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Abstract. asthma, a common but poorly controlled disease, is 
one of the most serious health problems worldwide; however, 
the mechanisms underlying the development of asthma remain 
unknown. long non-coding rnas (lncrnas) and mrnas 
serve important roles in the initiation and progression of 
various diseases. The present study aimed to investigate 
the role of differentially expressed lncrnas and mrnas 
associated with asthma. differentially expressed lncrnas 
and mrnas were screened between the expression data 
of 62 patients with asthma and 43 healthy controls. Gene 
ontology (Go) and Kyoto encyclopedia of Genes and Genomes 
(KeGG) analyses were performed to investigate the biological 
functions and pathways associated with the lncrnas and 
mRNAs identified. Protein‑protein interaction (PPI) networks 
were subsequently generated. in addition, lncrna-mrna 
weighted co-expression networks were obtained. in total, 159 
differentially expressed lncrnas and 1,261 mrnas were 
identified. GO and KEGG analyses revealed that differentially 
expressed mrnas regulated asthma by participating in the 
‘vascular endothelial (VeGF) signaling pathway’, ‘oxidative 
phosphorylation’, ‘Fc ε ri signaling pathway’, ‘amino sugar 
and nucleotide sugar metabolism’, ‘histidine metabolism’, 
‘β-alanine metabolism’ and ‘extracellular matrix-receptor 
interaction’ (P<0.05). Furthermore, protein kinase B 1 had 
the highest connectivity degree in the PPi network, and was 
significantly enriched in the ‘VEGF signaling pathway’ and 
‘Fc ε ri signaling pathway’. a total of 8 lncrnas in the 
lncrna-mrna co-expression network were reported to 

interact with 52 differentially expressed genes, which were 
enriched in asthma-associated Go and KeGG pathways. The 
results obtained in the present study may provide insight into 
the profile of differentially expressed lncrnas associated 
with asthma. The identification of a cluster of dysregulated 
lncrnas and mrnas may serve as a potential therapeutic 
strategy to reverse the progression of asthma. 

Introduction

asthma is a chronic inflammatory disease of the airways, 
characterized by airway hyperresponsiveness, chronic lung 
inflammation and airway remodeling (1,2). Asthma affects an 
estimated 358 million people worldwide, leading to a mortality 
rate of 0.4 million in 2015. inhaled corticosteroids are the main 
method of pharmaceutical treatment; however, their effects are 
not satisfactory. Smoking and occupational asthmagens are 
the primary risk factors for asthma (3). asthma affects people 
of all ages and there are no effective clinical treatments due to 
the complex pathophysiology of the condition (4). Therefore, 
understanding the molecular basis underlying the pathophysi-
ology of asthma, and the screening of molecular markers for 
the development of therapeutic targets remains critical.

long non-coding rnas (lncrnas) are rna transcripts 
>200 nucleotides in length (5). The various functions of 
lncrnas have been reported with advances in sequencing and 
bioinformatics analysis (6). Previous studies have suggested 
that lncrnas regulate gene expression by interacting with 
dna, rna or proteins (5,6). For example, the lncrna Mar1 
acts as a sponge for mir-487b, promoting skeletal muscle 
differentiation and regeneration (7). Thus, these transcripts 
may be considered as potential biomarkers and therapeutic 
targets (8‑12); however, the expression profiles of lncRNAs 
and mrnas in asthma remain unclear. 

in the present study, microarray data was downloaded 
from the national center of Biotechnology information 
(ncBi) Gene expression omnibus (Geo) database for the 
analysis of differentially expressed mrna and lncrna 
profiles in asthma. in addition, the database was used to 
investigate asthma-associated mrnas and lncrnas in 
airway epithelial brushings. Gene ontology (Go), Kyoto 
encyclopedia of Genes and Genomes (KeGG), protein-protein 
interaction (PPi) network and weighted correlation network 
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analyses (WGcnas) were applied to investigate the role of 
the differentially expressed lncrnas and mrnas in asthma. 
To the best of our knowledge, the present study is the first to 
comprehensively analyze mrnas and lncrnas in asthma. 
The findings may provide in‑depth molecular insight into the 
pathophysiology of this condition.

