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Abstract: Oral biofilms are functionally and structurally organized polymicrobial communities 

that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. 

These biofilms are found naturally in health, and provide benefits to the host. However, this rela-

tionship can break down, and disease can occur; disease is associated with a shift in the balance 

of the species within these biofilms. Simple diagnostic tests have been developed that involve 

the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment 

of risk of further disease in individual patients. However, oral diseases have a complex etiol-

ogy, and because only around 50% of oral biofilm can be grown at present, culture-independent 

molecular-based approaches are being developed that give a more comprehensive assessment 

of the presence of a range of putative pathogens in samples. The diversity of these biofilms cre-

ates challenges in the interpretation of findings, and future work is investigating the ability of 

novel techniques to detect biological activity and function in oral biofilms, rather than simply 

providing a catalogue of microbial names.
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chain reaction, next-generation sequencing

Introduction
The prevalence of oral diseases has a considerable economical impact on health care 

provision across the world; for example, dental caries affects over 80% of the population 

in many countries,1 so has a significant impact on quality of life, as well as implications 

for systemic health.2 Indeed, chronic oral infections have been associated with diabetes 

and cardiovascular disease,3,4 as well as stomach ulcers and gastric cancer.5

The microbial etiology of dental diseases has been extensively studied; however, the 

complex nature and diverse composition of oral biofilms makes it difficult to identify 

the causative micro-organisms. Despite early theories focusing on identifying a single 

pathogen responsible for oral diseases such as dental caries, gingivitis, and chronic perio-

dontitis, it is now generally accepted that these diseases result from the concerted actions 

of multispecies microbial communities. Conventional culture methods have tradition-

ally been used to characterize the oral microbiota; however, a large proportion remains 

unculturable, leading to an incomplete understanding of natural microbial communities.6 

Also, even when isolation of culturable organisms is achievable, one must be aware that 

a single species might behave differently under laboratory conditions than when it is 

in its natural habitat.7 Nonetheless, oral biofilms have long been the best characterized 

(and accessible) complex biofilms of relevance to human health and disease, but despite 

this, there still seems to be no effective approach to prevent oral diseases.8 The study of 
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microbial communities within their own natural environment 

is essential to improve our knowledge of the disease process. 

Microbial ecology holds great potential for the development 

of new approaches to control oral biofilms, and for identify-

ing novel preventive and therapeutic strategies. The enhance-

ment of traditional microbial culture methods with the use of 

molecular tools has allowed a more thorough characterization 

of the human microbiome in general, especially that of the 

gut,9,10 but also of the oral cavity,11 even though it has been 

mostly focused on assessment of the diversity rather than the 

functionality of bacterial communities.

In this review, we report on the complex structure and 

development of oral biofilms in health and disease, and 

describe the molecular tools that are currently available for 

their analysis. We also discuss the advantages and limita-

tions as well as the impact of such techniques on the future 

of patient care.

Background
The mouth, like other habitats in the body, is colonized by a 

characteristic and complex microbiota that grows as diverse 

biofilms on all mucosal and dental surfaces. This microbiota 

comprises protozoa, yeasts, mycoplasmas, Archaea, and 

bacteria, with the latter being the most numerous and diverse 

group. Only about half of these bacteria are currently cultur-

able, and the application of culture-independent approaches 

has led to the detection of at least 1200 taxa,11 although an 

individual mouth harbors only a subset of these, and typically 

around 100 species.

