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Identifying the subcellular localization of a given protein is an essential part of biological and
medical research, since the protein must be localized in the correct organelle to ensure
physiological function. Conventional biological experiments for protein subcellular
localization have some limitations, such as high cost and low efficiency, thus massive
computational methods are proposed to solve these problems. However, some of these
methods need to be improved further for protein subcellular localization with class
imbalance problem. We propose a new model, generating minority samples for protein
subcellular localization (Gm-PLoc), to predict the subcellular localization of multi-label
proteins. This model includes three steps: using the position specific scoring matrix to
extract distinguishable features of proteins; synthesizing samples of the minority category
to balance the distribution of categories based on the revised generative adversarial
networks; training a classifier with the rebalanced dataset to predict the subcellular
localization of multi-label proteins. One benchmark dataset is selected to evaluate the
performance of the presented model, and the experimental results demonstrate that Gm-
PLoc performs well for the multi-label protein subcellular localization.

Keywords: protein subcellular localization, class imbalance learning, multi-label classification, generative
adversarial networks, deep learning

1 INTRODUCTION

Proteins are the crucial material basis of life activities, which participate in various biological activites
(Qu et al., 2019). Previous researches show that almost all life phenomena are closely related to the
structure and function of proteins, and the correct subcellular localization of proteins can assist
biologists in understanding proteins (Wei et al., 2018; Zhang et al., 2021). Simultaneously, the
subcellular localization of proteins also plays an essential role in disease diagnosis, drug design, and
other biological researches (Li et al., 2020; Wang et al., 2021). Biological experiments (Murphy et al.,
2000) were widely used to annotate protein subcellular localizations in the early stage of research.
However, the cost of such conventional experiments is expensive (Yu B. et al., 2017; Liu et al., 2021).
Therefore, the machine learning methods are introduced to solve the problems mentioned above,
and have good results in protein subcellular localization (Wan et al., 2017), genomic island detection
(Dai et al., 2018; Kong et al., 2020; Onesime et al., 2021) and so on. The machine learning based
protein subcellular localization methods aim to learn the mapping relationship between protein and
subcellular localization, so as to accurately predict the subcellular location of a given protein.
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According to the different forms of protein data, these methods
can be divided into two categories: the sequence-based and the
image-based.

1) The core idea of the sequence-based methods is to extract the
feature information of each protein and build the classifier.
One protein sequence is generally composed of 20 amino
acids, and it is particularly important to extract the feature
information of protein sequences. Therefore, some correlation
methods concerning feature extraction have been proposed.
Nakashima et al. introduced the amino acid composition
(AAC) to represent features of proteins (Nakashima and
Nishikawa, 1994), and each protein was digitized into a 20-
dimensional vector, where each value represents the
percentage of amino acids. AAC can express the global
feature of amino acids, but it ignores the sequence of
amino acids and the interaction between residues. In order
to solve this problem, Petrilli et al. proposed the dipeptide
composition (Petrilli, 1993), which comprehensively
considered the relationship between amino acids. However,
the physicochemical characteristics of amino acids have been
ignored in the abovemethods. Therefore, Chou et al. proposed
the pseudo-amino acid composition (PseAAC) (Chou, 2001)
included the physicochemical characteristics and the order
information of amino acids, which has been applied in
predicting various protein attributes, such as protein
subchloroplast locations (Sun and Du, 2021), protein sub-
Golgi locations (Zhao et al., 2019) and so on. With further
research, researchers leveraged the position specific score
matrix (PSSM) to extract the evolutionary information of
proteins. PSSM is the most commonly used method for the
single feature representation. For the purpose of obtaining
more rich information about protein sequences, the above
mentioned methods of single feature representation have been
fused to get the integrated information of proteins (Zakeri
et al., 2011; Li et al., 2019; Liu et al., 2019; Ding et al., 2020).

2) The image-based methods construct the classification model
with biological images, and the biological images mentioned
here include Immunofluorescence (IF) and
Immunohistochemistry (IHC) (Hu et al., 2021). There are
some non-informative regions in the biological images, such
as stroma, debris and background, the channel separation of
DNA and protein is usually used to remove thus redundant
information (Xu et al., 2019). With the continuous deepening
of relevant researches, the neural network is introduced to
extract the feature information of biological images. Long et al.
proposed a new image-based method ImPloc for protein
subcellular localization in 2020, and ImPloc used the
convolutional neural network and transfer learning to
extract feature information (Long et al., 2019). In the same
year, Su et al. extracted feature information of biological
images through five widely used neural network models,
and achieved good research results (Su et al., 2020).

