to its high case fatality rate, EVD undoubtedly instils fear in the inhabitants of any affected community. According to a
Bulletin of the WHO in 2016, (Mukandavire et al., 2011), infected individuals are psychologically affected and their relatives
are traumatized by the infection and the death of the infected individuals. As a result of the fear, inhabitants may become
more cautious and resort to preventive measures against the disease such as avoiding physical contact with infected in-
dividuals, eating of bush meat, keeping away from public places like schools, hospitals, market places and burial places of the
Ebola deceased. These changes in human behaviour resulting from fear of the EVD may lead to a decrease in the human to
human, and human to pathogen contact rates. This has significant effects on the disease dynamics and evolution, which the
above mentionedmathematical models and other early Ebola models did not consider. Besides, most of them do not take into
account the contaminated environment by pathogen infested objects (objects that have come in contact with infected in-
dividuals, such as, contaminated syringes used in health care centers, (CDC, 2015; WHO, 2020; Gomero, 2012), bed linen
contaminated by infected human’s stool, urine, vomits or sweat of infected individuals, (CDC, 2015; WHO, 2020)). In this
study, we propose an Ebola model with fear, which considers the pathogens in the environment with the aim of quantifying
the effects of fear and environmental transmission on the EVD disease dynamics.

The rest of the paper is organised as follows: The introduction is given in Section 1, followed by the model formulation in
Section 2. In Section 3, we state and prove the basic properties of the model, find the model steady states and carry out
stability analysis of the model steady states. Finally, we carry out numerical simulations in Section 4 and draw relevant
conclusions from our results.

2. Model formulation

We propose a deterministic model with six independent compartments, namely: susceptible ðSÞ, infected ðIÞ, hospitalised
H; recovered ðRÞ, deceased ðDÞ and a compartment for the pathogens in the environment ðPÞ. EVD is assumed to be trans-
mitted either by person to person contact or individuals coming in contact with pathogen infested objects (person to
pathogen contact). In the event of an Ebola outbreak in a community, the transmission rate is assumed to be reduced by fear
that is proportional to the number of deaths. This assumption is driven by the notion that individuals become more cautious
as they experience more deaths from EVD within the community. This leads to a decrease in the contact rate. We model the
level of fear by the parameter ε;whichmeasures the impact of fear per dead body. The parameter ε>0with ε ¼ 0 representing
no fear at all, while 0< ε � ~ε shows increasing levels of fear to a maximum of ~ε: It is plausible to believe that the effective
contact rate will reduce with increased levels of fear so that,

l¼ b1P
K þ P

þ b2ðI þ h1H þ h2DÞ
1þ εD

; (1)

where K is the half-saturation constant, that is, the concentration of pathogens that can cause a 50% chance of infection. Here,
b1 and b2 are the effective contact rates between susceptible individuals and the pathogens in the environment and between
susceptible individuals and infected persons that leads to an infection respectively.

The recruitment of susceptible individuals occurs through birth or immigration at a constant rate p. Susceptible in-
dividuals become infected with the Ebola virus at a rate l. The infectious individuals can either recover at a rate s1, or are
hospitalised at a rate s2 or die at a rate s3. We assume that hospitalised individuals are also infectious but with a relatively
lower infectivity h1, compared to that of the deceased and infectious individuals h2, thus, 0< h1 <h2; with 0< h1 < 1: In-
dividuals in the hospitalised class can either recover at a rate g1 or die of EVD at a rate g2 and the dead bodies of the deceased
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are safely disposed at a rate r. Infected individuals and dead bodies of Ebola patients shed pathogens into the environment at
rates a1 and a2 respectively, while pathogens in the environment decay at a per capita rate q. We assume that people die from
natural causes at a rate m. The compartmental diagram for the model is shown in Fig. 1.

