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Abstract.  The objective of this research was to clarify the aging-related changes in in vitro-matured bovine oocytes. Firstly, 
we examined the fertilization and embryonic development of bovine oocytes after 22 and 30–34 h of in vitro maturation 
(IVM). The oocytes after 30–34 h of IVM (penetrated by sperm at around 40 h after starting IVM) showed a lower 
developmental rate to blastocysts (P<0.01), although normal fertilization rates were similar regardless of IVM duration. In the 
next experiment, reactive oxygen species (ROS), mitochondrial activity and ATP content in oocytes after 20, 30 and 40 h of 
IVM were examined. The lowest level of ROS was found in the group subjected to 30 h of IVM. The mitochondrial activity 
and ATP content in the group subjected to 40 h of IVM were higher than in the group subjected to 20 h of IVM (P<0.01), and 
those in the group subjected to 30 h of IVM showed intermediate values. Thereafter, the mitochondrial activities at 3 days 
after in vitro fertilization in embryos derived from the oocytes subjected to 22 and 34 h of IVM were evaluated. In the group 
subjected to 34 h of IVM, high-polarized mitochondria were frequently observed at the periphery of blastomeres. The present 
results suggest that high mitochondrial activity observed in oocytes after prolonged IVM culture and localization of high-
polarized mitochondria at the periphery of blastomeres during early embryonic development may be associated with the low 
developmental competence in aged bovine oocytes.
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In humans and domestic animals, it is well known that postovula-
tory aging of oocytes at the metaphase II (M-II) stage adversely 

affects the outcome of assisted reproductive technologies (ART), 
such as artificial insemination [1], in vitro fertilization (IVF) [2, 3] 
and intracytoplasmic sperm injection [4, 5]. In humans and rodents, 
postovulatory aging of oocytes is defined as numerous morphological 
and cellular alterations and causes a decrease in fertilization and 
embryonic development, which has been previously reviewed [6, 
7]. In bovines, both in vivo and in vitro aging of oocytes cause a 
decrease in fertilization and embryonic development [1, 2, 8–11]. 
However, there are few data on aging-related changes in bovine 
oocytes. Research on aging in bovine oocytes will contribute to the 
development of a method for preventing aging in in vitro-matured 
bovine oocytes and eventually to improvement of ART efficiency.

Recently, studies on murine oocytes have indicated the possibility 
that oxidative stress acts as a trigger for a cascade of several events 
associated with oocyte aging and that one of the aging-related changes 

caused by oxidative stress is mitochondrial dysfunction [6]. It has 
been reported that the aging of murine oocytes causes increased 
oxidative stress [12], mitochondrial dysfunction [13, 14] and decreased 
intracytoplasmic levels of ATP [15]. In in vitro-matured bovine 
oocytes, the changes in level of oxidative stress [16], mitochondrial 
activity [17, 18] and ATP content [19–22] during in vitro maturation 
(IVM) culture for less than 24 h have been determined, but there is 
little data on the changes in these parameters associated with bovine 
oocyte aging. Therefore, it is still unclear whether the extension of 
IVM duration in bovine oocytes causes the aging-related changes in 
oxidative stress, mitochondrial activity and ATP content.

In previous studies, bovine oocytes at about 30 h after IVM were 
treated as aged or slightly aged oocytes and used to investigate 
aging-related changes [9, 23, 24]. This was because the oocytes after 
30 h of IVM showed a low developmental rate to blastocysts [9]. 
However, after 30 h of IVM, degradation of the microfilament-rich 
domain overlying the spindle in bovine oocytes was not observed, 
which had been observed in porcine aged oocytes [24]. Moreover, 
maturation-promoting factor (MPF) activity was similar to that in 
bovine oocytes matured for 24 and 32 h [9], although a decrease in 
activity of MPF in bovine oocytes matured for 40 h was observed 
[25]. Since it takes several hours for bovine oocytes to be penetrated 
by sperm after starting IVF [9, 26], studies on the characteristics 
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of aged oocytes should not be based on developmental competence 
corresponding to the duration of IVM, but instead should be based 
on the timing of sperm penetration.