No matter what the form of protein data is, the ultimate aim is
to accurately predict the subcellular localization based on relevant
protein data. Research shows that a protein is usually located in

one or more subcellular localizations (Xu et al., 2013; Cheng et al.,
2019; Zhang et al., 2021; Shen et al., 2020), thus, the subcellular
localization of these proteins can be abstracted to a multi-label
classification. There are some classification models have been
introduced or proposed, such as support vector machine (SVM)
(Xu et al., 2009; Zhao et al., 2019; Yang et al., 2020; Sun and Du,
2021), deep neural networks (Semwal and Varadwaj, 2020; Su
et al., 2020; Wang et al., 2021) and so on. The above methods are
dedicated to improving the prediction accuracy of the subcellular
localization from the aspects of feature representation and model
construction, but some of these models have some limitations
when dealing with the class imbalance problem. Due to the
characteristics of protein data and environmental influences,
the distribution of proteins annotated with subcellular
localization is generally imbalanced, which means the number
of proteins belonging to one subcellular localization is far less
than that of others. The class imbalance problem of protein data
seriously affects the model performance, especially when proteins
have multiple subcellular localizations, and the conventional
methods based on oversampling are difficult to handle the
multiclass imbalanced problems effectively, such as the
synthetic minority oversampling technique (SMOTE) (Buda
et al., 2018). These methods alleviate data imbalance by
inserting new samples between minority classes based on the
sample spacing, which will further aggravate the problems of
sample stacking and poor diversity.

For the mentioned problems, we propose a new model called
Gm-PLoc to predict the subcellular localization of multi-label
proteins in this paper. Firstly, PSSM is used to extract the
evolutionary features (Gong et al., 2021). Secondly, a new
method called generative adversarial networks for synthesizing
minority samples (SM-GAN) is put forward based on generative
adversarial networks (GAN), and then the PSSM of each protein
will be fed into SM-GAN for rebalancing the dataset. Finally, a
classification model called multi-label deep factorization machine
(ML-DeepFM) is proposed to predict the subcellular localization
of proteins based on deep factorization machine (DeepFM). For
evaluating the performance of Gm-PLoc, we perform 10 fold
cross validation on the benchmark dataset, and experimental
results show that Gm-PLoc can effectively predict the subcellular
localization of multi-label proteins.

The following content is arranged as follows. In Section 2, the
proposed model Gm-PLoc will be introduced in detail. Section 3
provides a detailed analysis of the experimental results of Gm-
PLoc on a benchmark dataset. The last is a summary of this paper
and prospects for our future work.

2 MATERIALS AND METHODOLOGY

2.1 Benchmark Dataset
In this work, a benchmark dataset of human proteins (Shen and
Chou, 2009) is utilized to evaluate the Gm-PLoc, which is
collected from the Swiss-Port database with strict screening.
This dataset contains 3,106 distinct samples from 14 classes,
and the similarity between protein samples is less than 25% in
each class. In the dataset, 2,580 samples belong to one location,
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480 samples belong to two locations, 43 samples belong to three
locations, and remaining 3 samples belong to 4 locations.
Meanwhile, there is a vast difference in the sample size of
each location. More dataset details can be found at http://
www.csbio.sjtu.edu.cn/bioinf/hum-multi-2/Data.htm.

2.2 Overview of Gm-PLoc
Gm-PLoc is proposed to predict the subcellular localization of
multi-label proteins, which can handle the multiclass imbalanced
problem. The construction of this model includes two processes:
model training and model testing, as shown in Figure 1.

During the model training process, we use PSSM to extract
features from protein sequences, then utilize a specially designed
GAN called SM-GAN to synthesize pseudo samples for minority
classes, and finally construct a multi-label classifier called ML-
DeepFM with improved DeepFM for the protein subcellular
localization. In the model testing, a given protein is fed into
Gm-PLoc, and its relevant subcellular localizations will be output.
In the next part, we will introduce the related knowledge for the
procedure above in more detail.