Materials and methods

Tissue samples and data acquisition. The gene expression 
data of the GSe67472 dataset was downloaded from the ncBi 
Geo (www.ncbi.nlm.nih.gov/geo). The Geo is the largest 
database for high-throughput molecular data, primarily gene 
expression data (13), and contains links to ~20,000 published 
studies comprising 800,000 samples derived from >1,600 
organisms (14). Following screening, the GSe67472 dataset 
with a large sample size was selected for analysis to ensure 
the stability and reliability of the data (15). analysis was 
conducted via the GPl1355 platform of affymetrix Human 
Genome U133 Plus 2.0 (Thermo Fisher Scientific, Inc.). The 
GSe67472 dataset containing the data of airway epithelial 
gene expression in 62 patients with asthma and 43 healthy 
control samples from airway epithelial brushings was included 
in the microarray analysis (16).

GeneChip probe re‑annotation. numerous lncrnas were 
identified via the Affymetrix microarray according to the 
lncrna classification pipeline developed in a previous 
study (17). The latest version of netaffx annotation File 
(release 36; HG-u133_Plus_2 annotations; cSV format; 
36 MB; accessed on 7th december 2016) was obtained 
from affymetrix (Thermo Fisher Scientific, inc.). This 
annotation file was mapped to the identifications (ids) 
of the HG-u133_Plus_2 probe sets. For the probe sets 
from the refSeq database (refSeq release 89; www.ncbi.
nlm.nih.gov/refseq/), probes labeled with protein mixed 
(nP) were removed, but those with an id beginning with 
non-coding rnas (nr) were included. For the probe sets 
from the ensembl database (ensemble 96; www.ensembl.
org/index.html), the online software BioMart (Grch38.
p11; http://asia.ensembl.org/biomart/martview/f0b2ccb5ee-
23510bf3f1e71d87ba7122) was applied to convert affymetrix 
microarray ids to ensembl ids with the corresponding 
gene type. Probe sets from noncode were retained. 
Furthermore, genes annotated as ‘lincrna’, ‘sense_intronic’, 
‘processed_transcript’, ‘antisense’, ‘sense_overlapping’, 
‘3prime_overlapping_ncrna’ or ‘misc_rna’ were 
retained. Finally, probe set ids annotated as ‘microrna’ or 
‘snornas’, and other small rnas were removed.

Data preprocessing. affymetrix expression console (v1.4; 
http://www.affymetrix.com/support/technical/byproduct.affx? 
product=expressionconsole) with ro-bust microarray was 
applied to normalize the raw files. Limma package (http://bioinf.
wehi.edu.au/limma) in r (version 3.5.1; https://cran.r-project.
org/) was used to identify differentially expressed lncrnas 
and mrnas among the asthma and control groups via a 
t-test (18). Fold change (Fc)>1.2 and P<0.05 were set as the 
criteria for differential expression (19). Hierarchical clustering 
was conducted in r scripts.

GO and pathway enrichment analysis. Go (geneontology.
org) analysis, frequently used in functional enrichment 
studies of large-scale genes (20), and KeGG (www.genome.
jp/kegg) enrichment analysis were performed to investigate 
the biological pathways that involve differentially expressed 
mRNAs. In the present study, clusterProfiler (v3.12.0; guang-
chuangyu.github.io/software/clusterProfiler) and database 
for annotation, Visualization and integrated discovery tools 
(v6.8; https://david.ncifcrf.gov/) were used to analyze the func-
tional enrichment conditions for dysregulated mrnas (21-23). 
The false discovery rate (Fdr) was calculated to correct the 
P-value and Fdr<0.05 was selected as the threshold for a 
statistically significant difference.

PPI network construction. Protein interactions were analyzed 
using the online Search Tool for the retrieval of interacting 
Genes (v 10.5; string-db.org) tool and a combined score of >0.7 
was used as the cut-off criterion (24-26). PPi networks were 
subsequently generated using cytoscape software (v3.2.8; 
cytoscapeweb.cytoscape.org) (27,28).

