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Graft versus host disease (GvHD) is a life-threating complication of allogeneic hematopoietic
stem cell transplantation, which is initially treated with high dose corticosteroids.
Approximately 50% of acute GvHD cases are resistant to steroid treatment, and two-year
mortality rates in those steroid-resistant patients exceed 80%. Chronic GvHD necessitates
prolonged corticosteroid use, which is typically associated with limited efficacy and
troublesome adverse effects. No agent has yet been established as an optimal second line
therapy for either acute or chronic GvHD, but mesenchymal stromal cells (MSCs) have shown
substantial promise. MSCs promote an immunosuppressive and immunoregulatory
environment via multifactorial mechanisms, including: secretion of proteins/peptides/
hormones; transfer of mitochondria; and transfer of exosomes or microvesicles containing
RNA and other molecules. A large number of clinical studies have investigated MSCs from
various sources as a treatment for acute and/or chronic GvHD. MSCs are generally safe and
well tolerated, and most clinical studies have generated encouraging efficacy results, but
response rates have varied. Confounding factors include variability in MSC donor types,
production methodology and dose regimens, as well as variations in study design. It is well-
established that extensive culture expansion of primary donor-derived MSCs leads to marked
changes in functionality, and that there is a high level of inter-donor variability in MSC
properties. However, recent manufacturing innovations may be capable of overcoming these
problems. Further adequately powered prospective studies are required to confirm efficacy
and establish the place of MSC therapy in the treatment of this condition.

Keywords: graft versus host disease (GvHD), mesenchymal stromal (stem) cell (MSC), stem cell, bone marrow
transplant (BMT), allogeneic
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (HSCT) offers a potentially curative option for
conditions including hematological malignancies. However, its benefits are often limited by serious
complications, including graft versus host disease (GvHD).

GvHD arises from donor T‐lymphocytes attacking host tissues. Features of GvHD may be
categorized as either acute or chronic, which were historically distinguished by the time
of occurrence (<100 or >100 days post-transplant) (1). However, this is likely an over-
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simplification, because acute GvHD may persist beyond 100
days, and there may be overlap between acute and chronic
syndromes (2). Both acute and chronic GvHD commonly
affect the skin. Chronic GvHD is characterized by an initial
lichenoid stage, similar to acute skin GvHD (3), often followed by
a distinct sclerotic stage (4). Other organs typically affected by
acute GvHD are the liver and gastrointestinal tract. Chronic
GvHD may affect almost any organ in the body (5).

GvHD is the cause of death in 8‐16% of adult allogeneic
HSCT recipients (6). It should be noted that these figures likely
underestimate the extent to which GvHD contributes to post-
transplant mortality, given that GvHD may also predispose
HSCT recipients to other common causes of death, such as
organ failure, infection and hemorrhage.

Acute GvHD is typically staged and graded according to
criteria established at the 1994 Consensus Conference on Acute
GvHD Grading (7). In most clinical trials, response to treatment
is measured based on improvement in the severity of GvHD by at
least one grade (Partial Response; PR) and/or resolution of all
acute GvHD signs or symptoms, i.e. a return to Grade 0
(Complete Response; CR). The term Overall Response (OR)
rate refers to the sum of PR and CR rates. Similarly, consensus
criteria have also been developed for chronic GvHD, under
which a global severity score is based on two different scores of
the severity of cutaneous disease (8).

The prophylaxis and management of GvHD is complex, and
approaches vary substantially between centers worldwide (9).
Corticosteroids remain the mainstay of first-line treatment for
both acute and chronic GvHD. Approximately 50% of acute
GvHD cases prove to be resistant to high doses of steroids, and
the prognosis in those patients is extremely poor, with two-year
overall survival (OS) rates below 20% (10). In moderate-severe
chronic GvHD, systemic steroid treatment for at least one year is
typically required, with approximately 50-60% of patients
requiring secondary “steroid-sparing” treatment (such as
antithymocyte globulin (ATG), extracorporeal photopheresis
(ECP) or mycophenolate mofetil), and more than 10%
requiring systemic treatment for over seven years (11). Even
when steroid treatment is effective in chronic GvHD patients, it
may be associated with severe adverse effects, especially when
administered systemically for lengthy periods.