The present study was conducted to clarify the aging-related 
changes related to oxidative stress, mitochondrial activity and ATP 
content in in vitro-matured bovine oocytes and to mitochondrial 
activity in embryos at around the 8-cell embryo stage derived from in 
vitro-fertilized bovine oocytes. Firstly, we confirmed the competence 
of fertilization and embryonic development in oocytes subjected to 
22 and 30–34 h of IVM. We then examined reactive oxygen species 
(ROS), mitochondrial activity and ATP content after 20, 30 and 40 h 
of IVM culture and examined the mitochondrial activity in embryos 
at 72 h after IVF.

Materials and Methods

Chemicals
All the chemicals and reagents used for this study were purchased 

from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated.

In vitro maturation and fertilization of bovine oocytes
IVM was performed as previously described [27]. Briefly, bovine 

ovaries (mostly Holstein breed) obtained at a local abattoir were 
kept in plastic bags at 20 C and were transported to the laboratory 
within 6–10 h of collection. Bovine cumulus-oocyte complexes 
(COCs) were aspirated from small antral follicles (2 to 8 mm in 
diameter). The COCs with brown-colored ooplasm surrounded by 
intact cumulus investments [28] were washed twice in HEPES-
buffered Tyrode’s medium [29] supplemented with 3 mg/ml bovine 
serum albumin (BSA, fraction V), 0.2 mM sodium pyruvate and 
50 μg/ml gentamicin sulfate. The COCs were then cultured for 20 
to 40 h under a humidified atmosphere of 5% CO2 in air at 39 C 
in droplets of IVM medium (about 10 COCs/50 μl). IVM medium 
was composed of HEPES-buffered TCM-199 (Invitrogen, Grand 
Island, NY, USA) supplemented with 10% fetal calf serum (FCS, 
Invitrogen), 0.02 units/ml follicle stimulating hormone (from porcine 
pituitary), 1 μg/ml estradiol-17β, 0.2 mM sodium pyruvate and 50 
μg/ml gentamicin sulfate.

IVF was conducted using frozen-thawed semen from one Holstein 
bull according to a procedure described previously [30] with slight 
modifications. In brief, motile sperm (2 × 106 sperm/ml) separated 
from thawed semen using a Percoll (GE Healthcare, Buckinghamshire, 
UK) gradient (45 and 90%) were co-incubated with COCs in droplets 
of IVF medium (about 10 COCs/100 μl). IVF medium was composed 
of modified Brackett and Oliphant isotonic medium [26] containing 
3 mg/ml fatty acid-free BSA, 2.5 mM theophylline, 20 μM penicil-
lamine, 10 μM hypotaurine and 1 μM epinephrine. Co-incubation 
of COCs and sperm was performed for 18 h under 5% CO2, 5% O2 
and 90% N2 at 39 C.

Evaluation of the fertilized oocytes
After 18 h of IVF, oocytes were freed from cumulus cells by 

vortexing. Denuded oocytes were fixed with ethanol:acetic acid (3:1) 
and stained with a 1% aceto-orcein solution. Their fertilization statuses 
(sperm penetration and pronuclear formation) were examined under 
a phase-contrast microscope [19, 28]. Oocytes having an enlarged 

sperm head(s) or male pronucleus(ei) were defined as penetrated by 
sperm, and the following categories of oocytes penetrated by sperm 
were recorded: 1) oocytes with male and female pronuclei or with 
an enlarged sperm head and anaphase II/telophase II chromosome 
(normal fertilization), 2) oocytes with more than two enlarged sperm 
heads or male pronuclei (polyspermy) and 3) oocytes with an enlarged 
sperm head and female pronucleus or with male pronucleus and 
telophase II chromosome (asynchronous fertilization).