The composition of microbiota varies on different sur-

faces due to the prevailing physical and biological condi-

tions at distinct sites. The microbial load at mucosal sites is 

relatively low due to desquamation, although biofilms with 

a higher microbial density and diversity are found on the 

highly papillated surface of the tongue. In contrast, because 

they are nonshedding surfaces, teeth permit accumulation 

of the greatest amount of biomass in the mouth; the highest 

numbers and the greatest diversity of micro-organisms are 

found at stagnant sites which afford protection from oral 

removal forces. Fissures on occlusal surfaces have high 

numbers of aerobic and facultatively anaerobic, saccharolytic 

Gram positive bacteria, especially streptococci, and there are 

few anaerobes or Gram negative organisms. In contrast, the 

gingival crevice has the highest proportions of proteolytic 

and obligately anaerobic bacteria, many of which are Gram 

negative and some of which are unculturable. Saliva contains 

up to 108 micro-organisms per mL that are derived from other 

oral surfaces, especially the tongue.12

Once established, the composition of microbial 

communities at a site remains relatively constant over time, 

and this natural balance is termed “microbial homeostasis”. In 

general, the resident oral microbiota coexists in a harmonious 

relationship with the host, and makes important contributions 

to the normal development and general health of the host. It 

supports the innate and adaptive host defenses in excluding 

exogenous (and often pathogenic) micro-organisms, and is 

responsible for the natural development of the physiology of 

the host. However, on occasions, this harmonious relationship 

can breakdown, and disease can occur. In caries, there are 

increases in acidogenic and acid-tolerating species such as 

mutans streptococci, lactobacilli, and bifidobacteria, while 

in periodontal disease, the subgingival biofilm has elevated 

levels of proteolytic bacteria that subvert the host inflam-

matory response.12 The predominant bacteria at inflamed 

sites include obligately anaerobic and often Gram negative 

bacteria, including, for example, representatives of the genera 

Prevotella, Porphyromonas, Fusobacterium, Treponema, 

and Tannerella, and there is also an increased proportion of 

unculturable taxa.

Development of dental biofilms
Micro-organisms have to attach to oral surfaces if they are to 

persist in the mouth. The oral microbiota grows as interactive 

microbial communities on mucosal and dental surfaces in 

the form of structurally and functionally organized biofilms. 

The development of biofilms has been reviewed recently.13–16 

All surfaces of the mouth are covered by a layer of adsorbed 

molecules of bacterial and salivary origin (termed the 

acquired pellicle), and the initial colonizing bacteria attach 

to this layer. Initially, these “pioneer” species are held revers-

ibly through weak, long-range physicochemical interactions 

between charged molecules on the cell and oral surfaces. 

This interaction can become permanent via strong, short-

range stereochemical interactions between adhesins on the 

bacterium and complementary receptors in the acquired 

pellicle. These early colonizers are generally streptococci, 

and as they grow, they modify the local environment and 

make conditions suitable for colonization by more fastidi-

ous organisms. Secondary colonizers attach to receptors on 

these already attached bacteria (coadhesion), and gradually 

the diversity of the biofilm increases over time to form a 

multispecies community. The attached bacteria synthesize 

a range of extracellular polymers to form a biofilm matrix; 

this matrix is more than a structural scaffold because it 

can retain and bind many molecules, including enzymes, 

and so is biologically active.17 The bacteria interact, both 
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synergistically and antagonistically. Bacteria combine 

metabolic forces in order to breakdown complex host mac-

romolecules (eg, mucins) in order to obtain nutrients. Food 

chains develop, where the metabolic product of one organism 

becomes a primary nutrient for another. Cell-cell signaling 

occurs using a range of diffusible molecules which facilitates 

the coordination of gene expression among members of the 

microbial community. Peptides are used for communication 

between Gram positive bacteria, while autoinducer 2 is used 

by many Gram negative species. Thus, these oral biofilms 

become structurally and functionally organized,16 and their 

biological properties are greater than the sum of the indi-

vidual species.14 These biofilms are also more tolerant of 

antimicrobial agents and host defenses.

Advances in diagnostic techniques: 
molecular analysis
Conventional approaches
The invention of microscopy and the first use of appropriate 

selective culture media led to the improved isolation and iden-

tification of organisms found in oral biofilms. Early studies 

carried out extensive investigations of the composition of the 

microbiota in order to determine the etiological association 

between specific organisms and oral infection. These stud-

ies revealed an initial picture of the predominant culturable 

species in oral biofilms.18,19 Dental caries was associated 

with increases in acid-producing and acid-tolerating species, 

especially mutans streptococci and lactobacilli, while sites 

with periodontal disease had biofilms with a greater biomass, 

and higher numbers of proteolytic and obligately anaerobic 

bacteria, many of which were Gram negative. Some simple 

cultural “diagnostic” tests were developed using selective 

media for cariogenic bacteria. These tests could be set up in 

the dental surgery, but required a certain amount of equipment 

(eg, incubators) and needed time for the organisms to grow 

to form visible colonies, and so the results were not avail-

able while the patient was present. Generally, further tests to 

confirm the identification of these bacteria were not carried 

out, and so it was assumed that the presence of colonies on 

these selective media was indicative of the presence of these 

putative cariogenic pathogens. Patients with high salivary 

levels of such potentially cariogenic bacteria were designated 

as being at “high risk” for future caries, and were selected for 

additional clinical and therapeutic attention. Various chairside 

testing kits are available and enable rapid detection of such 

cariogenic bacteria.20–22

The culture of periodontal pathogens requires 

much more sophisticated facilities (such as those for 

anaerobic microbiology), and is usually carried out at spe-

cialist centers. These bacteria can take up to 10–14  days 

to grow, but can then be subjected to antibiotic sensitivity 

tests if treatment is required. In periodontal disease, the 

precise identification of certain organisms could be critical; 