Diverse second-line agents have been investigated for the
treatment of GvHD after the failure of steroids. In 2019, the
Janus kinase inhibitor ruxolitinib (Jakafi®, Incyte Corporation)
was approved in the USA for the treatment of steroid resistant
acute GvHD (SR-aGvHD) (12). In July 2021, the rho kinase
(ROCK) inhibitor belumosudil (Rezurock™ , Kadmon
Pharmaceuticals) was approved in the USA, for the treatment
of chronic GvHD after failure of at least two prior lines of
systemic therapy (13). Both of these recent approvals apply to
adults and children over 12 years of age only. Other agents
investigated for acute GvHD include ATG, anti-CD26
antibodies, and ECP (14, 15). An even wider range of agents
has been investigated for chronic GvHD, including Janus kinase
inhibitors, tyrosine kinase inhibitors, proteasome inhibitors,
monoclonal antibodies, and fusion proteins (16). However, to
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date no agent has been established as an optimal second line
therapy for either acute or chronic GvHD, and there remains a
need for new therapies with superior safety and efficacy profiles.

The subject of this review is the use of mesenchymal stromal
cells (MSCs) in the context of GvHD. Over the past two decades,
there has been extensive interest in the potential therapeutic use
of MSCs in a wide range of clinical settings (17), including in
support of HSCT (18) and in the treatment of GvHD (19).
MECHANISM OF ACTION

MSCs lack human leucocyte antigen (HLA) Class II expression,
which allows allogeneic administration without donor-recipient
matching. MSCs exert multifactorial effects, including: paracrine
activity involving secretion of proteins/peptides and hormones;
transfer of mitochondria by way of tunneling nanotubes or
microvesicles; and transfer of exosomes or microvesicles
containing RNA and other molecules (Figure 1) (20, 21).

MSCs promote an immunosuppressive and immunoregulatory
environment, by secretion of cytokines, chemokines, growth
factors and extracellular vesicles (22, 23). Notably, MSCs
constitutively secrete indoleamine 2,3-dioxygenase (IDO), and
activation of MSCs by inflammatory cytokines including
interferon-gamma (IFN-g) and tumor necrosis factor-alpha
(TNF-a) leads to upregulation of this IDO secretion (24, 25).
IDO, in turn, leads to suppression of allogeneic T cell proliferation
(26). Further immunomodulatory effects ofMSCs aremediated via
effects on B cells, natural killer cells, monocytes and dendritic cells
(24). An interesting idea is that apoptosis of MSCs in vivo
contributes to their immunomodulatory effects, a phenomenon
that may be mediated through the production and release of
apoptotic extracellular vesicles (27). Additionally, when
undergoing apoptosis, MSCs induce IDO production in recipient
phagocytes (28). It has also been shown that amelioration ofGvHD
in a humanized mouse model was associated with altered
phosphorylation and cellular localization of the T cell-specific
kinase, Protein Kinase C theta (PKCq) (29).

Aside from immunomodulation, MSCs have also been shown
to limit tissue damage and stimulate tissue repair, primarily as a
result of paracrine effects on other endogenous recipient
cells (20).
CLINICAL EXPERIENCE

The use of MSCs to treat GvHD in a human subject was first
reported in 2004 by Le Blanc et al, of Karolinska Institutet,
Sweden (30). After receiving an allogeneic HSCT from a HLA-
matched, unrelated donor, a nine-year-old boy developed Grade
IV acute GvHD, which was refractory to treatment with
corticosteroids and several second-line agents. The authors
reported that the other 24 patients at their center who had
experienced such severe acute GvHD had all died within
6 months, with a median survival of just 2 months. In this
case, the patient was treated with two intravenous (IV) infusions
October 2021 | Volume 12 | Article 761616
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of bone-marrow-derived allogeneic MSCs (on Days 73 and 150
post HSCT) from a related donor (his mother). The first infusion
was followed by a marked but incomplete improvement, while
after the second infusion the patient appeared to have recovered
completely, and he remained alive and well after one year.