In vitro culture and evaluation of subsequent embryonic 
development

To determine the developmental competence of oocytes, insemi-
nated oocytes were assigned to in vitro culture (IVC) according to 
a procedure described previously [27, 31]. In brief, inseminated 
oocytes were freed from cumulus cells by vortexing at 18 h post 
insemination (hpi). Denuded oocytes were washed three times and 
cultured for 6 days under 5% CO2, 5% O2 and 90% N2 at 39 C in 
droplets of IVC medium (25–30 oocytes/30 μl). IVC medium was 
a modified synthetic oviduct fluid containing 1 mM glutamine, 
12 essential amino acids for Basal Medium Eagle, 7 nonessential 
amino acids for Minimum Essential Medium and 10 µg/ml insulin 
and further supplemented with 5 mM glycine, 5 mM taurine, 1 
mM glucose and 3 mg/ml fatty acid-free BSA. After 2 and 7 days 
of IVF (44 to 48 and 166 to 170 hpi, respectively), cleavage and 
development to the blastocyst stage were assessed, respectively. All 
blastocysts were subjected to counting of the total number of cells 
by an air-drying method [32].

Measurement of ROS in individual oocytes
The quantity of H2O2 produced by individual oocytes was measured 

as the level of ROS according to a previous report [33]. ROS in 
oocytes can be quantified by measuring 2’,7’-dichlorofluorescein 
diacetate (DCF) [34]. DCF fluorescence is generated by H2O2 from 
2’,7’-dichlorodihydrofluorescein, which is formed by intracellular 
esterase from 2’,7’-dichlorodihydrofluorescein diacetate (DCHFDA).

After IVM culture, oocytes were freed from the cumulus cells 
by vortexing. Denuded oocytes with a polar body were incubated 
with 10 μM DCHFDA in Dulbecco’s phosphate-buffered saline 
(DPBS) supplemented with 10% FCS for 15 min at 39 C and washed 
in DPBS. Stained oocytes were transferred to a slide glass with a 
small amount of DPBS and pressed gently with a cover slide. Their 
fluorescence emissions were then observed under a fluorescence 
microscope using an appropriate filter (BZ-9000; Keyence, Osaka, 
Japan), and the sectioned fluorescent images of each oocyte were 
acquired at 2 μm intervals. The mean green fluorescent intensity of 
each oocyte, which represents the H2O2 level, was calculated by 
analysis software (BZ-H2A, Keyence).

Evaluation of mitochondrial activity in individual oocytes and 
embryos

Denuded oocytes or embryos at 72 hpi were stained with JC-1 
(Cell Technology Inc., Mountain View, CA, USA) as described 
previously [18] with slight modifications. JC-1 is a fluorescent dye 
that accumulates in mitochondria and shows the membrane potential 
across the matrix membrane [35]. JC-1 fluorescence has two emission 
peaks, with red fluorescence (JC-1 dimers) indicating high-polarized 
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mitochondria (high membrane potential) and green fluorescence (JC-1 
monomers) indicating low-polarized mitochondria (low membrane 
potential) [35]. Mitochondrial activity can be evaluated by the 
intensity of the red/green fluorescence [13, 17, 18].

Briefly, denuded oocytes or embryos were incubated with 1 
μM JC-1 and 1 μg/ml Hoechst 33342 in DPBS supplemented with 
10% FCS for 15 min at 37 C and washed twice in DPBS. Stained 
oocytes or embryos were transferred to a slide glass with a small 
amount of DPBS and pressed gently with a cover slide. They were 
then observed under a fluorescence microscope (BZ-9000). The 
distributions of JC-1 dimers with red fluorescence and monomers 
with green fluorescence were detected using the red filter and green 
filter of the microscope, respectively. Mitochondrial activity of the 
oocytes at the M-II stage or cleaved oocytes (evaluated by Hoechst 
staining) was determined by the intensity of the red/green fluorescence 
using software (BZ-H2A).