for example, a particular clone (JP2) of Aggregatibacter 

actinomycetemcomitans is a major risk factor for local-

ized aggressive periodontitis in young adults,23 but such 

identification is not easy.

Contemporary approaches
As stated earlier, not all of the bacteria in dental biofilms 

can be grown, especially those found in advanced caries 

or subgingivally, while some species are slow-growing or 

require specialist laboratory facilities for their cultivation. 

However, advances in molecular techniques over the past few 

decades have revolutionized our ability to detect and identify 

all micro-organisms in oral biofilms rapidly, including those 

that cannot be cultivated at present.

An example of such a technique was the use of 

polymerase chain reaction (PCR)-based methods in single 

or multiplexed approaches, which involved amplification 

and sequencing of fragments of the 16S rRNA gene or a 

housekeeping gene to help detect bacterial species associated 

with periodontal disease or caries, eg, members of the red 

complex (Porphyromonas gingivalis, Tannerella forsythia, 

and Treponema denticola).24–26 Diagnostic tests such as the 

MicroDent® Test and ParoCheck® kits using this multiplex 

PCR scheme are commercially available from Hain Life-

science GmbH (Nehren, Germany) and Greine Bio-one 

(Stonehouse, UK), respectively, and have been used to com-

pare the microbiota between subgingival plaque samples.24,27,28 

Several other molecular diagnostic tests exist and are provided 

by some clinicians or private companies, eg, MyPerioPath 

test® and oralDNA® (OralDNA Labs, Brentwood, TN, USA) 

and the Integrated Periodontal® test (Biomolecular Diagnostic, 

Florence, Italy).29–31 They all share a common goal, which is 

to support the clinician in the diagnosis of oral diseases, in 

particular periodontal disease. The aim of these tests is to 

provide crucial information for advanced treatment plans and 

therapy for “at risk” patients, and should be used routinely as 

a prevention strategy for healthy patients. However, a major 

issue remains with their cost, which prevents them from being 

used widely on a routine basis. The molecular techniques 

used in these tests are limited to the detection of a selected 

number of pathogens so other important disease factors could 

be missed, because it is now accepted that the disease process 

is highly complex, and pathology arises from the actions of 
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the bacterial communities and from their deregulation of the 

local host response.32

Much research is currently underway to further inves-

tigate oral biofilms using culture-independent approaches, 

and to understand microbial diversity and function as well 

as etiology of disease better. This effort has given rise to the 

development of exciting new molecular methods, which are 

unfortunately currently not available as diagnostic tools, 

because they require laboratory facilities and specialist skills, 

so would be impractical in the clinical setting. However, 

they are essential for future development and improvement 

of diagnostic tests. Examples of these molecular techniques 

include application of DNA probes specific to oral bacterial 

species in checkerboard DNA-DNA hybridization, which 

initially allowed the detection and enumeration of bacterial 

species from up to 43 oral biofilm samples simultaneously.33 

The key advantage of this method was the ability to pro-

cess an increased number of samples without the need for 

culture; however, the technique relied on a limited panel of 

preselected target species which were previously identified 

by cultural studies. Another drawback was the low specificity 

in hybridization that results from using whole genomic DNA 

probes on genetically diverse bacterial species. Nonetheless, 

this technique was widely applied by Socransky and Haffajee to 

explain the complex nature of the oral microbiota.34 A study 

by Ximénez-Fyvie et al using this technique detected all the 

40 taxa in supragingival and subgingival plaque samples, and 

found that Actinomyces species were the most established 

at both oral sites, and also suggested a role of supragingival 

plaque as a reservoir of periodontal pathogens, with a poten-

tial to spread and infect subgingival sites.35

The beginning of the era of culture-independent tech-

niques truly started with the implementation of 16S rRNA-

PCR-cloning-sequencing methodology. Because it was clear 

from early culture studies that not all bacterial species are able 

to grow in culture medium, the ability to sample and identify 

microbiota as accurately as possible would have an impact on 

the improving our understanding of microbiota-host interac-

tions and on obtaining a more accurate picture of the microbial 

diversity in oral biofilms; therefore, such approaches would 

also impact on the future development of diagnostic tests. 