Since that initial case report, numerous clinical trials have
been conducted to investigate MSCs as a treatment for GvHD. As
of 30 June 2021, a total of 43 interventional clinical trials/
expanded access programs involving MSCs as a treatment for
GvHD have been registered on clinicaltrials.gov. Of those
studies, 19 are complete, and papers summarizing the results
of 10 have been published. Papers summarizing a further
17 studies involving patients with GvHD that were not
registered on clinicaltrials.gov have also been published
(studies conducted outside of the USA are not required to be
registered on clinicaltrials.gov). Table 1 summarizes the overall
Frontiers in Immunology | www.frontiersin.org 3
characteristics of the published and unpublished studies
registered on clinicaltrials.gov.

The vast majority of studies have involved allogeneic MSCs,
with bone marrow being the most common tissue source. A
small number of trials have used MSCs derived from cord blood
or adipose tissue, and a single study to date has been undertaken
using iPSC-derived MSCs. The trials have been conducted by a
wide range of sponsors, including both academic and
commercial institutions.

As summarized in Table 2, most (n=18) published studies
included only patients with SR-aGvHD. The patient population
varied across other studies: five included patients with either SR‐
aGvHD or chronic GvHD; two included only patients with
chronic GvHD; one included patients with either SR-aGvHD
or newly diagnosed acute GvHD; and one included only patients
with newly diagnosed acute GvHD.
TABLE 1 | Overall Summary of Characteristics of Clinical Studies of MSCs in GvHD (n = 60).

Study Type n Age group n MSC Source n

Phase 1 12 Adults only 23 Bone marrow 42
Phase 1/2 15 Adults and children 32 Cord blood 7
Phase 2 13 Children only 5 Adipose tissue 2
Phase 2/3 4 iPSCs 1
Phase 3 6 Registered on clinicaltrials.gov 43 Not stated 8
Compassionate use 10 Not yet recruiting 3

Recruiting 5 MSC Donor Type
GvHD Type Active, not recruiting 1 Allogeneic 1
Acute GvHD 40 Withdrawn/terminated 2 Autologous 57
Acute or chronic GvHD 10 Complete 19 Not stated 2
Chronic GvHD 10 Unknown 13
Octob
er 2021 | Volume 12 | Article 7616
FIGURE 1 | Mechanisms of action of MSCs in GvHD. MSCs may exert many effects on target cells via diverse potentially-overlapping mechanisms. Target cells
include (i) donor and host immune cells, including T cells, B cells, NK cells, monocytes and dendritic cells; and (ii) host cells susceptible to damage by GvHD,
e.g. cells of the skin, gastrointestinal tract and liver. Potential mechanisms through which MSCs may act include (A, B): transfer of exosomes or microvesicles
containing RNA and other molecules; (C) paracrine activity including secretion of proteins (including IDO), peptides and hormones; (D) transfer of organelles via
tunneling nanotubes; (E, F) MSC apoptosis results in the release of apoptotic extracellular vesicles that act on target cells, as well as induction of IDO production
in recipient phagocytes.
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TABLE 2 | Summary of Published Clinical Studies of MSCs in GvHD.