Measurement of ATP content in individual oocytes
After IVM culture, oocytes were freed from the cumulus cells 

by vortexing. The ATP content of individual oocytes with a polar 
body was measured according to a previous report [19, 36]. Briefly, 
a denuded oocyte was washed four times in the sample buffer and 
transferred to 25 μl of the sample buffer in a 1.5 ml tube. The sample 
buffer consisted of 99.0 mM NaCl, 3.1 mM KCl, 0.35 mM NaH2PO4, 
21.6 mM sodium lactate, 10.0 mM HEPES, 2.0 mM CaCl2, 1.1 
mM MgCl2, 25.0 mM NaHCO3, 1.0 mM sodium pyruvate, 0.1 mg/
ml of gentamicin sulfate and 6.3 mg/ml of BSA [36]. These tubes 
were placed in boiling water for 3 min to inactivate the endogenous 
phosphatases and then frozen at −80 C until assay. All assay reagents 
were purchased as a kit (ATP bioluminescent somatic cell assay kit, 
FL-ASC) and prepared according to the manufacturer’s instructions. 
The ATP stock solution was diluted to concentrations of 0.16 to 
10 pmol/25 μl in sample buffer for the ATP standards. The ATP 
standards and samples in 1.5 ml tubes were kept on ice, and 50 μl 
of ice-cold somatic cell-releasing agent was added to all tubes. After 
the tubes were kept on ice for 5 min, the contents of the tubes were 
transferred to a white 96-well plate (Labsystems, Tokyo, Japan). 
Thereafter, 100 μl of assay mix was added to each well at 5 sec 
intervals and held at room temperature for 5 min to pass through 
the initial chemiluminescence flash period. ATP content in an oocyte 
was quantified by measuring the luminescence (Luminescensor JNR 
AB-2100, Atto, Tokyo, Japan).

Experimental design
In Experiment 1, bovine oocytes after 22 and 30–34 h of IVM 

were assigned for 18 h of IVF, and their fertilization statuses were 
determined. In addition, the percentages of cleavage and development 
to the blastocyst stage were evaluated. Out of 473 oocytes subjected 
to IVM and IVF, 351 oocytes were subjected to IVC (20–30 oocytes/
replicate), and the remaining 122 oocytes were used for the fertilization 
evaluation (10–13 oocytes/replicate).

In the preliminary study, we examined the percentages of oocytes 
penetrated by sperm at 4, 8 and 12 h after starting IVF in bovine 
oocytes subjected to IVM for 22 or 30 h, and the times when more 
than 50% of oocytes were penetrated by sperm were estimated at 6 
to 8 h after starting IVF (data not shown). Therefore, in Experiment 

2, oocytes subjected to IVM for 20 h (immediately after M-II arrival 
[19]), 30 and 40 h were used for determination of ROS, mitochondrial 
activity and ATP content. The 30 and 40 h time points for IVM were 
considered the times when sperm penetration occurred in oocytes 
subjected to 22 and 30–34 h of IVM, respectively. For ROS measure-
ment, a total of 78 oocytes were subjected to IVM, and oocytes with 
a polar body clearly observed under a stereomicroscope were used 
for the experiment (10–13 oocytes/replicate). Also, for evaluating 
mitochondrial activity and ATP content, a total of 216 oocytes were 
subjected to IVM, and oocytes with a polar body clearly observed 
under a stereomicroscope were used for the experiment (9–14 oocytes/
replicate). In addition, oocytes were then subjected to 22 h (penetrated 
by sperm at around 30 h after starting IVM) and 34 h (penetrated by 
sperm at around 40 h after starting IVM) of IVM, IVF and IVC, and 
the cleavage and developmental stage of embryos were confirmed 
by the number of nuclei stained with Hoechst 33342 at 72 hpi. The 
mitochondrial activities of cleaved embryos were then examined. 
The distribution of high-polarized mitochondria in embryos was 
also examined, and the percentage of embryos with high-polarized 
mitochondria at the periphery of blastomeres was recorded. In the 
experiment, 20 and 21 embryos derived from the oocytes subjected 
to 22 and 34 h of IVM were used (1 replicate).