The PCR-cloning-sequencing method consists of amplifying 

the 16S rRNA genes directly from samples, taking advan-

tage of the highly conserved regions found in the molecule. 

Amplicons were then cloned and sequenced via the traditional 

Sanger method. Giovannoni et al initially reported use of this 

technique in a study of microbial marine ecosystems, which 

revealed enormous bacterial phylogenetic diversity between 

members of different independent lineages.36 Since then, 

numerous studies have used this technique to investigate 

oral microbiota profiles associated with health and disease 

in a culture-independent approach.37–40 These studies have 

revealed ever-increasing species richness and complexity of 

oral microbiota, with numerous new operational taxonomic 

the units being discovered. The combined efforts from these 

initial investigations led to the development of the Human 

Oral Microbiome Database, which aims to catalogue all bac-

terial species found in the oral cavity.41 The major work con-

sists of collecting 16S rRNA gene sequences into a database, 

to make them accessible via the Human Oral Microbiome 

Database website.11,41 Such an initiative is relevant for dental 

diagnostics because it creates a complete database of the 

oral microbiota which can then be used as the foundation for 

the future development of diagnostic methods. It originated 

from the Human Microbiome Project, which emphasized 

the necessity to identify the predominant micro-organisms 

in the human microbiome and to determine their relative 

abundance, in order to grasp the full extent of genetic and 

functional potential in human health and disease. Therefore, 

tools and methodologies must be made available to carry 

out the work and to obtain significant and useful clinical 

research data.11,39,42

More recently, a similar database was set up, known as 

CORE, a phylogenetically curated 16S rDNA database of the 

core oral microbiome,43 which claimed to offer improved and 

more robust identification of human oral bacterial 16S rRNA 

gene sequences compared with other methods. Its main goal 

is to provide a comprehensive and minimally redundant col-

lection of oral bacteria at the genus and species level, as well 

as providing support for inferring community divergence and 

analysis of large datasets.

There are strengths and limitations associated with the 

16S rRNA PCR-based technique. Some of its strong points 

include the ability to design specific primers for chosen 

groups of strains, together with its culture-independent 

approach when used in the direct amplification, cloning, and 

Sanger sequencing method, which has considerably refined 

our understanding of bacterial phylogenetic diversity in 

oral biofilms. An accurate definition of the oral microbiota 

in health and disease is essential for the development of 

dental diagnostics. The weaknesses in this method include 

the inability of 16S rRNA gene sequencing to distinguish 

between closely related and highly recombinant species 

such as Neisseria and certain streptococci.44,45 This can be 

improved by use of multilocus sequence typing;46 however, 

there are also issues related to the definition of a species. 
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Indeed, there have been questions raised concerning the 

validity of using species-level identification,47 because it has 

been recognized that only a limited number of genes might 

be common between members of bacterial species,48 and the 

remaining genes may be important in the disease process and 

thus be excluded from analyses using this technique. Other 

issues with the 16S rRNA technique involve the difficulty 

of extracting DNA from all species and the fact that some 

bacterial species contain more than one copy of the 16S rRNA 

gene, which should perhaps be taken into consideration and 

further investigated when carrying out phylogenetic analy-

ses, because they may be wrongly assumed to be identical. 

Overall, the technique is costly, and the cloning stage is also 

hugely tedious; further, it is limited to low sample numbers 

and only reveals the predominant organisms in a sample. 