First-line Treatment of Acute GvHD, in Combination With Corticosteroids

Reference Study Typea MSC source
[doseb]

(# of infusions]

Group
(if applicable)

D28
Response

OS

CR OR

Kebriaei et al. (31) Phase 2 CT (n=32; age: 34-67) BM [2 or 8] (2) Low dose 88% 88% 69% (D90) (pooled
cohorts)High dose 67% 100%

Soder et al. (32) Phase 1 CT (n=5; age: 35-63) UCB [2 or 10] (2) Low dose: 50% 100% 67% (D180)
High dose: 33% 33% 33% (D180)

Treatment of SR-aGvHD
Reference Study Typea MSC source

[doseb]
(# of infusions]

Group
(if applicable)

D28
Response

Response (other timepoints) OS

CR OR CR OR

von Bonin et al.
(33)

Compassionate use (n=13; age:
21-69)

BM [0.6-1.1] (1-5) 8% 54% 31%*

Lucchini et al. (34) Compassionate use (n=8; age: 4-
15)

BM [0.7-1.6] (1-2) 24% 71% 63% (1y)

Muroi et al. (35) Phase 1/2 CT (n=14; age: 4-62) BM [2] (8-12) 75% 93% 57% (2y)
Introna et al. (36) Phase 1 CT (n=40; age: 1-65) BM [1 ± 0.5] (≥2) 28% 68% 50% (1y); 38% (2y)
Zhao et al. (37) Phase 2 CT (n=47; age: 14-54)

BAT control
BM [1] (2-8) MSCs: 36% 75% 45% (3y)

Controls: 26% 42% 23% (3y)
Muroi et al. (38) Phase 2/3 CT (n=25; age: 5-66) BM [2] (8-12) 24% 60% 48% (1y)
Salmenniemi et al.
(39)

Phase 1 CT (n=26; age: 2-66) BM [2] (1-6) 27% 62% 42%*

Bader et al. (40) Compassionate use (n=69; age:
1-78)

BM [1-2] (1-4) 32% 83% 71% (6 m)

Kebriaei et al. (41) Phase 3 CT (n=260; age: 0-70)
BAT control

BM [2] (8-12) MSCs: 37% 58% 34% (D180)
Controls: 32% 54% 42% (D180)

Kurtzberg et al.
(42)

Compassionate use (n=241; age:
0-18)

BM [2] (8-12) 14% 65% 67% (D100)

Kurtzberg et al.
(43)

Phase 3 CT (n=54; age: 0-17) BM [2] (8-12) 30% 70% 69% (D180)

Bloor et al. (44) Phase 1 CT (n=15; age: 21-66) iPSC [1 or 2] (2) Low dose: 13% 63% 50% (D100) 88% (D100) 88% (D100)
High dose: 57% 86% 57% (D100) 86% (D100) 86% (D100)

Soder et al. (32) Phase 1 CT (n=5; age: 48-73) UCB [2 or 10] (2) Low dose: 33% 100% 100% (D180)
High dose: 50% 50% 50% (D180)

Prasad et al. (45) Compassionate use (n=12; age:
0-15)

BM [2 or 8] (8-12) 17% (D32); 58%
(D60)

67% (D32); 75%
(D60)

58% (D100); 40%
(2y)

Sánchez-Guijo
et al. (46)

Phase 2 CT (n=25; age: 20-65) BM [0.7-1.3] (2-4) 46% (D60) 71% (D60) 44% (1y)

Ringden et al. (47) Phase 1 CT (n=8; age: 3-61) BM [0.7-9] (1-2) 75%* 75%* 38% (2y)
Le Blanc et al. (48) Phase 2 CT (n=55; age: 0-64) BM [0.4-9] (1-5) 55%* 71%* 35% (2y)
Arima et al. (49) Phase 1 CT (n=3; age: 39-64) BM [0.5] (1) 0%* 33%* 0% (2y)
Perez-Simon et al.
(50)

Phase 1/2 CT (n=10; age: 18-65) BM [0.6-2.9] (1-4) 10%* 70%* 20%*

Herrmann et al.
(51)

Phase 1 CT (n=12; age: 21-58) BM [1.7-2.3] (2-
19)

58%* 92%* 50% (3y)