Statistical analysis
Data for fertilization and embryonic development (Experiment 1) 

and mitochondrial activity of embryos at 3 days after IVF (Experiment 
2) were analyzed by Student’s t-test. ROS, mitochondrial activity 
and ATP content of oocytes after IVM culture (Experiment 2) were 
analyzed using one-way analysis of variance followed by Tukey-
Kramer’s honestly significant different test as a post hoc test. Data 
for embryonic development and distribution of high-polarized 
mitochondria in embryos were analyzed by Fisher’s exact test 
(Experiment 2). The level of statistical significance was set at P<0.05. 
Statistical analyses were performed using JMP version 10.0.2 (SAS 
Institute, Cary, NC, USA).

Results

Experiment 1
The data for fertilization are shown in Table 1. The percentages of 

normal fertilization, polyspermy and sperm penetration were similar 
regardless of IVM duration. However, the percentage of oocytes 
that formed a pronucleus asynchronously in the group subjected 
to 30–34 h of IVM was higher than in the group subjected to 22 h 
(P<0.01). In the group subjected to 30–34 h of IVM, the percentages 
of delay in male and female pronucleus formation were 10.4 and 
1.3%, respectively. As shown in Table 2, the cleavage rate tended to 
be lower in the group subjected to 30–34 h of IVM than in the group 
subjected to 22 h of IVM (P = 0.06). The percentages of blastocysts 
based on inseminated and cleaved oocytes in the group subjected to 
30–34 h of IVM were also lower than in the group subjected to 22 
h of IVM (P<0.01). Total cell numbers in blastocysts were similar 
regardless of IVM duration.

Experiment 2
The levels of ROS production in oocytes after different IVM culture 
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periods are shown in Fig. 1. Mean intensity of DCF fluorescence in 
the group subjected to 40 h of IVM was similar to that of the groups 
subjected to 20 and 30 h of IVM, and that in the group subjected to 
30 h of IVM was lower than that in the group subjected to 20 h of 
IVM (P<0.01). The mitochondrial activity and the ATP content in 
oocytes of different IVM culture periods are shown in Fig. 2. The 
mitochondrial activity in the group subjected to 40 h of IVM was 
higher than in the group subjected to 20 h of IVM (P<0.01). The 
mitochondrial activity in the group subjected to 30 h of IVM showed 
an intermediate value between the groups subjected to 20 and 40 
h of IVM. The ATP content in the group subjected to 40 h of IVM 
was higher than in the other groups (P<0.01).

At 72 hpi, the percentage of ≥8-cell stage embryos in the group 
subjected to 22 h of IVM (60.0%) was higher than in the group 
subjected to 34 h of IVM (23.8%) (P<0.05). As shown in Fig. 3, the 
mitochondrial activity of embryos at 72 hpi was similar regardless 
of IVM duration; however, the percentage of embryos having 
high-polarized mitochondria at the periphery of blastomeres (Fig. 
4) was higher in the group subjected to 34 h of IVM (81.0%) than 
in the group subjected to 22 h of IVM (30.0%) (P<0.01).

Discussion

In the present study, normal fertilization was similar regardless 
of IVM duration, but developmental competence to the blastocyst 
stage was low in the bovine oocytes subjected to 30–34 h of IVM. 
These results were consistent with the results of previous studies 
[2, 9–11]. Moreover, asynchronous fertilization has been frequently 
observed in bovine oocyte subjected to 30–34 h of IVM. The delay 
in male pronucleus formation might be due to the deficiency of male 
pronucleus growth factor in the group subjected to 30–34 h of IVM 
[37, 38]. The reason for the delay in female pronucleus formation 
is unclear, but a similar delay in female pronucleus formation was 
observed in fertilized oocytes from aged hamsters [39].