Construction of the lncRNA‑mRNA WGCNA. The WGcna 
package (29) in r was used to construct the co-expression 
network of lncrnas and mrnas as follows: i) network 
construction, the weighted co-expression network of lncrnas 
and mRNAs was specified in its adjacency matrix (amn), which 
encodes the network connection strength between nodes m 
and n. in order to calculate the amn, the default approach was 
employed, which defines the co‑expression similarity (Smn) as 
the absolute value of the correlation coefficient between the 
nodes of m and n, and Smn=|cor (am, an)|. The weighted adja-
cency amn between two genes is proportional to their similarity 
on a logarithmic scale with absolute value of the correlation 
to a power β≥0.8, log (amn)=β x log (Smn). adjacency functions 
were obtained by using the approximate scale-free topology 
criterion (30). The amn was converted into a topology matrix; 
and ii) module detection: The dynamic Tree cut and Static 
Tree Cut methods were applied to detect modules with ≥30 
lncrnas/genes (31). The cluster dendrogram was visualiza-
tion using the WGcna package. 

Results

Identification of differentially expressed lncRNAs and 
mRNAs. Based on the screening criteria, Fc>1.2 and P<0.05, 
differentially expressed lncrnas and mrnas in the 
GSE67472 dataset were identified. A total of 159 differen-
tially expressed lncRNAs and 1,261 mRNAs were identified. 
in total, 48 lncrnas were found to be upregulated and 111 
lncrnas were found to be downregulated while 744 mrnas 
were found to be upregulated and 517 mrnas were found to 
be downregulated. Hierarchical clustering was conducted to 
evaluate the altered expression of lncrnas and mrnas in the 
samples (Fig. 1).

Functional annotation and pathway analysis for differen‑
tially expressed mRNAs. Go and KeGG pathway enrichment 
analyses were performed to determine the functions of the 
identified differentially expressed mrnas. Go analysis 
revealed that the top 30 terms of the 2,184 and 1,605 Go terms 
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were enriched in the upregulated (Fig. 2a) and downregulated 
(Fig. 2c) genes, respectively. in the pathway analysis, the top 30 
of the 245 and 219 pathways were enriched in the upregulated 
(Fig. 2B) and downregulated (Fig. 2d) genes, respectively.

PPI network. The PPi network of genes with significantly 
altered expression (Fc>1.2 and P<0.05) was delineated using 

the STrinG database. The PPi network contained 421 nodes 
and 1,232 edges (Fig. 3). Genes with the top 15 highest degrees 
are presented in Table i. Genes with a high degree may be 
potential targets for clinical treatment (32).

Construction of the lncRNA‑mRNA WGCNA. The lncrna- 
mrna co-expression network was established to investigate 

Figure 1. Hierarchical clustering of the differentially expressed lncrnas and mrnas. upregulated expression is presented in red and downregulated expres-
sion is presented in green. each row represents an lncrna/mrna probe, and each column represents a tissue sample. 1 (yellow) indicates samples from the 
healthy control group, 2 (green) indicates samples from the asthma group. lncrna, long non-coding rna. 
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the association between differentially expressed lncrnas 
and mrnas. in the present study, a cluster dendrogram 
was obtained using the WGcna package in r (Fig. 4a); 

two weighted co-expression subnetworks were identified. 
lncrna-mrna weighted co-expression networks were 
generated based on genes with the top 30 degrees in the two 

Table i. Top 15 genes with the connectivity in the protein-protein interaction network.

Gene node degree Fold change (asthma/control) P-value Trend

aKT1 55 1.24 3.13x10-4 up
acacB 49 1.27 1.71x10-3 down
dnaJc10 37 1.36 2.09x10-2 up
FoS 35 1.37 6.04x10-3 down
GarT 35 1.43 3.91x10-4 down
lrGuK 33 1.25 3.20x10-3 down
inSr 31 1.44 1.00x10-5 down
KiT 28 1.62 2.25x10-7 up
eno2 26 1.22 1.75x10-3 down
HSPa5 25 1.33 1.33x10-2 up
cd44 21 1.62 4.30x10-5 up
dYnc2H1 21 1.33 4.00x10-5 down
eGr1 21 1.31 4.19x10-2 down
Hdac9 21 1.66 1.59x10-7 up
HPGdS 21 1.48 2.00x10-5 up

up, upregulated; down, downregulated.