The model derivation is also based on the following additional assumptions:
The only host population considered in this model is the human population. Animals are not considered as part of the

environment, this is justified by the fact that wild animals such as monkeys, apes and duikers, which are also reservoirs for
the Ebola virus live in the forests far away from the human habitats, hence there is very little contact between humans and
these animals. By definition, the environment is a finite space, thus, it has a carrying capacity. Therefore the increase in the
amount of pathogens in the environment as the rate of infection increases is non-linear and saturating, hence the use of a
saturating response function in the force of infection. The fear factor does not affect the movement of infectious individuals
from the infectious to the hospitalised compartment and from the hospitalised to the dead compartment. This is because
naturally, people always take their sick relatives to the hospital irrespective of their condition. Also, a sick person is usually not
known to have the Ebola disease until after proper diagnosis in the hospital. The hospitalised individuals are confined in
controlled environments and are handled by professionals with protective equipment to handle Ebola patients and dead
bodies of Ebola deceased individuals. As such, the level of fear of contracting the disease from the hospitalised individuals is
very low and assumed negligible. Also due to their relatively lower infectivity, we assume that the rate at which the hos-
pitalised individuals shed pathogens in the environment is negligible.

The compartmental diagram together with the model assumptions give rise to the following system of differential
equations:

dS
dt

¼p� ðlþmÞS; (2)

dI
dt

¼ lS� n1I; (3)

dH
dt

¼ s2I � n2H; (4)

dD
dt

¼ s3I þ g2H � rD; (5)

dP
dt

¼a1I þ a2D� qP; (6)

where n1 ¼ mþ s1 þ s2 þ s3 and n2 ¼ mþ g1 þ g2 with initial conditions, Sð0Þ>0, Ið0Þ � 0,Hð0Þ � 0, Dð0Þ � 0, Pð0Þ � 0, for all
t � 0 and the recovered class is considered to be redundant.
Fig. 1. The model diagram for EVD.
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3. Properties and analysis of the model

3.1. Well posedness

We show that the system is well posed by showing that if the system starts with non-negative initial conditions (S0, I0, H0,
D0, P0), then the solutions of (2)-(6) will remain non-negative for all t2½0;∞Þ and that these non-negative solutions are
bounded. We thus have the following theorem.

Theorem1. Given that S0 >0, I0 � 0, H0 � 0, D0 � 0; P0 � 0 and l>0; the solutions SðtÞ, IðtÞ, HðtÞ, DðtÞ and PðtÞ of system (2)-(6)
will always be non-negative.

Proof For the given initial conditions, the first equation gives

SðtÞ � Sð0Þexp
0
@�

0
@Zt

0

lðtÞdtþmt

1
A
1
A > 0;

using the Grownwal inequality. From ((3)), we have
IðtÞ� Ið0Þexpð� n1tÞ � 0:
Similarly,

HðtÞ�Hð0Þexpð�v2tÞ�0; DðtÞ�Dð0Þexpð�rtÞ�0 and PðtÞ� Pð0Þexpð� qtÞ � 0:
The solutions of the system (2)-(6) are thus non-negative for any given non-negative initial conditions. We now prove the
boundedness of the solutions of the system (2)-(6).

Theorem 2. Suppose mðtÞ ¼ SðtÞ þ IðtÞ þ HðtÞ and the initial conditions for system (2)-(6) satisfy

mð0Þ�mi;Dð0Þ � Di; Pð0Þ � Pi;

where,
mi ¼
p

m
;Di ¼

ðs3 þ g2Þp
mr

; Pi ¼
p

m

�
a1 þ

a2ðs3 þ g2Þ
r

�
:

then the solutions exist and satisfy
mðtÞ�mi;DðtÞ � Di; PðtÞ � Pi:
Proof Assume mðtÞ ¼ SðtÞþ IðtÞþ HðtÞ, then

dm
dt

�p�mmmðtÞ�p

m
þ
�
mð0Þ�p

m

�
e�mt : (7)
Thus, mðtÞ � mi: Substituting the upper bound of m into equation (5) yields,

dD
dt

�pðs3I þ g2Þ
m

� rD�pðs3 þ g2Þ
mr

þ
�
Dð0Þ�pðs3 þ g2Þ

mr

�
e�rt ;

which implies that DðtÞ � Di: Similarly,

PðtÞ� p

mq

�
a1 þa2

ðs3 þ g2Þ
r

�
þ
�
Pð0Þ� p

mq

�
a1 þa2

ðs3 þ g2Þ
r

��
e�qt ;

from which PðtÞ � Pi:
Combining the existence and uniqueness of a local solution together with Theorems 1 and 2, we have the following Theorem:

Theorem 3. The invariant region of the system (2)-(6), where the basic properties of existence, uniqueness and continuity of
solutions are valid is the compact set:

U¼
n
S
�
t
�
; I
�
t
�
;H

�
t
�
;D

�
t
�
; P

�
t
�
2R5

þ : m
�
t
�
�p

m
;D

�
t
�
�pðs3 þ g2Þ

mr
; P

�
t
�
� p

mq

�
a1 þ

a2ðs3 þ g2Þ
r

�o
The system is thus well posed and the region U is therefore a feasible region for our model.
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3.2. Equilibria of the model

We determine the existence of the equilibrium points of themodel (2)e(6) by setting the right hand side of system (2)e(6)
to zero so that

p�ðlþmÞS* ¼ 0; (8)

lS* � v1I
* ¼ 0; (9)
s2I
* � v2H

* ¼ 0; (10)
s3I
* þg2H

* � rD* ¼ 0; (11)
a1I
* þa2D

* � qP* ¼ 0: (12)
ðs þg 4 Þ a þa 4
From (10), (11) and (12), we have H* ¼ 41I*; D* ¼ 42I*; and P* ¼ 43I*;where 41 ¼ s2
v2
; 42 ¼ 3 2 1

r ; and 43 ¼ 1 2 2
q

:

Substituting the expressions for H*, D*, P* into (1), we obtain an expression for l in terms of I* so that

l* ¼
�

j

1þ εI*42
þ b143
K þ I*43

I*
�
;

where j ¼ b2ð1þh141 þh242Þ: Substituting the expression for l* into (9), we have either
S* ¼ n1ð1þ εI*42ÞðK þ I*43Þ
b2jðK þ 43I*Þ þ b143ð1þ εI*42Þ

(13)

or
I* ¼0:

* * * * * p
If I ¼ 0, then we have H ¼ D ¼ P ¼ 0 and S ¼ m. This gives the disease free equilibrium (DFE) point

E0 ¼
�
S0; I0;H0;D0; P0

�
¼
�p
m
;0;0;0;0

�
:

We now determine the reproduction number before determining the endemic steady state using expression (13).

3.2.1. The basic reproduction number (R0)
The basic reproduction number denoted by R0 is defined as the average number of new infections generated by an infected

individual or an infected dead body or through contact with a pathogen infested object in a wholly susceptible population,
(Van den Driessche & Watmough, 2002). We use the next generation matrix method to compute R0 as follows:

By considering the new infections and the transfer matrices (see (Van den Driessche & Watmough, 2002) for a detailed
synopsis), the corresponding Jacobian matrices F and V evaluated at the DFE are

F ¼

0
BBBBBBBBBBBBBBB@

pb2
m

pb2h1
m

pb2h2
m

pb1
mk

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCCCCCCCCCCCCCA

;V ¼

0
BBBBBBBB@

n1 0 0 0

�s2 n2 0 0

�s3 �g2 r 0

�a1 �a2 �a3 q

1
CCCCCCCCA
:

�1
The reproduction number is the spectral radius of the next generation matrix, that is FV , so that

R0 ¼ p

m

�
b2

�
1
n1

þ h1s2
n1n2

þ h2ðg2s2 þ v2s3Þ
rn1n2

�
þ b1
rqK

�
a2g2s2
n1n2

þ ra1 þ a2s3
n1

��
:

The DFE is also locally stable when R0 <1 following Theorem 2 in (WHO, 2014a, 2014b, 2014c).
549



M.L. Juga, F. Nyabadza and F. Chirove Infectious Disease Modelling 6 (2021) 545e559
3.2.2. The endemic equilibria
Substituting the expression for S* in (13) into (8) and simplifying the resulting equation, we obtain the following

polynomial.

a2I
*2 þ a1I

* þ a0 ¼ 0; (14)

where,
a2 ¼ b2n143ð1þ h141 þ h242Þ þ εn14243ðmþ b1Þ>0;

a1 ¼ n1½Kb2ð1þ h141 þ h242Þ þ Kεmþ ðb1 þ mÞ43� � p½b2ð1þ h141 þ h242Þ þ b1ε42�;

a0 ¼ Kmn1ð1� R0Þ:
We use Descartes’ law of signs to determine the possible number of positive roots of equation (14) as shown in Table 1.
The positive solutions of (14) are given by:

I* ¼
�a1±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2a0

q
2a2

:

Clearly, the coefficient a2 is always positive. If a0 <0 and D ¼ a21 � 4a2a0 >0; a unique endemic equilibrium exists, irre-
spective of the sign of a1: If a0 >0; a1 <0 and D>0; we get two positive real equilibrium points, otherwise, we have no
endemic equilibrium point. The possibility of a backward bifurcation is indicated by the case a0 >0, a1 <0 and D> 0 inwhich
we have two endemic equilibria. We solve the equation D ¼ 0 for the threshold value of the reproduction number, Rc0, (the
value of R0 below which the DFE is the only steady state) so that

D¼ a21 � 4a2a0 ¼ 0;

and
Rc0 ¼1� a21
4a2Kmn1

:

c
It follows that the system has two positive equilibria for R0 <R0 <1:

3.3. Bifurcation analysis

3.3.1. The direction of bifurcation
Without loss of generality, assume that b2 ¼ cb1, where c is a positive constant. Expressing equation ((14)) as a function of

b1 and I* gives

Fðb1; I*Þ¼ ðd2b1 þ d22ÞI*2 þ ðd1b1 þ d11ÞI* þ d0b1 þ d00 ¼ 0;

where
d1 ¼ cð1þh141 þ h242ÞðKn1 �pÞ þ 43ðn1 �pε42Þ;
d11 ¼ðKεþ43Þm; d22 ¼ εn14243m; d00 ¼ Kmn1;
d2 ¼ cn143ð1þ h141 þh242Þ þ εn14243;
Table 1
Possible number of positive roots of equation (14).

a2 a1 a0 Number of positive roots

þ þ þ 0
þ þ e 1
þ e þ 2 or 0
þ e e 1
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d0 ¼ � p½cKð1þh141 þph242Þþ43�:

* *
We are interested in the solutions I for a given value of b: For I ¼ 0, we get:

b1 ¼b* ¼ Kmn1
p½cKð1þ h141 þ ph242Þ þ 43�

:

* * Fb *
Therefore at b1 ¼ b , I* ¼ 0. We compute the bifurcation direction, by definition,dIdb1
¼ � 1

FI*
; where Fb1ðb ;0Þ ¼ d0 <0 and

FI* ðb*;0Þ ¼ d1b
* þ d11.

Note that b* ¼ 1
R0
. Hence, FI*ðb*;0Þ<0 ⇔R0 < � d1

d11
and FI* ðb*;0Þ>0⇔R0 > � d1

d11
: Therefore, if R0 < � d1

d11
, then the bifur-

cation is backward and if R0 > � d1
d11

, then the bifurcation is forward. We numerically determine the direction of bifurcation in

the next section.

3.3.2. Bifurcation simulation
A bifurcation is a change of the topological structure of a system as its parameters pass through a critical value,

(DjiombaNjankou & Nyabadza, 2017). Since the system’s behaviour changes as the reproduction number passes the value 1,
R0 ¼ 1 is a critical point. The occurrence of a backward bifurcation has important public health implications since it might not
be enough to reduce R0 below 1 to eliminate the disease. The basic reproduction number must be further reduced below Rc0 to
ensure disease eradication.

In this model we have shown that there exists a forward and a backward bifurcation. Fig. 2 (a) and (b) give the graphical
representations of the forward and backward bifurcations respectively for the given parameters in the caption. We observe
changes in the qualitative behaviour of system (2)e(6) when R0 ¼ 1, where R0 is the bifurcation parameter. For values of R0
greater than one, we have a forward bifurcation, meaning that the disease will persist in the population and decreasing R0 to
values below one is not a sufficient condition for the disease eradication. The presence of a backward bifurcation makes
disease control complicated due to the co-existence of the DFE and the EE for values of R0 between Rc0 and 1. Thus an increase
in the level of fear of death from the EVD is not sufficient to bring about disease eradication. Control measures such as media
campaigns, isolation of the infected, and case finding need to be implemented together with the already existing changes in
human behaviour due to fear of death, to bring the population to a DFE state. Note that an increase in the level of fear ε and a
corresponding decrease in the effective contact rate b1 (with all the other parameters unchanged) changes the backward
bifurcation in Fig. 2 (b) to a forward bifurcation, as shown in Fig. 3.

In Fig. 3, the graph with the dashed curve is obtained from Fig. 2 (b) by increasing the value of εwhile decreasing the value
of b1. It shows that when more people become afraid of dying, there is a corresponding change in their behaviour, which
intend leads to a fall in the effective contact rate. These changes in the values of ε and b1 change a backward bifurcation to a
forward bifurcation, thereby making it easier to control and contain the disease.

