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Calcium phosphate (CaP) is the principal inorganic constituent of bone and teeth in
vertebrates and has various applications in biomedical areas. Among various types of
CaPs, amorphous calcium phosphate (ACP) is considered to have superior bioactivity and
biodegradability. With regard to the instability of ACP, the phosphorus-containing
molecules are usually adopted to solve this issue, but the specific roles of the
molecules in the formation of nano-sized CaP have not been clearly clarified yet.
Herein, alendronate, cyclophosphamide, zoledronate, and foscarnet are selected as
the model molecules, and theoretical calculations were performed to elucidate the
interaction between calcium ions and different model molecules. Subsequently, CaPs
were prepared with the addition of the phosphorus-containing molecules. It is found that
cyclophosphamide has limited influence on the generation of CaPs due to their weak
interaction. During the co-precipitation process of Ca2+ and PO4

3-, the competitive relation
among alendronate, zoledronate, and foscarnet plays critical roles in the produced
inorganic-organic complex. Moreover, the biocompatibility of CaPs was also
systematically evaluated. The DFT calculation provides a convincing strategy for
predicting the structure of CaPs with various additives. This work is promising for
designing CaP-based multifunctional drug delivery systems and tissue engineering
materials.
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INTRODUCTION

Bones are indispensable tissues in the body and perform plenty of vital functions, such as
facilitating locomotion, maintaining the balance of calcium and phosphate, harboring the bone
marrow, and protecting organs as well as supporting soft tissues (Grabowski, 2015). Bones
make great contributions toward good health, but various bone diseases (Jiang et al., 2022),
including scoliosis, fractures (Kellam et al., 2018), osteoporosis (Li et al., 2020), osteoarthritis
(Hu et al., 2021), and bone cancer (Xue et al., 2021), are extremely disruptive to people’s quality
of life.
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Calcium phosphate (CaP) is the principal inorganic
constituent of bones and teeth in vertebrates (Dorozhkin and
Epple, 2002; Sawamoto et al., 2020). The CaP materials are
essential biomaterials with excellent biocompatibility, and
therefore, they have wide applications in biomedical areas,
including bone regeneration and coating of implants or fillers

in bones or teeth (Wang and Yeung, 2017; Li et al., 2021).
Compared to normal non-degradable drug carriers, CaP
materials exhibit superior advantages such as excellent
biodegradability and biological responses, since the metabolites
are ubiquitous ions of calcium and phosphate (Pina et al., 2015;
Jiang et al., 2018).

FIGURE 1 | Optimized atomic structure showing the electrostatic density of (A) Adn−, (B) Adn− + Ca2+, (C) Cpp, (D) Cpp + Ca2+, (E) Zda-, (F) Zda− + Ca2+, (G)
Fss3-, and (H) Fss3- + Ca2+. Note: grey ball, carbon atom; white ball, hydrogen atom; blue ball, nitrogen atom; orange ball, phosphorus atom; lime-green ball, calcium
atom; red ball, oxygen atom; and green ball, chlorine atom.
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FIGURE 2 | Chemical structural formula and the responding Gibbs free energy of (A) Adn− and Adn− + Ca2+, (B) Cpp and Cpp + Ca2+, (C) Zda- and Zda− + Ca2+,
(D) Fss3- and Fss3- + Ca2+, (E) HPO4