2.2.1 Proteins Sample Formulation
In the process of biological evolution, the similarity between
proteins will fade away, but they still have some common
properties. The evolutionary information of a protein sequence
has a close relationship with protein physiological functions, and
the PSSM is designed to capture the evolutionary information
from protein sequences (Gong et al., 2021). The PSSM can be
obtained by using position specific iterative-basic local alignment
search tool (PSI-BLAST) to search similar proteins of a query
protein in a non-redundant database (Murphy et al., 2000), and
the parameters of E-value and iterations are set as 0.001 and 3,
respectively.

For a query protein P including L number of residues, the
corresponding PSSM can be denoted by a L × 20 matrix as
follows:

Ppssm �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1→1 / E1→j / E1→20

..

.
/ ..

.
/ ..

.

Ei→1 / Ei→j / Ei→20

..

.
/ ..

.
/ ..

.

EL→1 / EL→J / EL→20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where Ei→j means the score of amino acid residue in the ith
position being turned into amino acid of the jth type during the
evolution process, and 20 stands for the number of native amino
acid types.

The PSSM matrix resulting from Eq. 1 is not uniform with
different length of protein sequences, which leads to the fact that
matrix cannot be fed to the general machine learning model in a
proper form. For this problem, the matrix dimensions are fixed to
20 × 20 by using a discrete method (Chou and Shen, 2008), and
the PSSM matrix is formulated as follows:

Ppssm � [E1 E2 / E20 ]T (2)
where

Ej � 1
L
∑L
i�1
Ei→j(j � 1, 2,/, 20) (3)

In Eq. 3, Ej denotes the average score of the amino acid
residues in the jth protein P.

2.2.2 Generative Adversarial Networks for
Synthesizing Minority Samples (SM-GAN)
Most of the benchmark datasets utilized for training classifiers
have the class imbalance problem in the protein subcellular
localization, which seriously affects the performance of
classifier. Different approaches are proposed and utilized to
handle the class imbalance problem in previous researches (He
and Garcia, 2009; Yin et al., 2020), among which oversampling
methods are widely used, as they are more elastic and better in

FIGURE 1 | Predicting subcellular localization of a given protein by Gm-PLoc.
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aiming at a specific problem. However, oversampling methods,
such as SMOTE, are faced with the problems of sample stacking
and poor diversity.

To solve these problems, we design a special GAN called SM-
GAN to generate pseudo samples of minority classes, and the
illustration of SM-GAN is shown in Figure 2. It includes two
models: a generative model G that learns the distribution of
minority data, and a discriminative model D that measures the
probability of a given sample coming from G. SM-GAN, in
essence, is a zero sum game between G and D, which can
generate samples represented by PSSM for minority classes.
Note that the network structure of G and D are convolutional
layers rather than fully connected layers, because each column in
the PSSM matrix can be regarded as a time series feature, and the
conventional fully connected layers will lose the potential spatial
information in the PSSM matrix. This section will discuss how to
use SM-GAN to deal with the class imbalance problem.

The purpose of D is to distinguish the real samples from the
fake samples generated byG. At the same time, the purpose ofG is
to generate samples that confuse the discriminator D. Following
this adversarial process, the generator G is expected to generate
high-quality samples imitating the samples of minority classes.
The generated samples should be as similar as possible to the real
samples, but at the same time, these samples cannot be stacked
together.

In the process of generating new samples by SM-GAN, the
generator G randomly samples a noise vector z from latent space
Pz and produces the new sample Gz; then synthesized samples
and real samples will be fed into the discriminatorD, and then we

train D to correctly distinguish fake sample Gz from the real
sample x. The object function of the discriminator can be
presented as follows:

max
D

v(D) � Ex∈Pdata(x)[logDx] + Ez∈Pz(z)[log(1 −D(G(z)))]
+ Ez∈Pz,x∈Pdata(x)[log(d(G(z) − �x))] (4)

where Pdata means the distribution of real minority samples,
D(x) denotes the probability of x being real, �x represents the
sample mean, d(xf, xr) is a metric used to evaluate the distance
between the synthesized samples and real samples. By maxing Eq.
4, D maximizes the distance between the generated sample and
the real sample to further accurately identify the real sample.
Now, we obtain the objective function of the discriminator as
shown in Eq. 4, and then we train G to confuse D. The objective
function of the generator is:

min
G

V(G,D) � Ez∈Pz(z)[ − log(D(G(z)))]
+ λEz∈Pz,x∈Pdata(x)[log(d(G(z) − �x))] (5)

where λ is a hyper parameter for the regulation of the distance
between generated samples and real samples. Following Eqss 4, 5,
we reach our objective of generating high-quality samples of the
minority classes in protein subcellular localization.