Many of the epidemiological models that exhibit backward bifurcation have always had the bifurcation influenced by a
single parameter. Our model presents a unique scenario in which backward bifurcation is driven by two important epide-
miological parameters. We now present the global stability of the unique endemic equilibrium point in the next subsection.
Fig. 2. Forward bifurcation in (a) for ε ¼ 0:95, b1 ¼ 0:023 and backward bifurcation in (b) for ε ¼ 0:394, b1 ¼ 0:25. The rest of the parameter values are: p ¼
18:8, m ¼ 1:355, s1 ¼ 0:357, r ¼ 0:251, s3 ¼ 0:092, s2 ¼ 0:568, g1 ¼ 0:202, g2 ¼ 0:563, a1 ¼ 0:415, a2 ¼ 0:267, q ¼ 0:42, c ¼ 1:288, K ¼ 4:2, h1 ¼ 0:426,
h2 ¼ 1:904.
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Fig. 3. Effect of increasing level of fear, ε, and decreasing the effective contact rate, b1, on the infected population size. The other parameters are same as in Fig. 2.

M.L. Juga, F. Nyabadza and F. Chirove Infectious Disease Modelling 6 (2021) 545e559
3.4. Global stability of the endemic equilibrium point

Theorem 4. The endemic equilibrium is globally asymptotically stable in U if R0 >1.
Proof 3 If R0 >1, we have a unique endemic equilibrium. We consider a candidate Lyapunov function given by

V ¼
�
S� S* � S*ln

�
S

S*

��
þ k1

�
I � I* � I*ln

�
I

I*

��

þk2

�
H � H* � H*ln

�
H

H*

��
þ k3

�
D� D* � D*ln

�
D

D*

��
þ k4ðP � P*Þ2;

where k1, k2, k3, k4 are positive constants to be determined. At endemic equilibrium, the partial derivatives with respect to each
variable are

vV
vS

¼
�
1� S*

S

�
;
vV
vI

¼ k1

�
1� I*

I

�
;
vV
vH

¼ k2

�
1�H*

H

�
;

vV
�

D*� vV *
vD
¼ k3 1�

D
;
vP

¼2k4ðP� P Þ:
The endemic equilibrium is clearly a critical point of V : The second derivatives are given by

v2V
vS2

¼ S*

S2
;
v2V
vI2

¼ k1
I*

I2
;
v2V
vH2 ¼ k2

H*

H2;

v2V D* v2V

vD2 ¼ k3D2; vP2

¼ 2k4:
The second derivatives of V are all positive at any point of U, therefore, the Lyapunov function V is concave up and the
unique endemic equilibrium point is a minimum point of V : We now show that dV

dt � 0: The time derivative of V is given by
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dV
dt

¼
�
1� S*

S

�
dS
dt

þ k1

�
1� I*

I

�
dI
dt

þ k2

�
1� H*

H

�
dH
dt

þk3

�
1� D*

D

�
dD
dt

þ 2k4ðP � P*ÞdP
dt

;

¼
�
1� S*

S

��
p� b1PS

K þ P
� cb1ðI þ h1H þ h2DÞS

1þ εD
� mS

�

þk1

�
1� I*

I

��
b1PS
K þ P

� cb1ðI þ h1H þ h2DÞS
1þ εD

� n1I
�

þk2

�
1� H*

H

�
ðs2I � n2HÞ þ k3

�
1� D*

D

�
ðs3I þ g2H � rDÞ

þ2k4ðP � P*Þða1I þ a2D� qPÞ:

(15)
At the endemic equilibrium, system (2)e(6) yields the following:

p¼ðl* þmÞS*; n1 ¼ l*S*

I*
; n2 ¼ s2I*

H* ;

s3I* þ g2H
* a1I* þ a2D*
r¼
D*

; q ¼
P*

:

Substituting the above expressions for the constants p, r, q, n1 and n2 into (15), we have

dV
dt

¼
�
1� S*

S

��
cb1I

*S*

1þ εD*

�
1� SIð1þ εD*Þ

S*I*ð1þ εDÞ

�
þ cb1h1H

*S*

1þ εD*

�
1� HSð1þ εD*Þ

H*S*ð1þ εDÞ

�

þcb1h2D
*S*

1þ εD*

�
1� DSð1þ εD*Þ

S*D*ð1þ εDÞ

�
þ b1P

*S*

K þ P*

�
1� PSðK þ P*Þ

P*S*ðK þ PÞ

�

þm

�
S*� S

��
þ k1

�
1� I*

I

��
cb1I

*S*

1þ εD*

�
SIð1þ εD*Þ
S*I*ð1þ εD*Þ �

I

I*

�

þcb1h1H
*S*

1þ εD*

�
HSð1þ εD*Þ
H*S*ð1þ εDÞ �

I

I*

�
þ cb1h2D

*S*

1þ εD*

�
DSð1þ εD*Þ
D*S*ð1þ εDÞ �

I

I*

�

þb1P
*S*

K þ P*

�
PSðK þ P*Þ
P*S*ðK þ PÞ �

I

I*

��
þ k2

�
1� H*

H

��
s2I

*
�
I

I*
� H

H*

��

þk3

�
1� D

D*

��
s3I

*
�
I

I*
� D

D*

�
þ g2H

*
�
H

H* �
D

D*

��

�2k4P
*
�
1� P

P*

��
a1I

*
�
I

I*
� P

P*
þ a2D

*
�
D

D*
� P

P*

��

(16)
Let

x ¼ S

S*
; y ¼ I

I*
; z ¼ H

H*
; w ¼ D

D*
; u ¼ P

P*
;

v ¼ 1þ εD*

1þ εD
; r ¼ K þ P*

K þ P
; h ¼ 1

1þ εD*; g ¼ 1
K þ P*

;

(17)
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Substituting the expressions in (17) into (16), we obtain:

dV
dt

¼ � m
ðS� S*Þ2

S
þ b1I

*f ðx; y; z;w;u; v; rÞ;
where

f ðx; y; z;w;u; v; rÞ¼ S*
�
1�1

x

��
chð1� xyvÞþ chh141ð1�2xvÞ

þ chh242ð1� xwvÞþ g43ð1�uxrÞ�
*
�

1
��
þk1S 1�
y

chðxyv� yÞþ chh141ðzxv� yÞ
� �

1
�

þ chh242ðxwv� yÞþ g43ðxur� yÞ þ k2s2 1�
z

ðy� zÞ

k3
�

1
�

þ
b

1�
w

½s3ðy�wÞþg242ðz�wÞ�

*
�

1
�

þ2k4P 1�
u

½a1ðu� yÞþa242ðu�wÞ�:
We equate the coefficients of y, yv z, zv;wv; ur; u; yu;
w
u ; andw to zero in order to eliminate the positive and non-constant part

of f , and solve for the constants k1, k2, k3 and k4 so that,

k1 ¼1; k2 ¼ k3g242
b1s2

; k3 ¼ k4a242
s3 þ g242

;

*chð1þ h141 þ h242Þ þ g43
k4 ¼b1S a1 þ a242
;

and

f ðx; y; z;w;u; v; rÞ¼ chS*
�
2� xv�1

x

�
þ chh141S

*
�
2� xvz

y
�1
x

�

*
�

xwv 1
�

*
�

xur 1
�

þchh242S 2�
y

�
x

þ g43S 2�
y

�
x

� y� k3s3
� y � k3g242

� z �

þk2s2 1�

z
þ

b1
1�

w
�w þ

b1
1�

w
�w :
Given that the expression � m ðS�S*Þ2
S <0, we show that f ðx;y;z;w;u; v; rÞ<0.

Note that the expression
�
2�xv�1

x

�
is less than or equal to zero by the arithmetic-mean-geometric-mean inequality, with

equality if and only if x ¼ v ¼ 1. Also, the expressions
�
2 � xvz

y � 1
x

�
,
�
2�xwv

y �1
x

�
and

�
2�xur

y �1
x

�
are less than or equal to

zero by the arithmetic-mean-geometric-mean inequality with equality if and only if x ¼ y ¼ u ¼ w ¼ v ¼ r ¼ z ¼ 1. After
some tedious algebraic manipulations of replacing the constants k1, k2, k3 and k4, similar conclusions can be drawn for the
remaining expressions in f . Therefore f is negative andwill be equal to zero if x ¼ y ¼ z ¼ u ¼w ¼ v ¼ r ¼ 1. So V is positive
definite at the endemic equilibrium and dV

dt � 0 with equality if and only if S ¼ S*, I ¼ I*, H ¼ H*, D ¼ D*, P ¼ P*. The only
invariant set contained in U is the set containing only the endemic equilibrium point. This shows that each solution which
intersects R5

þ limits to the endemic equilibrium. Therefore by LaSalle’s invariance principle, (Van Bortel et al., 2016), the
endemic equilibrium is globally asymptotically stable on U:
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Table 2
WHO data from the 2019 and 2020 outbreaks in the North Kivu and South Kivu provinces of the DRC, (Blower, Hartel, Dowlatabadi, Anderson,&May, 1991).