Despite these issues, sequencing data have been made pub-

licly available and have helped in the identification of most 

members of the oral microbial community. Through the 

design of probes for detecting hundreds of bacterial species, 

it has helped to expand the range of the checkerboard assay 

into a microarray format, ie, the Human Oral Microbe Iden-

tification Microarray,49 which uses reverse-capture ribosomal 

RNA probes to identify and evaluate the relative abundance 

of 272 oral taxa. Several studies have used the Human Oral 

Microbe Identification Microarray in their investigation of the 

microbial etiology of oral diseases. Colombo et al observed 

a distinct microbial profile between samples from refractory 

periodontitis, severe periodontitis, and healthy patients.49 

The microarray method has also been used in other studies 

for oral bacterial profiling,50,51 and in in vitro multispecies 

microcosm models.52

Next-generation sequencing methods
Recent advances in technology have paved the way for new 

possibilities in microbiome research through the develop-

ment of high-throughput sequencing or next-generation 

sequencing. The pyrosequencing methods (as provided by 

the 454  system [Roche, Basel, Switzerland], the first and 

most widely used next-generation sequencing platform) are 

based on the detection of pyrophosphate released during 

DNA synthesis. First, DNA libraries are constructed from 

the sample, the DNA fragments are then amplified within an 

emulsion, and sequencing by synthesis occurs in a massively 

parallel manner, where visible light is produced and detected, 

generating gigabytes of nucleotide sequence reads data.53 

The data output is then processed through a bioinformat-

ics pipeline, which consists of quality screening to remove 

low-quality reads. The remaining data are separated into 

clusters, and assigned into operational taxonomic units after 

comparison with sequences from available databases, such 

as the Human Oral Microbiome Database or the Ribosomal 

Database Project.54

Initial settings of this technique only produced short 

sequence reads of about 150 base pairs, and hence could 

only enable targeting of a single variable region of the 

16S rRNA gene for taxonomic profiling studies. For example, 

Keijser et al reported an overly diverse microbiota in healthy 

adults than previously recorded (19,000 phyla detected), 

using the V6 region of the 16S rRNA gene.55 More recently, 

with the increase in read length because of improvements 

in technology, larger regions of the gene can be sequenced. 

Some studies have carried out bacterial community profil-

ing using sequences from the hypervariable V5–V6 region, 

hence increasing the phylogenetic resolution.56,57 Saber et al 

observed the microbiota of symptomatic periapical lesions, 

and found that the predominant organisms included anaero-

bic bacteria, with high proportions of streptococci, actino-

myces, and unknown taxa.58 A comparison study between 

pyrosequencing and the Human Oral Microbe Identification 

Microarray was carried out by Ahn et al, determining the oral 

microbiome community profiles of patients with oral cancer 

and in healthy volunteers using both techniques.59 The major 

phyla (Firmicutes, Proteobacteria, Bacteroidetes, Actinobac-

teria, and Fusobacteria) were detected by the two methods; 

however, pyrosequencing provided superior sensitivity in 

the level of identification.

Other studies have used the Illumina platform to perform 

taxonomic profiling by 16S rRNA amplicon sequencing,60,61 

using different hypervariable regions. This next-generation 

sequencing platform uses a different chemistry involving a 

reversible terminator-based method during sequencing by 

synthesis, resulting in shorter read lengths compared with 

the 454 pyrosequencing platform, but yields a much higher 

data output. Recently, the available HiSeq 2500 provided by 

Illumina offers a maximum read length of 2 × 150 base pairs, 

and a data output of up to 600 gigabytes.62

Despite claims of reliability, lower costs, ease of use, 

and shorter time frame of protocols,63 these high-throughput 

techniques require a high level of expertise, and cannot be 

transferred to a clinical setting, especially when complex 

bioinformatic skills and computer power are required to make 

sense of the deluge of data generated. A great advantage of 

these techniques lies in the fact that they are able to deal with 

an increasing number of samples, lowering the cost with the 

use of a multiplexed barcoded sequencing approach, allowing 

numerous samples to be pooled together into a single run. 
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The major limitations remain the short reads produced, and 

the errors in reads sequences which are caused by forma-

tion of amplification artifacts and chimeric sequences from 

PCR with mixed templates. Software and algorithms such 

as PyroNoise64 and deNoiser65 are now available to correct 

these faults and aim to provide a more accurate survey of 

the composition of the oral microbiota. However, in spite 

of performing rigorous quality control steps on the data 

(applying the appropriate parameters from bioinformatics 

correction tools), this technique is not perfect and cannot 

avoid huge overestimation of the real microbial diversity, 

because of sequencing errors. Also, the discriminatory power 

of a single gene or gene fragment, as described earlier, is not 

always sufficient to differentiate accurately between some 

closely related species.