Ball et al. (52) Compassionate use (n=37, age:
0-18)

BM [0.9-3] (1-19) 65%* 86%* 51%*

Resnick et al. (53) Compassionate use (n=50, age:
1-69)

BM [0.3-2.3] (1-4) 34%* 66%*

von Dalowski et al.
(54)

Compassionate use (n=58; age:
19-71)

BM [0.5-2.1] (1-6) 9%* 47%* 19% (1y); 17% (2y)

Dotoli et al. (55) Compassionate use (n=46; age:
1-78)

BM [1-29.8] (1-7) 7%* 50%* 20% (1y); 17% (2y)

Treatment of Chronic GvHD
Reference Study Typea MSC source

[doseb]
(# of infusions]

Group
(if applicable)

CR OR OS

Ringden et al. (47) Compassionate use (n=1; age:
27)

BM [0·6] (1) No
response

No response 0% (1y)

Lucchini et al. (34) Compassionate use (n=5; age:
5-12)

BM [0.7-1.4] (1-4) 40% (D28) 80% (D28) 100%*

(Continued)
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DISCUSSION

There is broad consensus that MSCs are generally safe and well
tolerated (17, 21). None of the published studies of MSCs in
GvHD reviewed here identified any significant safety issues. This
is consistent with the wider experience of MSCs in the treatment
of other conditions. A systematic review of MSCs in 55 clinical
trials, in which 2,696 patients received MSC treatment, found an
association between MSCs and transient fever, but not with acute
infusional toxicity, infection, thrombotic/embolic events, death
or malignancy (58).

Clinical studies of MSCs for SR-aGvHD in particular have
generated encouraging efficacy results, but response rates have varied.
For example, four studies of MSCs in SR-aGvHD have reported D28
OR rates exceeding 80% (32, 35, 40, 44) and a further three have
reported D28 OR rates of at least 70% (34, 37, 43). However, a number
of other published studies have reported lower D28 OR rates, ranging
from 50‐68% (33, 36, 38, 39, 41, 42).

There has been even greater variability in D28 CR rates, with
an overall range of 8-75% reported in SR-aGvHD patients (32–
44). Notably, CR and OR rates do not necessarily correlate: one
study that reported a very high D28 OR rate (93%) also reported
a very high D28 CR rate (75%), while another study reported a
D28 OR rate of 100%, but a CR rate of just 33% (32, 35). While
the latter study had a very small sample size (n=5), this
inconsistency was also evident in larger studies: in a
compassionate use study with the commercial MSC product
remestemcel-L (n=241) the D28 OR and CR rates were 65% and
14% (i.e. 21% of responders were complete responders) (42);
while in a Phase 3 clinical trial with the same product (n=260),
the D28 OR and CR rates were 58% and 37% (i.e. 64% of
responders were complete responders).

Overall, outcomes with MSCs compare favorably to those
reported with other second-line agents. In clinical trials in
Frontiers in Immunology | www.frontiersin.org 5
patients with SR-aGvHD, ruxolitinib treatment led to D28 OR
rates of 55-62% and D28 CR rates of 27‐34% (59, 60); etanercept
treatment led to D28 OR rates of 50-53% and D28 CR rates of 0‐
20% (61, 62); while one-month OR and CR rates in patients
treated with ECP were <50% and 33%, respectively (63). It
should also be noted that some safety concerns have been
associated with ruxolitinib and etanercept.

Caution must be exercised in comparing results between
studies. Confounding factors include variability in MSC donor
types, MSC dose per infusion, and number of infusions per
patient – even within the same trial in some instances. A further
issue is that there is no universally accepted definition of steroid-
resistance. Clinical trials in SR-aGvHD typically require patients
to have failed to respond despite treatment with corticosteroids,
but the minimum period of treatment required varies between
trials [e.g. 3 days (48) or 7 days (41)]. Additionally, many of the
published studies have been compassionate use programs rather
than formal, prospective clinical trials, while most of the clinical
trials have been open-label studies with no control group.