Month/Year Week 1 Week 2 Week 3 Week 4

05/19 1500 1705 1826 1920
06/19 2008 2071 2168 2230
07/19 2338 2418 2501 2671
08/19 2763 2831 2887 2950
09/19 3036 3081 3129 3168
10/19 3191 3205 3220 3243
11/19 3274 3287 3296 3303
12/19 3313 3324 3348 3362
01/20 3390 3398 3414 3418
02/20 3428 3431 3432 3444
03/20 3444 3444 3444 3453
04/20 3453 3457 3461 3461
05/20 3462 3462 3462 3463
06/20 3463 3463 3463 3470
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4. Numerical simulations

4.1. Parameter estimation

In this subsection, we determine the parameter values used in the model. The parameter values are estimated from the
fitting process. We fit the model (2)e(6) to the WHOweekly cumulative data from the 2019 and 2020 outbreaks in the North
Kivu and South Kivu provinces of the DRC. The data is shown in Table 2.Table 2: WHO data from the 2019 and 2020 outbreaks
in the North Kivu and South.

The model presented in system (2)e(6) is fitted to data in Table 2 using the fminsearch fitting method. Fig. 4 shows the
optimal fit of the model to the EVD data in Table 2.

The sum squares error of the fit is 0.029. Table 3 gives a summary of the parameter values that give the optimal fit.
4.2. Sensitivity analysis

One can not be certain about the parameter values to choose when carrying out numerical simulations of a model. Most of
the methods used to collect data fromwhich parameter values of models are chosen are not completely free from errors in as
much as a lot of effort is made to minimize errors. These uncertainties are the cause of most of the variability in model
predictions. Sensitivity analysis is thus performed to assess this variability in the model predictions, (Althaus, 2014). We use
Latin Hypercube Sampling (LHS) method as described in (WHO, 2014a, 2014b, 2014c) to explore the entire parameter space of
the model. We run the simulations 1000 times to have a large sample size and to increase the level of accuracy of the results.
Normally, we are supposed to specify a probability density function (pdf) for each unknown parameter, but since the pdf of
each parameter is often unknown, we choose by default a uniform distribution for the variables, independently sample each
Fig. 4. Curve fitting of the model to the data in Table 2.
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Table 3
Estimated parameter values obtained from the fitting process.

Parameter Description Estimated value (week�1)

p Recruitment rate 200
b1 Effective human to human contact rate 0:67
b2 Effective human to pathogen contact rate 0.64
m Natural death rate 0.000296
s3 Disease related death of the infected 0.6
g2 Disease related death of the hospitalised 0:2
g1 Rate of recovery of the hospitalised 0.8
s1 Rate of recovery of the infected 0.33
r Rate of disposal of dead bodies 0.009
s2 Rate of hospitalization of the infectious 0.019
ε Level of fear 0.4
q Rate of removal of pathogens in the environment 0.016
K Half saturation constant 30
a1 Rate of shedding of pathogens by the infected 0.05
a2 Rate if shedding of pathogens by the dead 0.06
h1 Infectivity rate of the infectious individuals 0.09
h2 Infectivity rate of the dead individuals 1.2

Fig. 5. Scatter plots of the infected population I as a function of effective person to person contact rate, b2, in (a), and as a function of the rate of the level of fear in
(b).

Fig. 6. Scatter plots of the pathogens in the environment P as a function of the rate of save disposal of dead bodies, r, in (a), and as a function of the level of fear in
(b).
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parameter and do sensitivity plots to determine the most sensitive parameters. The Partial correlation coefficient (PRCC)
value for a specific parameter is a Pearson correlation coefficient for the residuals from two regression models. The scatter
plots of the most significant parameters are shown in Figs. 5 and 6.