2- and HPO4
2- + Ca2+, and (F) PO4

3- and PO4
3- + Ca2+.
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Among the multifarious types of calcium phosphate,
amorphous calcium phosphate (ACP) is the primary phase
that can first precipitate from super-saturated aqueous
solution owing to its low surface energy relative to that of
hydroxyapatite (HAP) and octacalcium phosphate (OCP)
(Sawamoto et al., 2020). Moreover, ACP is a relatively
outstanding biomaterial with superior biodegradability and
osteoinductivity (Qi et al., 2019). While ACP is quite unstable
in aqueous solution, it will transform into crystalline HAP in a
short time (Kwak et al., 2014). It should be noted that the
metastable ACP phase can be stabilized well in aqueous
solution using appropriate additives (Manuel Delgado-Lopez
et al., 2017; Mao et al., 2021; Ruiz-Agudo et al., 2021) and/or
ions (Ding et al., 2014). There are numerous excellent previous
studies focusing on the regulation of calcium phosphate with
various morphologies, such as by adding polymers (Yao et al.,
2019), citric acid (von Schirnding et al., 2021), oleic acid (Li et al.,
2017), and nucleic acid (Shen et al., 2021). It has been
demonstrated that the formation of calcium phosphate can be
influenced by the polarity, molecular weight, and electric groups
of polymers (Schweizer and Taubert, 2007). Citric acids can be
bonded to the surface of calcium phosphate to suppress the
occurrence of crystal nucleation, and thereby act as inhibitors
of HAP crystallization (Johnsson et al., 1991). The carboxyl group
of citric acid competes with the phosphate group to bind with free
calcium ions, thus stabilizing amorphous calcium phosphate

(Ruiz-Agudo et al., 2021). Calcium oleate can be used as the
precursor to tune the hydrophilicity/hydrophobicity, and then
ultralong HAP nanowires with high flexibility can be achieved.

In addition, it has been commonly recognized that
phosphorus-containing molecules (Fleisch, 1998; Zhou et al.,
2020) can regulate the formation and growth of inorganic
nanocrystals. Phosphorus-containing molecules, such as
bisphosphonates, which have been widely used for clinical
treatment, can work as additives to synthesize CaPs due to
their strong affinity with calcium (Wang et al., 2015; Li et al.,
2016). However, the specific role of phosphorus-containing
molecules in the formation of nano-sized CaPs has not been
clarified yet.

Herein, several phosphorus-containing molecules were
selected to explore the mechanisms. Firstly, a density
functional theory (DFT) calculation was conducted to predict
the interaction between calcium ions and molecules. Afterwards,
the phosphorus-containing molecules were incorporated to
prepare CaPs, and the morphology, structure evolution, and
cell viability of the synthesized materials were systematically
characterized and evaluated. The experimental results were
consistent with the DFT calculation, indicating that strong
interactions between calcium ions and phosphorus-containing
molecules are essential for the regulation of the growth and
morphology of CaP nanocrystals. Furthermore, the DFT
calculation can also provide guidance for the design and

FIGURE 3 | TEM micrographs of (A) CaP Control, (B) CaP/Adn, (C) CaP/Cpp, (D) CaP/Zda, and (E) CaP/Fss; (F) XRD patterns of CaP Control, CaP/Adn, CaP/
Cpp, CaP/Zda, and CaP/Fss products.
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preparation of CaPs with various functions. Accordingly, various
CaP nano-materials are promising for applications in
multifunctional drug delivery systems and tissue engineering
scaffolds.

EXPERIMENT

Materials
All the chemicals used for the experiments were of analytical
grade, and they were directly used as received without any further
purification. CaCl2, NaOH, KH2PO4, Na2HPO4, NaCl, KCl,
alendronate sodium (C4H12NaNO7P2·3H2O, Adn),
cyclophosphamide (C7H15Cl2N2O2P, Cpp), zoledronic acid
monohydrate (C5H10N2O7P2·H2O, Zda), and foscarnet sodium
(CNa3O5P, Fss) were purchased from Aladdin Industrial Co.,
Ltd.; 2× phosphate-buffered saline (2× PBS) was prepared by
successively dissolving NaCl, KCl, Na2HPO4, and KH2PO4 in
deionized water with the concentrations of 272 mM, 5.2 mM,
16 mM, and 4 mM, respectively. The final solution has a pH value
of about 7.4 at room temperature.

Density Functional Theory Calculation
Theoretical calculations were performed employing the ORCA
program (Neese et al., 2009) using a density functional theory
(DFT)–based methodology. The geometries of all the structures
were optimized with the hybrid B3LYP functional and the 6-31G
(d) basis set to rationalize the interaction. Accordingly, the Gibbs
free energies were further obtained with the hybrid B3LYP
functional and the 6-311G (d, p) basis set.