Importantly, there has also been a lack of standardization on
the timeframe for assessment of outcome measures. The most
common timepoint to assess acute GvHD response has been 28
days, and for that reason D28 CR and OR rates are shown in
separate columns in Table 2. However, some studies assessed CR
and OR at different specified timepoints, while in many studies
the timeframe for response assessment was not specified,
meaning that a response at any time during follow-up was
counted. In studies where response rates were assessed at more
than one timepoint, there was a marked increase in response
rates at later timepoints (44, 45). Consequently, D28 response
rates cannot be compared with response rates at later timepoints,
or response rates at unspecified timepoints.

Similarly, many studies have reported OS rates at the time of
last follow-up, and the duration of follow-up per patient has
TABLE 2 | Continued

First-line Treatment of Acute GvHD, in Combination With Corticosteroids

Reference Study Typea MSC source
[doseb]

(# of infusions]

Group
(if applicable)

D28
Response

OS

CR OR

Perez-Simon et al.
(50)

Phase 1/2 CT (n=10; age: 21-66) BM [0.2-1.2] (1-4) 13%* 50%* 63%*

Herrmann et al.
(51)

Phase 1 CT (n=12; age: 31-53) BM [1.7-2.3] (2-
19)

29%* 57%* 29% (1y)

Jurado et al. (56) Phase 1/2 CT (n=14; age: 24-60) UCB [1 or 3] (1) Low dose: 57%
(pooled
cohorts) (1y)

67% (1y) 67% (1y)

High dose: 80% (1y) 80% (1y)

Salmenniemi et al.
(39)

Compassionate use (n=4; age:
37-63)

BM [2] (1-6) No
response

No response 25%* (3m)

Boberg et al. (57) Phase 1 CT (n=11; age: 20-61) BM [2] (6-9) Not
reported

55%* 82%*
October 2021 | Volum
a. No internal control group unless stated.
b. Dose expressed as 106 cells/kg.
CR, complete response; OR, overall response; OS, overall survival; CT, clinical trial; BAT, best available therapy; BM, bone marrow; AT, adipose tissue; UCB, umbilical cord blood; iPSC,
induced pluripotent stem cell; y, year; D, day.
* Timeframe for assessment not specified, and duration of follow-up varied between patients in some cases.
e 12 | Article 761616
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typically varied both within and between studies. Furthermore,
some studies have reported OS only at early timepoints such as
D100 or D180, which are likely to be too soon to draw
any conclusions.

Greater standardization in the design of future clinical trials
would facilitate more robust evaluation of the efficacy of
potential GvHD treatments. In recent years, D28 OR rate has
been the primary endpoint in several Phase 2 and 3 clinical trials
in SR-aGvHD, including those that supported FDA approval of
ruxolitinib (43, 59, 60). Although not necessarily the primary
endpoint, this outcome measure has also been reported in
numerous other MSC trials, along with D28 CR rate (32–42,
44). Another important consideration is what, if any, control
group to include. Until recently, as there were no treatments
specifically approved for SR-aGvHD, the only ethical control
options in SR-aGvHD trials were: a best available therapy (BAT)
control group; an external control group; or no control group.
Each of those options had limitations, but in light of the recent
FDA approval, the possibility now exists to conduct trials in SR‐
aGvHD with ruxolitinib as a control. A proposed Phase 3 trial of
a monoclonal antibody-based treatment in SR-aGvHD was
recently registered on clinicaltrials.gov, which aims to
demonstrate that the investigational agent is superior to
ruxolitinib based on D28 CR rate (64). A similar design may
be suitable for late-stage trials of MSC products, while a non-
inferiority design might also be sufficient to support approval,
especially as MSCs appear to have a very good safety profile.
However, the inclusion of a ruxolitinib control might remain
challenging in multinational studies, as ruxolitinib is not yet
approved for the treatment of SR‐aGvHD in the European Union
or many other jurisdictions.