Figure 2. Function annotation and pathway analysis for differentially expressed mrnas. The top 30 Go enrichment terms of the (a) up- and (c) downregulated 
genes are presented. The top 30 KeGG pathway terms from enrichment analysis of the (B) up- and (d) downregulated genes are presented. The enrichment factor 
refers to the ratio of the number of genes in the Go/KeGG entry following enrichment to the total number of genes in the Go/KeGG entry. an increased enrich-
ment factor indicates greater enrichment. lower P‑values indicate higher significance. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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modules, which comprised 8 lncrnas and 52 mrnas. The 
two modules included a number of lncrna-mrna co-expres-
sion interactions, which indicated the mrnas that could 
be regulated by certain lncrnas. The lncrnas in the blue 
and turquoise modules are listed in Table ii. as presented in 
Fig. 4B and c, the round and arrow-shaped nodes represented 
mrnas and lncrnas, respectively; red indicated upregula-
tion, while green indicated downregulation expression.

Functional annotation and pathway analysis for the differ‑
entially expressed mRNAs in the blue and turquoise modules. 
Go analysis revealed a total of 756 and 1,882 enriched terms 
in the blue and the turquoise modules, respectively. The top 
30 terms are presented in Fig. 5a and c. KeGG analysis 
revealed that 116 and 164 pathways were enriched in the two 
modules, respectively. The top 30 pathways are presented in 
Fig. 5B and d.

Discussion

asthma is a common health issue, which poses an economic 
and social burden to patients (2); however, the pathogenesis of 
this condition remains poorly understood. To investigate the 
pathogenesis of asthma and to identify potential biomarkers 
for clinical treatment in the present study, lncrna and mrna 
expression data in the GSe67472 dataset were downloaded. 
a total of 159 and 1,261 dysregulated lncrnas and mrnas, 
respectively, were identified in bronchial mucosa samples 
obtained from patients with asthma compared with samples 
obtained from normal controls. 

Figure 3. PPi network of the differentially expressed genes constructed with cytoscape software. red nodes represent upregulated genes, while green nodes 
represent downregulated genes. The edges indicated the association between genes. The degree of one gene represents the number of interactions with other 
genes. The larger the node, the higher the connectivity. a high connectivity indicates the importance of a gene in the PPi network. PPi, protein-protein interaction. 

Figure 4. construction of the lncrna-mrna weighted co-expression 
network. (a) cluster dendrogram. The subnetwork of genes with the top 30 
connectivity degrees in (B) the blue module and (c) the turquoise module. 
The gene dendrogram indicated the co‑expression modules defined by the 
weighted correlation network analysis. red and green arrow heads repre-
sent up- and downregulated lncrnas, respectively. up- and downregulated 
mrnas were represented by red and green circles, respectively. lncrna, 
long non-coding rna.
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Genes and their protein products are the basic compo-
nents of cells, and can be assembled into functional modules. 

Gene co-expression networks are used to investigate the 
associations between gene transcripts (33). WGcna is a 
biological application for screening clusters (modules) of 
highly associated genes and demonstrates the link between 
genes across microarray samples. This analytic tool has been 
utilized in numerous studies (12,18,29,34). using WGcna 
and bioinformatics analysis, the major biological functions 
of asthma-associated lncrnas, and the potential underlying 
molecular mechanisms in which these lncrnas may be 
involved, were investigated in the present study. WGcna 
analysis identified 8 key lncrnas and 52 genes in two 
modules; genes in the blue module were enriched in the Gos 
of several metabolic and catabolic processes. Previous studies 
have indicated that lncrnas are involved in asthma (35,36). 
ZNF667 antisense RNA 1 (ZNF667‑AS1) inhibits the inflam-
matory response of spinal cord injury by suppressing the Janus 
kinase-STaT pathway (37-41). The present study observed that 
the level of lncrna ZnF667-aS1 in asthma was downregu-
lated in comparison with healthy controls. Therefore, lncrna 
ZnF667-aS1 may play a role in the pathogenesis of asthma.