2.2.3 Multi-Label DeepFM (ML-DeepFM)
Multi-label classification is a common problem where a given
sample has more than one label (Zhang and Zhou, 2014), which

FIGURE 2 | An illustration of SM-GAN.
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has attracted a lot of research attention. Many approaches are
proposed for multi-label learning tasks, but the classification
performance still needs to be improved. In this work, we
design a multi-label classifier ML-DeepFM based on DeepFM
(Guo et al., 2017) for the subcellular localization, and its structure
is shown in Figure 3.

DeepFM has been extensively used in both the academic and
industry because of its ability to learn low-order and high-order
feature interactions. However, DeepFM cannot solve the problem
of the multi-label classification for the protein subcellular
localization. Therefore, ML-DeepFM is proposed, and its
details will be described in this section.

ML-DeepFM includes two components: the FM component
that models low-order feature interactions and the Deep
component that extracts high-order feature interactions, as
shown in Figure 3.

The FM component and Deep component must be trained in
parallel, and then the predicted results of a given sample will be:

ŷ � yFM + yDeep (6)
where ŷ denotes the predicted labels, yFM and yDeep represent the
output vectors of FM component and Deep component,
respectively.

As shown in Eq. 6, for calculating the predicted label ŷ, we
need to get the output vectors of FM component and Deep
component severally.

1) FM component: FM component is a factorization machine
proposed by Steffen Rendle (Rendle, 2010), and it can capture

the information of feature interactions effectively. Assuming that
samplex includes n features, and each feature can be expressed as
xi, i ∈ n. For the feature xi, the scalarwi represents the weight of
first order feature, the latent vector vi denotes theweight vector of
second-order feature interactions, and the related output of FM
component can be calculated as follows:

yFM � ∑n
i�1
wixi +∑n

i�1
∑n
j�i+1

〈vi, vj〉xixj (7)

where 〈·, ·〉 represents the inner product between two vectors,
〈vi, vj〉xixj is the second-order interaction between the ith
feature and the jth feature.

2) Deep component: Deep component is a deep neural network,
which captures high-order feature interactions. For the
sample x which can be expressed as an n dimension
vector, the input of each layer can be formulated as follows:

xl � σ(wlxl−1 + bl)(l � 1, 2,/, L) (8)
where L denotes the number of hidden layers, σ represents an
activation function, wl is the model weights for the lth layer, and
bl is the model bias for the lth layer. Like the general definition of
a deep neural network, the output of the Deep component can be
formulated as follows:

yDeep � wl+1xl + bl+1 (9)
Note that the output layer of Deep component does not use

any activation function, because ML-DeepFM is a multi-label

FIGURE 3 | The model architecture of ML-DeepFM.
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classifier. Theoretically, we can get the predicted labels by
combing Eqss 6, 7, 9, but it can be found that there are many
unknown parameters in these formulas, such as v, thus we design
a loss function to optimize these parameters in the process of
training the FM component and Deep component. For the task of
multi-label classification, we hope that the predicted scores of the
relevant labels are higher than those of irrelevant labels for each
sample, and the mathematical formula is as follows:

Lml � ∑N
i�1

∑
k∈Ω(irre),r∈Ω(re)

(yk
i − yr

i) (10)

where N is the number of all samples, Ω(irre) is the set of
irrelevant labels, Ω(re) is the set of relevant labels, yk

i represents
the predicted scores of irrelevant labels, conversely, yr

i denotes the
predicted scores of relevant labels.