Preparation of CaP With the Incorporation
of Phosphorus-Containing Molecules
In a typical synthesis procedure, 20 ml 2 × PBS solution was
added to 20 ml of a solution containing CaCl2 and phosphorus-
containing molecules with a concentration of 33.4 mM, NaOH
(0.2 M) was introduced to adjust the pH of the mixed solution to
7.4, and then the mixture was placed in a water bath at 37°C and
subjected tomagnetic stirring for 1 h. The products were collected

via centrifugation and washed with deionized water and ethanol
three times, and then freeze-dried for further characterization.
Reactions were also conducted without the addition of
phosphorus-containing molecules, and the products were
denoted as Control CaPs. The CaP samples prepared under
the regulation of Adn, Cpp, Zda, and Fss were marked as
CaP/Adn, CaP/Cpp, CaP/Zda, and CaP/Fss, respectively.
Moreover, the co-precipitation products formed at 10 min
were also collected and denoted as CaP/And-0, CaP/Cpp-0,
CaP/Zda-0, and CaP/Fss-0, respectively. Thereafter, Adn or
Zda with a concentration of 3.34 mM in the mixed solution
was also conducted to obtain CaP products with different drug
contents, and the samples were marked as CaP/Adn-1 and CaP/
Zda-1.

Loading Capacity and Releasing Profile of
the Four Molecules
The dried powders (5 mg) of the as-prepared CaP/Cpp, CaP/Zda,
and CaP/Fss were dispersed in 5 ml of PBS solution (pH 7.4) to
reveal the release kinetics of the incorporated molecules from the
corresponding CaP products. The suspensions were placed in a
shaker with a constant shaking frequency of 140 rpm at 37°C. The
supernatants and sediments were collected at given time points of
1, 6, 12, 24, and 48 h, respectively. The UV-Vis absorption curves
of Cpp, Zda, and Fss with different concentrations were
measured, and the related curves are shown in Supplementary
Figures S5A,B, S6A. The UV-Vis absorption curves of the
released medium at different time points were also recorded.
Moreover, to detect the incorporated molecules in CaP samples,
0.25 mg of CaP/Cpp, CaP/Zda, CaP/Zda-1, and 1 mg of CaP/Fss
were dissolved in 1 ml of HCl (1M), and the UV-Vis absorption
curves were also recorded and shown in Supplementary Figures
S5C,D, S6D.

Structural and Chemical Characterization
The X-ray powder diffraction (XRD) patterns of the CaP
products were carried out using an X-ray powder
diffractometer (Bruker advance D8, Germany) supplemented
with Rigaku D/max 40 kV and Cu Kα radiation. Fourier

FIGURE 4 | FTIR spectra of (A) CaP Control, Adn, CaP/Adn, Zda, CaP/Zda, Fss, and CaP/Fss; (B) CaP Control, Cpp, and CaP/Cpp.
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transform infrared (FTIR) spectra were collected via an FTIR
spectrometer (Nicolet iS5, Thermo Scientific, USA).
Transmission electron microscopy (TEM) micrographs of the
as-prepared CaP products were taken with a field-emission
electron microscope (JEOL JEM-2100F, Japan) associated with
energy-dispersive spectroscopy (EDS, JED2300).

Cell Viability Tests in vitro
Mouse bone marrow–derived mesenchymal stem cells (BMSCs)
were purchased from Cyagen Biosciences Incorporation (China)
and cultured in a low-glucose Dulbecco’s minimum essential

medium (DMEM (LG), Sigma Life Science), supplemented with
10% fetal bovine serum (FBS) and 1% penicillin–streptomycin
(PS). Sprague–Dawley rat–derived osteoblast-like UMR106 cells
were obtained from the Cell Resources Center, Chinese Academy
of Sciences (Shanghai), and cultured in a high-glucose DMEM
(Sigma Life Science) containing 10% FBS and 1% PS. The cell
incubator was set at 37°C and 5% CO2 following the
manufacturer’s instructions. BMSCs from passage 3 to 5 were
used for further experiments.