Nevertheless, milestones have been achieved in our 

understanding of the structure and composition of complex 

oral biofilms. Further and deeper knowledge of the metabolic 

activities regulating and governing biological processes at 

the species–species level are now needed in order to uncover 

the mechanism of transition from health to disease, and their 

interaction with the responses of the host. So far, all the 

effort has been focused on identifying members of the oral 

microbiome, and making etiological associations between 

various organisms and oral diseases.

Rather than just determining the taxa present in bio-

films, it may be more useful to understand the functions and 

activities at work. Recent publications have reported such 

attempts, using a metagenomic approach, ie, applying next-

generation sequencing to sequence all the microbial DNA 

within a sample directly, and reconstructing the genomes 

of the microbiota via de novo assembly or mapping against 

a reference genome database. The resulting data can be 

processed further into functional gene annotation, and this 

method is claimed to offer an insight into the global genetic, 

metabolic, and ecological modifications occurring within 

subgingival plaque samples in periodontitis.66

An increase in virulence factors in the disease microbiome 

was also observed, perhaps resulting from or contributing to 

the disruption of microbial homeostasis. Belda-Ferre et al 

identified etiological agents of caries and confirmed the 

view that caries is a polymicrobial disease.8 Their oral 

metagenomic data revealed distinct functional categories 

when compared with the gut microbiome. They also found 

that Streptococcus mutans, a bacterial species widely impli-

cated in the initiation and development of caries, was not the 

predominant species in caries, suggesting that in order to 

understand disease it might be more important to decipher 

microbial function in oral biofilms rather than merely listing 

the taxa that are present. They also observed that the micro-

biome of healthy individuals with no prior history of caries 

showed an overrepresentation of genes involved in quorum 

sensing and coding for antimicrobial peptides.

Luo et al used the 454 and Illumina platforms on the 

same microbial community sample for metagenomic analy-

sis to assess and compare their performance.67 Both these 

high-throughput techniques generated consistent data, but 

Illumina provided longer and more accurate contigs, despite 

yielding shorter read lengths than the 454 platform. As 

well as being more cost-effective, the data obtained from 

Illumina might be more appropriate for carrying out meta-

genomic studies, in particular without the bias associated 

with PCR-based methods and cloning. Nonetheless, there 

are issues associated with direct metagenome sequencing 

because of the sampling protocols used, which cannot 

guarantee inclusion of all microbial species, as well as 

the technique itself, which only yields partial genome 

sequences, inevitably leading to inconsistent annotations.68 

Moreover, it may be incorrect to assume that the func-

tions assigned to the sequenced metagenome are exerted 

within the studied microbiome, without confirmation that 

the genes are actually expressed under the given environ-

mental conditions and time frame. In order to understand 

such complex interactions fully, and capture the subtleties 

of biochemical activities occurring within oral biofilms 

in health and disease, more developments are needed in 

term of tools and technologies. The goal will be to use the 

ever-advancing techniques available to decipher the whole 

meta-transcriptome, meta-proteome, and meta-metabolome. 

The view of microbial communities as one meta-organism 

is appropriate, with all the meta-omic disciplines becoming 

the ultimate target of investigation for understanding the 

cellular processes at work within the biofilm and to link the 

data generated with prediction of functional responses to 

environmental stress. Such developments may conceivably 

accelerate the development of diagnostic tests that rely on 

detection of a small number of disease-specific functions 

in the microbial community, and do not require information 

regarding species composition. However, the major hurdle 

lies in the difficulty in analysis and interpretation of the 

enormous amount of data generated.

Investigations of microbial metatranscriptomes are 

not novel, and numerous studies have applied the RNA-

Seq method to the gut microbiota.69–71 The technique 

consists of extracting mRNA fragments from clinical 

samples and reverse-transcribing them into cDNA which 
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is then sequenced in a high-throughput and massively 

parallel manner. However, this has not been applied to the 

oral microbiome yet.

Recently, an impressive new cutting-edge procedure was 

described by Sherstnev et al, implying direct sequencing of 

RNA extracted from the plant Arabidopsis thaliana, thus 

bypassing the reverse-transcription step.72 The emerging field 

of single-cell genomics is also currently being implemented 

for bacteria and Archaea.73 It may not be long before these 

exciting techniques are also used for further characterization 

of oral biofilms but, until then, diagnostic tests based on 

identification of specific organisms using culture and basic 

molecular methods remain the norm. The issue with these 

commercially available tests is the question of their true value 

in terms of reliability for detecting agents causative of dis-

ease, given our limited knowledge of the complex ecosystem 

involved. The other major concern lies in the ability of the 

clinician or diagnostic company to interpret the results cor-

rectly and in such a way as to provide benefit for patients.