The loss function as shown in Eq. 10 has a problem that the
learning rate of the FM component and the Deep component is
very slow when using gradient descent for training the model. Log
function is adopted to solve this problem inspired by cross

entropy. In addition, it can be found that the value of yk
i − yr

i

is less than 0, whichmeans yk
i − yr

i cannot be directly entered into

the log function. We perform a nonlinear mapping from yk
i − yr

i

to ey
k
i −yr

i , which guarantees that the input value is greater than 0.
Thus, the loss function can be expressed as follows:

Lml � ∑N
i�1

∑
k∈Ω(irre),r∈Ω(re)

ey
k
i −yri (11)

For amulti-label classifier, the number of labels for each sample is
not fixed, we need a threshold value to determine the number of
relevant tags to output. Assuming that the threshold value is denoted
as y0, the loss function can be improved to:

Lml � ∑N
i�1
log⎛⎝ ∑

k∈Ω(irre),r∈Ω(re)
ey

k
i −yri + ∑

k∈Ω(irre)
ey

k
i −y0 + ∑

r∈Ω(re)
ey

0−yri ⎞⎠
(12)

3 RESULTS AND DISCUSSION

3.1 Experimental Setup
In this work, the proposed Gm-PLoc is implemented with
TensorFlow under the Windows 10 operating system, and all the
experiments are conducted on a computing server with an Intel(R)
Core(TM) i7-10700K CPU and an Nvidia GeForce RTX 3080
Ti GPU.

Gm-PLoc is composed of SM-GAN and ML-DeepFM. In SM-
GAN, the generator is consistent of one dense layer and three
deconvolution layers, and the discriminator includes one dense layer
and two convolution layers. In ML-DeepFM, FM component
includes one FM layer and one dense layer, and Deep
component includes five dense layers which have 256, 128, 64, 32
and 14 neurons, respectively. During training, the networks-based
models are trained with Adam optimizer for 1,000 epochs, the batch

size and learning rate are set to 512 and 0.0001, respectively. Note
that the reason for using deep neural networks is to automatically
extract the lower-order and high-order feature interactions, at the
same time, we perform the following operations to alleviate the over
fitting problem caused by using deep neural networks: expanding the
dataset by SM-GAN, partitioning the dataset by the 10 cross
validation, building shallow networks and reducing the number
of neurons by the dropout technique.

3.2 Performance Measure
For evaluating the performance of the proposed model Gm-PLoc,
10 fold cross validation test is selected as the assessment method,
which randomly divides the dataset into ten subsets, nine of them
are used for training and the rest is retained as the test data,
repeating the process ten times. In the meantime, hamming loss
(Hl), one-error (Oe), coverage (Co), ranking loss (Rl), and
average precision (Ap) are used to quantify the performance
of the proposed model for multi-label protein subcellular
localization. These five performance evaluation metrics are
widely used in the literature on multi-label learning (Yu and
Zhang, 2021; Zhang et al., 2021), which can be defined as follows:

1) Hl evaluates the fraction of labels misclassified in the wrong
classes completely. There are two situations when the labels are
misclassified: relevant labels are missed and irrelevant labels are
predicted, and the mathematical expression is shown in Eq. 13.

Hl(ŷ, y) � 1
N

∑N
i�1
∑K
j�1
(ŷij ≠ yij) (13)

2) Oe evaluates the fraction that the top-ranked label of samples is
excluded from the relevant labels, which can be formulated as
follows:

Oe(f̂, y) � 1
N

∑N
i�1
((arg max

j∈{1,2,/,K}
f̂ij) ∉ yi) (14)

3) Co evaluates the average number of steps that must be moved
when the ranked label list cover the relevant labels, and related
mathematical definition will be:

Co(f̂, y) � 1
N

∑N
i�1

max
j: yij�1

rank(f̂ij, yij) (15)

4) Rl measures the times that the relevant labels are ranked
higher than the relevant labels, which can be defined by
Eq. 16.

Rl(f̂, y) � 1
N

∑N
i�1

1����yik

����0(K − ����yik

����0)
�������{(k, l): f̂ik ≤ f̂il, yik�1, yil � 0}�������0 (16)

5) Ap evaluates the average times that the relevant labels are
ranked higher than each particular label of samples.