Another notable variable lies in the MSC manufacturing
processes used. Academic studies have typically used
minimally expanded bone marrow-derived MSCs, but most
commercially-sponsored studies have utilized bone marrow-
derived MSCs that were extensively expanded using industrial-
scale processes.

The initial trial with a commercially produced bone marrow-
derived product (remestemcel-L) in acute GvHD showed
positive results (31). However, the results of that study are
difficult to interpret in the context of other published studies,
as it involved first-line treatment of acute GvHD in combination
with corticosteroids, rather than treatment of SR-aGvHD.
Additionally, the study did not include a control group, and
first-line acute GvHD treatment with corticosteroids in the
absence of MSCs has been shown to result in CR and OR rates
as high as 69% and 78%, respectively (65). A subsequent
randomized-controlled Phase 3 trial of remestemcel-L in
patients with SR-aGvHD was completed in 2009, but with
disappointing outcomes, which were belatedly published in
2020 (41). The trial found that remestemcel-L treatment led to
significantly improved OR and durable CR rates in patients with
liver GvHD. There was also a higher OR rate in children treated
with remestemcel-L compared to controls. Nonetheless, the trial
failed to meet its primary endpoint – there was no statistical
difference between the durable complete response rate in patients
Frontiers in Immunology | www.frontiersin.org 6
treated with remestemcel-L in comparison to those treated with
placebo. In more recent years, further trials with remestemcel-L
in SR-aGvHD have been completed, including: two single arm,
open-label clinical trials in adults and children in Japan (n=14
and n=25, respectively) (35, 38); a single arm, open-label clinical
trial in children in the USA (n=51) (43) and a large
compassionate use study in children in the USA (n=241) (42).
Those studies have generated more positive results, but CR rates
in particular have been mixed (24-75% in Japan, and 14-30% in
the USA).

A number of suggestions have been offered to explain the
apparent inconsistency in outcomes between trials. A review
published in 2013 observed that the most striking difference
between academic and commercial MSC treatments was the
extent of MSC expansion – ranging from the production of 5-10
doses per bone marrow donation at academic centers, to 10,000
doses with remestemcel-L (66). There is a substantial body of
evidence in the literature demonstrating that extensive culture
expansion of bone marrow-derived MSCs leads to marked
changes in functionality (67, 68). There is also evidence that
clinical efficacy of MSCs is impaired even by modest levels of
expansion (69).

It is well-established that there is a high level of inter-donor
variability in MSC properties. For example, MSC gene
expression, differentiation, proliferation and colony-forming
capacity vary markedly between donors (67, 70). The
susceptibility of MSCs to activation by IFN-g and TNF-a, and
the consequent upregulation of IDO expression and suppression
of T cell proliferation, is also donor-dependent (24, 71, 72). With
respect to processes that rely on isolation of MSCs from random
donors, this variability may lead to an unpredictable variability in
efficacy – between, and potentially within, studies.

It has also been suggested that cryopreserving MSCs and then
administering the cells immediately post-thaw may impair their
functionality (66). However, the same approach has been used in
the majority of clinical trials involving allogeneic MSCs, many of
which have generated positive results.

A number of groups have attempted to circumvent the
challenges associated with inter-donor variability and extensive
MSC expansion using novel manufacturing approaches. One
such approach is to generate an MSC bank from pooled bone
marrow donations from multiple donors. There is evidence that
this approach, known as the “MSC‐FFM” method, can facilitate
consistency within an MSC bank, with encouraging clinical trial
results (40). By pooling donations, a larger quantity of MSCs can
be produced compared to a single-donor bank with a similar
level of expansion. However, based on the upper end of the dose
regimen range used in the initial clinical trial, we calculate that
each bank would only suffice for the treatment of approximately
175 patients. There is also a need to investigate consistency
between banks produced using this method.