BMSCs and UMR-106s were seeded in the 96-well plate with a
density of 2,000 cells per well. After being sterilized under

FIGURE 5 | Absorbance-concentration curve of (A) Zda and (B) Fss obtained from related UV-Vis absorption curves in Supplementary Figure S5A,B; (C) Zda-
release and (D) Fss-release curves of CaP/Zda and CaP/Fss in PBS. TEM micrographs of (E) CaP Control—72 h, (F) CaP/Adn—72 h, (G) CaP/Cpp—72 h, (H) CaP/
Zda—72 h, and (I) CaP/Fss—72 h.
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ultraviolet light for 30 min, CaP products were co-cultured with
BMSCs and UMR-106s with different concentrations. CCK8
assay was applied for testing the biocompatibility and cancer-
killing effects of the CaP nanocomposites. After incubation for
2 days separately, the cell viability was assessed by CCK8 assay
kits (DOJINDO, Japan). The detailed values were recorded via a
microplate reader (BioTek Instruments, United States) at a
wavelength of 450 nm. The corresponding results documented
here were presented as an average value of at least four parallel
measurements. Data were analyzed by GraphPad Prism 8.0
software, and comparisons were evaluated by Student’s t t̵est
and ANOVA. Only when the p value < 0.05, the results were
regarded as statistical significance.

RESULTS AND DISCUSSION

Theoretical Simulation
To theoretically reveal the role of phosphorus-containing
molecules in the formation of CaPs, theoretical calculations
were conducted employing the ORCA program (Neese et al.,
2009) with the density functional theory (DFT) methodology at
the B3LYP/6-31G (d) level. The optimized atomic structure and
electrostatic density of phosphorus-containing molecules before
and after the combination with calcium ions are shown in Figures
1A–H; the ionization state of each molecule at the pH of 7.4 was
determined by their pKa values.The electrostatic density of
certain oxygen atoms of the phosphate group becomes notably
less positive after the combination with calcium ions, which
indicates that the phosphate group and carboxyl group
interact with calcium ions via the linkage of the Ca-O bond.

Gibbs free energies (G) were further obtained with the hybrid
B3LYP functional at the 6-311G (d, p) basis sets to
quantificationally illustrate the interaction, and the detailed
data under each chemical structural formula are also shown in
Figure 2. The value of delta G represents the binding energy of
phosphorus-containing molecules and calcium ions. It can be
seen that the Cpp has the weakest interaction with Ca2+, Fss3+

combines closest with Ca2+, and the binding energy of Adn− and
Ca2+ is close to that of Zda−. According to the simulation results,
the binding energy is probably related to the ionization state,

charged group, and spatial configuration of the phosphorus-
containing molecules.

It is reported that the phosphorus-containing molecules
compete with the phosphate ions to react with the calcium
ions (Fleisch, 1998), the simulation result also provided
quantitative data about how strong the interaction is between
each phosphorus-containing molecules and calcium ions. For
Cpp, it has the weakest interaction with calcium, and the obtained
CaP/Cpp has been rarely influenced by Cpp; Adn and Zda have a
stronger binding affinity with calcium, while the binding energy is
still lower than inorganic HPO4

2- and PO4
3- (Supplementary

Figure S1); thereby, the crystal growth process of CaP is
disturbed or some of the inorganic phosphates are replaced by
Adn or Zda during the co-precipitation process, which leads to
the formation of amorphous calcium phosphate or other new
composites consisting of calcium and phosphorus-containing
molecules; Fss and calcium have the strongest binding energy,
which is higher than that of calcium and HPO4

2- but close to that
of calcium and PO4

3- (Figures 2E,F). Considering the pH of the
reaction system, HPO4

2- extensively exists in PBS (PH 7.4), Fss
molecules may have an advantage over HPO4

2- to bind with
calcium ions, and a new complex consisting of calcium and Fss
could form.