Ap(f̂, y) � 1
N

∑N
i�1

1����yi

����0 ∑
j: yij�1

����Lij

����0��������rank(f̂ij, yij)
��������
0

(17)
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where Lij � {k: fik ≥fij, yik � 1} Lij. In the above definitions, K
denotes the length of real labels, N means the number of all
samples in each dataset, y denotes the real labels of sample, ŷ and
f̂ represent the label and score returned by the multi-label
classifier, respectively. For a good prediction model, the value
of Hl, Oe, Co and Rl should be as small as possible, but the value
of Ap should be the opposite.

3.3 The Analysis of Imbalance Degree on the
Dataset
There is a strong connection between the imbalance degree of
the protein dataset and the performance of the classifier. The
imbalance degree of the dataset is performed through
numerical representation in Figure 4. The abscissa
corresponds to the categories of subcellular localization,
and the ordinate represents the proportion of each
category. The bigger the value of sample proportion is, the
more the number of samples in the relevant category is, or the
other way around.

As shown in Figure 4, the phenomenon of class imbalance
exists in the benchmark dataset. The sample proportions of
eight categories are all lower than 0.05, while two categories are
higher than 0.20. It can be found that there is a large gap in the
number of samples between different categories, and the data
distribution among multiple categories has the imbalance
problem. In combination with the imbalance ratio, this
benchmark dataset is considered extremely imbalanced.

3.4 The Analysis of the Performance of
SM-GAN and ML-DeepFM
To assess the performance of SM-GAN and ML-DeepFM
proposed in this paper, we conduct six controlled experiments

obtained by combining SM-GAN andML-DeepFM in pairs. Note
that here ML-DeepFM is divided into two sub-classifiers, ML-
Deep and ML-FM, to explore the relationship between the Deep
component, FM component and ML-Deep. Moreover, the results
of each controlled experiment are fed back through five metrics.

From two dimensions of SM-GAN and ML-DeepFM, this
paper analyzes the results of each controlled experiment, and
the relevant results are shown in Figure 5 and Figure 6. Where
Figure 5 includes six subgraphs. In Figure 5, the (b), (d) and
(f) in the right column represent the results obtained after
rebalancing by SM-GAN, we can see that the value of Co in the
subgraph (b) is significantly smaller than that in the subgraph
(a), and the above situation also exists in subgraph (e) and (f),
which means SM-GAN can effectively promote the classifier to
completely recognize the relevant labels of each sample. In
addition, the rest metrics after rebalancing are better than
other controlled experiments in varying degrees. The
experimental results further prove the negative impact of
data imbalance for the classifier, and also verify the
effectiveness of SM-GAN.

To evaluate the performance of ML-DeepFM, and analyze
the contribution of Deep component and FM component in
ML-DeepFM, the experimental results of six controlled
experiments are summarized in Figure 6. The ML-Deep
gets the worst results as shown in the red line in that the
values of Hl, Co, Oe and Rl are the largest and the value of Ap is
the lowest. On the contrary, the results obtained by SM-GAN +
ML-DeepFM are the best. In addition, we can see that the
performance of classifiers based on ML-FM is better than those
based on ML-Deep, and is close to that of ML-DeepFM, which
means the FM component contributes more to ML-DeepFM
and the information of low-order feature interactions between
protein sequences is more useful for predicting subcellular
localization.

FIGURE 4 | The sample proportion of the benchmark dataset.
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FIGURE 5 | The relationship between SM-GAN with ML-DeepFM.
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3.5 Performance Comparisons Between
Different Oversampling Methods
As an oversampling method for generating samples of the
minority classes, SM-GAN can alleviate the class imbalance
problem in protein subcellular localization. To assess the
effectiveness, we compare SM-GAN against other popular
methods that can alleviate class imbalance problem. Among
these controlled methods, SMOTE (Buda et al., 2018)
generates new samples of the minority class through linear
interpolation, and Borderline-SMOTE (Han et al., 2005) is a
variant of SMOTE, which only samples the boundary samples of
the minority class. SVM-Balance (Farquad and Bose, 2012) uses
SVM to solve the problem of data imbalance by reconstructing
the training dataset. SMOTE, Borderline-SMOTE, and SVM-
Balance are conventional methods for imbalanced learning. The
remaining methods including SinGAN (Shaham et al., 2019) and
DCGAN (Yu Y. et al., 2017) are both generative models based on
GAN, which generate samples by learning the sample distribution
of the minority class. The experimental results of the above
mentioned methods can be found in Table 1.