An alternative approach is to rely on pluripotent stem cells
(PSCs) as a starting material for the production of MSCs. PSCs
have the capacity to replicate indefinitely without loss of
pluripotency, in addition to the ability to differentiate into any
adult cell type. This means that a single bank of PSCs has the
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potential to give rise to an effectively limitless number of
therapeutic cells. There are two types of PSCs: embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs). While
both types of PSCs have broadly similar properties, research and
commercialisation of ESC-based therapies has been hampered by
ethical controversy and political/funding constraints. These
issues do not apply to iPSCs, which are derived from adult
cells. The generation of human iPSCs was first reported by two
independent groups in 2007 (73, 74). To illustrate their
enormous self-replication capacity, it has been reported that
even after 10(71)-fold expansion in culture, iPSCs retain their
ability to differentiate into all three germ-layers (75). We have
conducted a Phase 1 clinical trial in SR-aGvHD with iPSC-
derived MSCs produced using a proprietary process (Cymerus™,
Cynata Therapeutics Limited) (44). In contrast to processes
reliant on the isolation of primary MSCs from donated tissue,
a single iPSC bank has the capacity to produce 29 million clinical
doses (each containing 1x108 MSCs) using this process, at
current scale. Thus, problems associated with inter-donor
variability would be virtually eliminated. Furthermore, as this
process achieves its scale by expansion at the iPSC stage, and
prior to differentiation of the cells into MSCs, it involves
relatively little expansion at the MSC stage. This is expected to
minimise the type of functional changes that have been observed
after extensive expansion of primary MSCs.

The small number of published studies in chronic GvHD
comprise compassionate use studies or Phase 1/2 clinical trials,
and all have had small sample sizes (n=1-14). Results have been
mixed, with responses of 0-57% (CR) and 0-80% (OR), at
various, and in some cases unspecified, timepoints (34, 39, 47,
50, 51, 56, 57). It is difficult to draw conclusions from this
limited dataset.

As represented in Figure 1, multifactorial effects of MSCs
have been identified, which include transfer of exosomes,
microvesicles and organelles, and paracrine activity mediated
by secretion of immunomodulatory molecules (20–26). In recent
years, it has been suggested that the immunomodulatory effects
of MSCs result in part from apoptosis, and the subsequent release
of apoptotic extracellular vesicles and activation of IDO
production in macrophages (27). In addition to the fact that
MSCs act in numerous different ways, a further complication is
that MSCs target a wide range of cells in vivo. In the context of
GvHD, the target cells fall into two main categories: (i) immune
cells from the host and HSCT donor; and (ii) cells that are
damaged by GvHD, such as cells of the skin, liver and
gastrointestinal tract. It may be that this diverse arsenal of
mechanisms gives MSCs an advantage over more conventional
single-target therapeutic agents, especially against a disease such
as GvHD, which itself is underpinned by complex pathology
involving a multitude of cell types and pathways. However, this
Frontiers in Immunology | www.frontiersin.org 7
also makes it extremely challenging to comprehensively elucidate
the mechanisms of action of MSCs, either in general or with
respect to the treatment of GvHD in particular. An improved
understanding of MSC mechanisms of action would be beneficial
for the clinical community, as well as providing a basis for the
development of in vitro potency assays, to help identify and
address problems with MSC variability.
CONCLUSION

A substantial body of evidence suggests that MSCs have a
beneficial effect in treating SR-aGvHD. Recent innovations
may be capable of overcoming problems associated with inter-
donor variability and functional changes associated with
extensive culture expansion. Further adequately powered
prospective studies are required to confirm efficacy and
establish the place of MSC therapy in the treatment of
this condition.

Experience to date with MSCs as a treatment for chronic
GvHD is much more limited. The prevalence of clinical
investigation of MSCs for acute GvHD versus chronic GvHD
might suggest that the clinical community has identified more
promise in the former, but further investigation in chronic
GvHD appears to be warranted.
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