Synthesis and Characterization of CaPs
With the Addition of
Phosphorus-Containing Molecules
To verify the results of the theoretical simulation, Adn−, Cpp,
Zda−, and Fss3- were selected as additives to regulate the
formation of CaPs. Figure 3 provides the TEM micrographs
of CaP Control prepared without adding phosphorus-containing
molecules (Figure 3A), suggesting a nanosheet structure which is
the typical morphology of CaP in bones. Both the CaP/Adn
(Figure 3B) and CaP/Zda (Figure 3D) have a nanosized
spheroidal structure with a diameter of 20–50 nm, whereas the
grain size of CaP/Adn is obviously larger. Supplementary Figure
S3 shows the TEM micrographs of CaP/Adn-0 and CaP/Zda-0,
which also indicate the morphology of nanoparticles. It is found
that Cpp has limited influence on the morphology of CaP/Cpp
(Figure 3C). In contrast, CaP/Fss-0 (Supplementary Figure S3E)

FIGURE 6 | Cell viability of BMSCs (A) and UMR-106 (B) cells co-cultured with different CaPs at various concentrations for 48 h.
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possesses a defective nanoplate structure, which is quite different
from the other CaP products, but can be transformed into a
perfect nanoplate with prolonged co-precipitation time
(Figure 3E).

As the XRD patterns of CaP Control and CaP/Cpp given in
Figure 3F show, their related characteristic diffraction peaks
are located at 2θ of ~32° but with weak intensities and large
peak width, indicating a low-crystallinity apatite phase. CaP/
Adn exhibits a typical amorphous structure, while CaP/Zda
and CaP/Fss exhibited totally different features within the
XRD patterns, which cannot be detected in the database of
Joint Committee on Powder Diffraction Standards (JCPDS).
As shown in Supplementary Figure S2, the XRD patterns of
CaP/Zda matches those of calcium–Zda complexes extracted
from cif data provided by Freire et al. (2010), indicating that
CaP/Zda is a complex of calcium and Zda. According to the
simulation results, Adn and Zda have close binding energy
with calcium, while Adn decreased the crystallinity of CaP,
which is also extensively reported (Huang et al., 2022), and
Zda and calcium formed a complex with a higher crystallinity.
CaP/Ada and CaP/Zda may have different atomic
arrangements due to the different spatial configuration of
Adn and Zda. The DFT simulation only calculated the
binding energy of calcium and phosphorus-containing
molecules, while the 3D arrangement of CaP products has
not been taken into consideration, and the crystal structure
may not be predicted via binding energy. Thereafter, FTIR
spectra were collected to further investigate the chemical
structure.

As shown in Figure 4, the intense absorption peaks of CaP
Control at about 1,122, 1,024, 601, and 560 cm−1 are
attributed to the presence of the PO3

4- group. The typical
features of Adn at 1,549 cm−1, Zda at 1,386 cm−1, and Fss at
973 cm−1 also appear on the spectra of CaP/Adn, CaP/Zda,
and CaP/Fss, respectively, which reveals that the CaP
products in Figure 4A are assigned to organic-inorganic
complexes except for CaP Control. With comparisons, the
typical features of Cpp are not obvious on the spectrum of
CaP/Cpp, indicating the low content of Cpp and the weak
interaction between Cpp and CaP. These experimental results
are consistent with those calculated by a theoretical
simulation.

To further investigate the physicochemical property of the
CaP products, loading capacity and drug-releasing profile of the
molecules from the as-prepared CaP have been evaluated and
shown in Figure 5 and Supplementary Figures S5, S6. In terms
of the theoretical and experimental data, CaP/Adn and CaP/Zda
are organic–inorganic complexes; meanwhile, Adn and Zda have
similar binding energy with calcium, and the drug-release kinetics
of CaP/Zda was examined due to the convenient detection. The R
square of the absorbance-concentration curves of both Zda and
Fss are above 0.999, indicating that an excellent linear fitting
correlation has been obtained. Thereafter, the incorporated Zda
and Fss in CaP/Zda, CaP/Zda-1, and CaP/Fss were tested and
calculated; the corresponding drug-loading capacity are 175, 101,
and 411 mg/g, respectively. Figures 5C,D show the release curves:
the release of Zda and Fss reaches a plateau, or the release rate