Figure 5. Functional annotation and pathway analysis for the differentially expressed mrnas in the blue and turquoise modules. The top 30 Go annotations of 
the differentially expressed mrnas in (a) the blue module and (c) the turquoise module are presented. The top 30 KeGG pathways from enrichment analysis 
in (B) the blue module and (d) the turquoise module are presented. The enrichment factor refers to the ratio of the number of genes located in the Go/KeGG 
entry following enrichment to the total number of genes in the Go/KeGG entry. an increased rich factor indicates greater enrichment. lower P-values indicate 
higher significance. GO, gene ontolgy; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table ii. lncrnas in the blue module and the turquoise 
module.

lncrna  Module Trend P-value Fold change

ac124067.4 Blue down 1.99x10-2 1.31
ZnF667-aS1 Blue down 4.80x10-2 1.24
ac005906.2 Blue down 2.28x10-2 1.26
al357568.2 Blue down 6.92x10-4 1.22
ac130650.2 Turquoise down 9.64x10-7 1.31
STX18-aS1 Turquoise down 8.91x10-4 1.24
linc02363 Turquoise down 1.34x10-2 1.22
linc02145 Turquoise down 2.00x10-6 1.37

lncrna, long non-coding rna; down, downregulated.
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 airway remodeling plays an important role in the progressive 
worsening of asthma and is irreversible (1,2). Vascular endothe-
lial growth factor (42,43), oxidative stress (44,45), the Fc ε ri 
signaling pathway (46,47), and the dysregulation of amino acids, 
sugar and nucleotide metabolism (48,49) have been implicated 
in asthma. Functional gene analysis of the 159 lncrnas and 
1,261 mRNAs identified in the present study demonstrated that 
the aforementioned pathways are involved in the pathogenesis 
of asthma. in order to investigate the role of the 8 key lncrnas 
and 52 genes in two modules, functional analysis using Go and 
KeGG was conducted. certain pathways, including ‘Toll-like 
receptors’ (50,51), ‘activation of PPar signaling pathway’ (52) 
and ‘eosinophil apoptosis’ (53), are important for elucidating the 
mechanisms underlying the pathogenesis of asthma. Genes in 
the turquoise module were enriched in the following Go terms: 
‘respiratory chain’, ‘regulation of T cell differentiation in thymus’ 
and ‘cilium movement involved in cell motility’. KeGG analysis 
revealed that genes in the turquoise module were enriched in 
the ‘Fc ε ri signaling pathway’ and ‘ecM-receptor interaction’. 
These results indicated that genes in the two modules may serve 
key roles in the initiation and development of asthma.

in the present study, upregulated protein kinase B (akt) 
exhibited the highest degree in the PPi network and was 
significantly enriched in the ‘VEGF signaling pathway’ and 
‘Fc ε ri signaling pathway’. akt is also involved in the phos-
phoinositide 3-kinase/akt signaling pathway, which served a 
key role in lung inflammation and airway remodeling in a rat 
model of ovalbumin (oVa)-induced asthma (54). The expres-
sion of phosphorylated-akt was increased in the lung tissues 
of rats with oVa-induced asthma compared with controls.

lncrnas regulate the transcription and expression of 
mrnas, and participate in the initiation and development of 
various diseases (7,55). Therefore, the lncRNAs identified in the 
present study and their interacting genes may serve important 
roles in the onset and development of asthma. There are some 
limitations to the present study. The data was only extracted 
from one dataset that was not confirmed in independent studies. 
additionally, cell, animal and clinical experiments are required 
to corroborate the results obtained in the present study as the 
mrna expression level may not always be consistent with the 
protein level (56). Furthermore, the interactions between the 
identified lncRNA and mRNA requires experimental verifi-
cation. Such future research may elucidate the mechanisms 
underlying lncrnas and mrnas in the development of asthma.
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