Fig. 5 shows the correlations between the most significant parameters and the population of the infected. In Fig. 5(a) we
observe an increase in the infected population as the person to person contact rate increases. This is because EVD is easily
transmitted when susceptible individuals come in contact with the infectious. In Fig. 5(b) we see that the level of fear is
negatively correlated to the infected population, however, other control measures such as quarantine, contact tracing and
media campaigns are also required to bring about the Ebola disease eradication.

In Fig. 6 (a) and (b), we give the scatter plots of the pathogens in the environment P; as a function of parameters that are
more negatively correlated to P; r and ε respectively. The plots show that an increase in the save disposal of dead bodies of
Ebola deceased individuals and an increase in the level of fear of dead will help reduce the concentration of pathogens in the
environment. Consequently, the infection rate will decrease.

4.3. Simulation results

In Figs. 7 and 8, we consider the following initial conditions: S0 ¼ 98000, I0 ¼ 1500, H0 ¼ 1000; D0 ¼ 300; P0 ¼ 600. The
plots are obtained by varying the level of fear, leaving the other parameters constant. The observed decrease in the number of
infectives, hospitalised and dead individuals as the level of fear increases shows the impact of the fear of death from EVD on
the disease transmission dynamics. Also, Fig. 8(b) depicts the impact of fear on the pathogens in the environment. It shows a
decrease in the concentration of pathogens in the environment as the level of fear increase. This can be justified by the fact
that an increase in the level of fear leads to changes in human behaviour which leads to a decrease in the shedding of
pathogens in the environment by the infected humans and infected death bodies.

The contour plot in Fig. 9 (a) shows an increase in the reproduction number as the effective contact rates increase.
Therefore the disease transmission rate is higher when the contact rates are high. 9 (b) shows the contribution of the
pathogens in the environment to disease transmission. We observe that as the infected and the Ebola deceased individuals
continually shed pathogens in the environmentmore people contract the disease. This is seen in the increasing values of R0 on
the R0-axis.

5. Conclusion

In this work, we presented a 6 compartments deterministic model to assess the impact of fear induced by EVD on the
disease transmission dynamics, taking into consideration environmental transmissions. The model’s basic properties such as
positivity and boundedness of solutions as well as the reproduction number and steady states were determined and analysed.
The analysis of the model reveals the existence of an unstable DFE for values of the reproduction number less than one, or, the
existence of a globally stable DFE for values of the reproduction number less than a threshold Rc0;when the level of fear is high.
We have also shown that the level of fear in a community experiencing an EVD outbreak is an important factor in disease
control. When the level of fear of death from the disease is low, the contact rate increases and controlling EVD becomes more
difficult because of the presence of a backward bifurcation. An increase in the level of fear changes human behaviour and
leads to a decrease in the effective contact rate, a forward bifurcation appears and reducing the reproduction number to
values less than 1 will eradicate EVD. Themodel fittedwell to the DRC (North and South Kivu provinces) cumulative data. One
can retain that an increase in the level of fear produces a decrease in the number of EVD cases. However, the impact of fear
Fig. 7. Evolution of the infected population in (a) and the hospitalised in (b) for different levels of fear, ε. The values of the other parameters are the same as the
parameter values in Table 3.
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Fig. 8. Changes in the number of Ebola deceased individuals in (a) and changes in the concentration pathogens in the environment in (b) for different levels of
fear, ε. The values of the other parameters are the same as the parameter values in Table 3.

Fig. 9. Contour plot of R0 as a function of effective person to pathogen contact rate, b1, and effective person to person contact rate b2 in (a), and as a function of
the rate of shedding of pathogens in the environment by the infected and the dead in (b).
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alone on disease transmission is not significant. It is therefore necessary for policy makers to implement other control
measures against EVD like an eventual treatment, case-finding or contact tracing, Quarantine, media campaign, (CDC, 2014;
Astacioet al., 1996; WHO, 2014a, 2014b, 2014c; Juga & Nyabadza, 2020) in combination with fear in order to limit the disease
spread in the population.

The model simulation results show that the level of fear has an inverse relationship with the rate of shedding of pathogens
in the environment by the Ebola-infected individuals and dead bodies. This indicates that an increase in the level of fear does
not only cause a decrease in the person to person transmission rate but also results to a decrease in the environmental
transmission rate (pathogen to person transmission). This model can be improved by considering the growth of the path-
ogens in the environment independent of the infection dynamics as considered in this manuscript. While themodel has some
limitations, the consideration of fear and environmental transmission are critical in the management and control of EVD.
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