As shown in Table 1, experimental results corresponding to
the methods based on the generative model are much better than
conventional methods, because these interpolation methods

based on sample spacing will further enhance the stacking of
samples, thereby making correct classification difficult. In
addition, among the three imbalanced learning methods
based on the generative model, the values of five evaluation
metrics corresponding to SM-GAN are the best. To sum up, SM-
GAN can effectively handle the extreme imbalance problem of
multi-label samples, which performs better than compared
methods.

3.6 Performance Comparison With Existing
Prediction Models for Protein Subcellular
Localization
To further verify the effectiveness of Gm-PLoc obtained by
combining SM-GAN and ML-DeepFM, we compare the
performance of Gm-PLoc with GO + AAC + PseAAC +
IMMMLGP (He et al., 2012), GO + FunD + PSSM + OET-
KNN (Shen and Chou, 2009) and PSSM + PseAAC +Multi-SVM
(Shen et al., 2019) on the same benchmark dataset. For the sake of
simplicity, “+” is used to connect the feature representation and
classifier in the corresponding models. The experimental results

FIGURE 6 | The experimental results come from the exhaustive combination of SM-GAN and ML-DeepFM.

TABLE 1 | Comparing SM-GAN with other oversampling methods.

Method for
imbalanced learning

Hl Co Oe Ap Rl

SMOTE 0.106 2.050 0.552 0.626 0.121
Borderline-SMOTE 0.102 2.138 0.521 0.646 0.126
SVM-Balance 0.105 1.998 0.546 0.635 0.117
SinGAN 0.089 1.983 0.463 0.684 0.116
DCGAN 0.083 1.669 0.452 0.696 0.102
SM-GAN 0.073 1.441 0.353 0.745 0.087

TABLE 2 | Comparing Gm-PLoc with other model of protein subcellular
localization.

Model of subcellular
localization

Co Ap Rl

GO + AAC + PseAAC + IMMMLGP 4.303 0.581 0.419
GO + FunD + PSSM + OET-KNN 5.317 0.579 0.496
PSSM + PseAAC + Multi-SVM 1.719 0.706 0.108
PSSM + SM-GAN + ML-DeepFM 1.441 0.745 0.087

The bold values provided in Table 2mean the best results calculatedwith different protein
subcellular localization methods.
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of Gm-PLoc compared with the three methods are shown in
Table 2.

From Table 2, we can see that the values of Co and Rl
calculated by Gm-PLoc are 1.441 and 0.087, respectively,
which are 0.278–2.862 and 0.021–0.409 lower than those of
other models. In addition, the value of Ap is 0.745, which is
0.039–0.166 higher than the comparison models. And by
comparing all metrics, it can be found that the Gm-PLoc has
the best performance. The above results further elucidate that
Gm-PLoc performs better than the comparison models.

Furthermore, we analyze the comparison models and find that
most of these models improve the accuracy of subcellular
localization by fusing features and improving algorithms.
These models do not consider the problem of data imbalance,
while Gm-PLoc pays attention to the feature information,
classification model and imbalanced characteristic
simultaneously. Overall, Gm-PLoc can predict subcellular
localization effectively.

4 CONCLUSION

The class imbalance problem widely exists in the datasets
annotated with the subcellular localization, which seriously
affects the performance of classification models for multi-label
proteins. In this paper, a newmodel named Gm-PLoc is proposed
to solve the problem of the multi-label classification with
imbalanced protein data. In this model, the evolution
information of proteins is extracted by the PSSM, and then
the proposed SM-GAN is used to rebalance the distribution of
each class. Finally, ML-DeepFM based on DeepFM is trained with
the rebalanced dataset to predict the subcellular localization of
multi-label proteins. Many experiments are conducted to assess
the performance of Gm-PLoc, and the experimental results
illustrate that Gm-PLoc can alleviate the problem of protein
data imbalance and predict the subcellular localization of
multi-label proteins effectively. In the field of protein
subcellular localization, there are two aspects may be

improved further: the processing of protein data and the
construction of multi-label classification. In further works, we
will explore the more effective and cost efficient classification
model for protein subcellular localization under the data
imbalance and big categories.
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