In contrast to the past report that the level of cytoplasmic ROS in 

oocytes increased with oocytes aging in murine and swine [12, 40, 41], 
extension of IVM culture up to 40 h did not cause the increased level 
of cytoplasmic ROS in the present study. Moreover, although it has 
been reported that mitochondrial activity and ATP contents in human, 
murine and porcine oocytes decrease with aging [13–15, 42, 43], the 
mitochondrial activity and ATP content in bovine oocytes subjected 
to 40 h of IVM was highest among all IVM durations in the present 
study. Therefore, it is thought that the decrease in developmental 

Table 2. The effect of IVM duration of bovine oocytes on embryonic development at 2 and 7 days after IVF

Duration of IVM 
(h)

No. of embryos 
(replicates)

% ≥2 cells/
inseminated

% blastocysts/
inseminated

% blastocysts/
cleaved

Total cell no.in 
blastocysts (n)

22 161 (6) 81.1 ± 5.6A 51.6 ± 9.4a 64.1 ± 13.1a 172.5 ± 77.5 (83)
30–34 190 (7)   71.1 ± 10.6B 24.2 ± 8.8b 33.8 ± 11.4b 157.6 ± 56.5 (45)

a,b Values (mean ± SD) with different superscripts within the same column differ significantly (P<0.01). A,B Values (mean ± SD) 
with different superscripts within the same column tended to be different (P = 0.06).

Fig. 1. Box plots of the mean green intensity of DCF fluorescence 
in oocytes after IVM culture, which represents the H2O2 
level. The lower and upper ± 1.5 quartiles are indicated by 
whiskers, the lower and upper ends of the boxes indicate the 
25th and 75th quartiles, and the line across the middle of the 
box identifies the median sample value. The circles represent 
the outliers. a,b Values with different characters differ 
significantly among the three IVM groups (P<0.01). Numbers 
of oocytes used are indicated in parentheses (2 replicates).

Table 1. The effect of IVM duration of bovine oocytes on fertilization at 18 h after IVF

Duration of IVM 
(h)

No. of oocytes 
(replicates)

% of oocytes with
Total penetration (%)Normal 

fertilization* Polyspermy Asynchronous 
fertilization**

22 45 (4) 84.6 ± 8.4 8.6 ± 9.2   0.0 ± 0.0a 93.2 ± 8.7
30–34 77 (7)   79.1 ± 13.7   9.2 ± 10.5 11.7 ± 6.9b  100 ± 0.0

a,b Values (mean ± SD) with different superscripts within columns are significantly different (P<0.01). * Normal fertilization: 
male and female pronuclei or an enlarged sperm head and anaphase II/telophase II chromosome. ** Asynchronous fertilization: 
an enlarged sperm head and female pronucleus or male pronucleus and telophase II chromosome.
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competence in oocytes after prolonged IVM culture was not due 
to the mitochondrial dysfunction and decrease in intracytoplasmic 
levels of ATP caused by oxidative stress. On the other hand, ROS 
in the oocytes after 30 h of IVM was lower than in the oocytes after 
20 h of IVM, and this result showed that the oocytes after 30 h of 
IVM had high competence to protect themselves from oxidative 
stress. Therefore, it is thought that one of the reasons for this high 
developmental competence of oocytes subjected to 22 h of IVM 
(penetrated by sperm at around 30 h after the initiation of IVM) 
was due to the low oxidative stress in oocytes resulting from their 
high competence to protect themselves from oxidative stress. In a 
previous study [12], it was reported that cumulus cells prevented 
the increase of ROS during in vitro aging. Although we used only 
oocytes having complete cumulus investments, the relationship 
between the function of cumulus cells and ROS generation during 
IVM culture should be examined in further study.