decreases after 24 h. CaP/Zda released about 40% of Zda after
24 h, while CaP/Fss only released 16% of Fss, suggesting a
different transformation occurred in the system over 72 h. As
shown in Figure 5H, after being shaken in PBS at 37°C for 72 h,
the nanosized spherical CaP/Zda transformed into a similar
nanosheet structure as CaP Control, indicating that Zda
competes with the inorganic phosphate groups to react with
calcium and the spherical morphology needs to be maintained by
Zda. Meanwhile, CaP/Fss developed into a structure with a bunch
of nanowires/nanorods (Figure 5I), and Fss which has a stronger
binding affinity with calcium and played an essential role in the
formation and transformation of CaP/Fss in the physiological
environment. Moreover, Supplementary Figure S6 shows the
UV-Vis absorption curves of the released medium of CaP and
CaP/Cpp at different time points. Obviously, the UV-Vis
absorption peak of Cpp is influenced by the dissolved CaP,
and the peak intensity between dissolved CaP/Cpp and CaP
are similar, revealing that the content of incorporated Cpp is
quite low in CaP/Cpp. These results also explain the phenomenon
that CaP/Cpp has a similar morphology to Cpp.

Cytotoxicity Assay for the Biocompatibility
of the CaPs
To evaluate the biocompatibility of CaPs with different
structures, BMSCs and UMR-106 cells were co-cultured
with the CaP products at a series of concentrations. As
shown in Figure 6, CaP Control and CaP/Cpp exhibit
excellent biocompatibility, and thus could promote the
proliferation of BMSCs and UMR-106. CaP/Fss is non-
toxic at a low concentration, while the biocompatibility is
reduced when a concentration is set above 20 μg/ml. CaP/
Adn and CaP/Zda show obvious cytotoxicity, and the cell
viability is decreased with the concentration of nanoparticles
increasing. The cytotoxicity of CaP/Adn and CaP/Zda is
derived from the high content of Adn and Zda in the
organic–inorganic complex. The nanocomplex can release
phosphorus-containing drugs with degradation, as CaP is
pH sensitive (Gou et al., 2016; Mi et al., 2016). Hence,
Adn and Zda can realize controlled release under acid
conditions(Huang et al., 2022). Since the bisphosphonates
are reported to inactivate human epidermal growth factor
receptors (human EGFR or HER) to perform antitumor
actions (Yuen et al., 2014), CaP/Adn and CaP/Zda can be
considered to be promising drug delivery systems for
osteosarcoma therapy. CaP/Adn-1 (Supplementary Figure
S4) and CaP/Zda-1 (Supplementary Figure S4B) loaded with
fewer drugs showed better biocompatibility and are more
suitable for biomedical uses.

CONCLUSION

In this study, the interaction of calcium ions and phosphorus-
containing molecules, including alendronate, cyclophosphamide,
zoledronate, and foscarnet, were simulated via the ORCA
program. It demonstrated that the electrostatic density of
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certain oxygen atoms in a phosphate group was less positive after
the combination with calcium ions, indicating that the phosphate
group and carboxyl group interacted with calcium ions via the
linkage of a Ca-O bond. Meanwhile, the binding energy of
calcium ions and each phosphorus-containing molecule were
also obtained, and they were dependent upon the ionization state,
charged group as well as spatial configuration. The theoretical
simulation provided a prediction result of the role of phosphorus-
containing molecules in the formation of nano-sized calcium
phosphate. Subsequently, phosphorus-containing molecules were
incorporated to prepare CaPs, and cyclophosphamide had
limited influence on the formation of CaP due to their weak
interaction. Adn, Zda, and Fss were competitive with the
phosphate group during the coprecipitation process of Ca2+

and PO4
3-, and played critical roles in the formation of the

inorganic–organic complex. The experimental results were
consistent with the DFT calculation, revealing that strong
interactions between calcium ions and phosphorus-containing
molecules were essential for the regulation of the growth and
morphology of CaP nanocrystals. Additionally, the
biocompatibility of CaPs was also evaluated, and cytotoxicity
was mainly determined by the content and pharmacological
property of the phosphorus-containing molecules. Overall,
DFT calculation can provide a convincing strategy on
predicating the structure of CaPs with various additives and
the design of CaP-based multifunctional drug delivery systems
and tissue engineering materials.
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