Implications for enhanced  
patient care
Molecular techniques in microbiology have many advantages 

over traditional culture methods. Indeed, they provide more 

accurate results, and with the recent advances in technology, 

have the potential to lead the way to development of more per-

sonalized treatments through a better understanding of genet-

ics, biochemistry, pathogenicity, phylogeny, and microbial 

population structure and evolution. However, only a limited 

number of commercial diagnostic aids are available, and new 

improved kits that give an overall indication of disease status 

(including metabolic pathways and activities) are needed. 

Despite the huge improvement in identification of the composi-

tion of oral biofilms, culture methods will still play an essential 

role in every research laboratory and in the clinical setting, and 

be part of the initial background baseline diagnostic screening 

and analysis steps in assisting patient therapy.

As described in this review, molecular methods for inves-

tigating oral biofilms are not perfect, and come with many 

drawbacks, including cost, their time-consuming nature, and 

the high level of expertise required to process samples and 

carry out data analysis. Also, their impracticality and our 

current inability to use these techniques in a clinical setting 

will impact on the enthusiasm of dentists to implement such 

diagnostic tools, and the benefit to patients from the use of 

such tests still needs to be quantified.

A major obstacle to developing a simple chairside test 

is the huge complexity in procedures implicated in the 

development of diagnostics, which can be time-consuming 

and costly. It is essential that more effort is directed towards 

identifying biomarkers of disease and their role in diagnosis, 

in order to help improve the outcome of patient therapy, and 

to establish a relationship between the mechanism of disease 

progression and therapeutic intervention.

Rather than improving the diagnosis of conventional oral 

diseases, the future of diagnostics in dentistry may be related 

to more holistic medical issues. The ease of sampling oral 

fluids such as saliva and gingival crevicular fluid makes these 

the preferred biological samples for assessing biomarkers.74 

Oral biofilms are also easy for dental professionals to sample, 

and if chairside tests, such as functional property assays, 

were available to enable rapid analysis of biofilm samples, 

this would help guide treatment and therapy. Other important 

factors are the need for further prospective cohort studies and 

standardization of protocols for sample collection and han-

dling, in order to obtain a better comparison between future 

studies. Indeed, improved patient screening and appropriate 

clinical samples would certainly allow a better understand-

ing of health and disease. This will ultimately lead to novel 

therapies and guidance on lifestyle changes, implicating the 

microbiome.

Next-generation sequencing technologies have current 

applications in medical diagnostics, eg, in genetic diseases, 

but they are not yet applied to dentistry. However, with time, 

these advanced technologies will become faster, more accu-

rate, easier to use, and more affordable, which will allow 

clinicians to provide patients with rapid personalized treat-

ment and prevention plans. Moreover, the data generated 

by these advanced molecular techniques may also contain 

human gene information, which together with microbial 

genetic and functional information can provide a more com-

plete understanding of our predisposition to oral diseases. 

There are many public health challenges yet to overcome. 

As mentioned in this review, the main difficulties include 

the polymicrobial nature of oral diseases, and so their non-

specific etiology, the potentially high cost of tests, and the 

specialist skills required for data interpretation. However, 

the public health benefits associated with future prospects 

in dental diagnostics for oral biofilms would include the 

more rational selection of treatment plans through a sys-

tematic differentiation of “active” from “inactive” lesions 

and identification of “at risk” sites. Other benefits would see 

the underpinning of the principles for “minimally invasive 

dentistry”, with the potential for reducing overtreatment, 

and ultimately resulting in cheaper treatments over the life 

of a patient through evidence-based dentistry.
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Despite the great challenges ahead, the combined efforts 

and collaboration of clinicians and researchers will be essential 

in providing a platform for creating future oral diagnostics and 

find applications for moving from bench to clinical practices. It 

is likely that clinicians will have to rely on external companies 

which will be able to accommodate rapid sample processing and 

analyses. Current diagnostic tools only target specific organ-

isms, but future methods will probably depend on a more radical 

shift in disease concepts, and focus on detection of microbial 

functions in oral biofilms rather than microbial names.
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