Van Blerkom and Davis [44] indicated that the subplasmalemmal 
domains, including high-polarized mitochondria, were extruded as 
fragments from human embryo blastomeres and that this phenomenon 
caused failure to cleave during early embryonic development. In the 
present study, high-polarized mitochondria were frequently observed 
at the periphery of blastomeres in embryos derived from oocytes 
with extended IVM culture. These high-polarized mitochondria at 
the periphery of blastomeres might have already been extruded from 
blastomeres like in the previous report [44], and it is possible that the 
extrusion of high-polarized mitochondria from blastomeres causes 
lower early embryonic development of oocytes with extended IVM 
culture. However, in the present study, we were unable to confirm 
the clear extrusion of high-polarized mitochondria from blastomeres 
because the bovine embryos contained a large number of lipid droplets 
in their ooplasm, unlike human embryos [45], and it was necessary 

to press the embryos with a cover slide to observe the mitochondria 
stained by JC-1. In future study, we should examine the localization 
of high-polarized mitochondria in embryos derived from oocytes 
with extended IVM culture in detail by electron microscope analysis.

Although the present study does not clarify the direct causal 
relationship between the enhanced mitochondrial activity and low 
developmental competence of bovine oocytes, the present results 
suggest that enhanced mitochondrial activity may be one of the 
reasons for low developmental competence of bovine oocytes after 
an extended duration of IVM culture. High-polarized mitochondria 
in oocytes are associated with elevated levels of ATP generation [46]. 
Tamassia et al. [21] indicated that the ATP content in ovum pick 
up (OPU)-derived oocytes did not increase during IVM culture but 
that the ATP content in abattoir-derived oocytes did increase. Also, 
it has been reported that OPU-derived bovine oocytes retained high 
developmental competence during longer periods of IVM culture 
than abattoir-derived oocytes [22]. These previous reports indicate 
that OPU-derived oocytes can control mitochondrial activity and 
that this ability contributes to maintaining high developmental 
competence during long periods. In the present study, blastocysts 
derived from oocytes subjected to 30–34 h of IVM culture had a 
similar number of cells to those derived from oocytes subjected to 
22 h of IVM culture. This suggests that some oocytes subjected to 
more than 30 h of IVM maintain their developmental competence. In 
future studies, we should examine the mechanisms of maintenance 
of mitochondrial activity in in vitro-matured bovine oocytes and 
the relationship between mitochondrial activity and developmental 
competence in detail.

In conclusion, the present study suggests that low developmental 
competence of bovine oocytes with extended IVM culture is probably 
not due to low mitochondrial activity or low ATP content but is prob-

Fig. 2. Box plots of mitochondrial activity (a) and ATP content (b) in oocytes after 
IVM culture. The lower and upper ± 1.5 quartiles are indicated by whiskers, 
the lower and upper ends of the boxes indicate the 25th and 75th quartiles, 
and the line across the middle of the box identifies the median sample value. 
The circles represent the outliers. a,b,c Values with different characters differ 
significantly among the three IVM groups (P<0.01). Numbers of oocytes 
used are indicated in parentheses (3 replicates).

Fig. 3. Mitochondrial activity in ≥2-cell embryos 
derived from the oocytes subjected to 22 and 34 h 
of IVM. The lower and upper ± 1.5 quartiles are 
indicated by whiskers, the lower and upper ends 
of the boxes indicate the 25th and 75th quartiles, 
and the line across the middle of the box identifies 
the median sample value. Numbers of oocytes 
used are indicated in parentheses (1 replicate).
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able due to high mitochondrial activity at fertilization and localization 
of high-polarized mitochondria at the periphery of blastomeres during 
early embryonic development. Enhanced mitochondrial activity 
seems to have detrimental effects on the developmental competence 
of bovine oocytes, and this is possibly related to oocyte aging in 
vitro. Future detailed studies on the relationship between enhanced 
high mitochondrial activity at fertilization and subsequent embryo 
development should be conducted.
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