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Using a novel computational drug-repositioning approach
(DrugPredict) to rapidly identify potent drug candidates
for cancer treatment
AB Nagaraj1,6, QQ Wang2,6, P Joseph1, C Zheng3, Y Chen3, O Kovalenko1, S Singh4, A Armstrong5, K Resnick4, K Zanotti5, S Waggoner5,
R Xu3,7 and A DiFeo1,7

Computation-based drug-repurposing/repositioning approaches can greatly speed up the traditional drug discovery process. To
date, systematic and comprehensive computation-based approaches to identify and validate drug-repositioning candidates for
epithelial ovarian cancer (EOC) have not been undertaken. Here, we present a novel drug discovery strategy that combines a
computational drug-repositioning system (DrugPredict) with biological testing in cell lines in order to rapidly identify novel drug
candidates for EOC. DrugPredict exploited unique repositioning opportunities rendered by a vast amount of disease genomics,
phenomics, drug treatment, and genetic pathway and uniquely revealed that non-steroidal anti-inflammatories (NSAIDs) rank just
as high as currently used ovarian cancer drugs. As epidemiological studies have reported decreased incidence of ovarian cancer
associated with regular intake of NSAIDs, we assessed whether NSAIDs could have chemoadjuvant applications in EOC and found
that (i) NSAID Indomethacin induces robust cell death in primary patient-derived platinum-sensitive and platinum- resistant ovarian
cancer cells and ovarian cancer stem cells and (ii) downregulation of β-catenin is partially driving effects of Indomethacin in
cisplatin-resistant cells. In summary, we demonstrate that DrugPredict represents an innovative computational drug- discovery
strategy to uncover drugs that are routinely used for other indications that could be effective in treating various cancers, thus
introducing a potentially rapid and cost-effective translational opportunity. As NSAIDs are already in routine use in gynecological
treatment regimens and have acceptable safety profile, our results will provide with a rationale for testing NSAIDs as potential
chemoadjuvants in EOC patient trials.
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INTRODUCTION
Epithelial ovarian cancer (EOC) is the most lethal gynecologic
malignancy and is the fifth leading cause of cancer deaths in
women.1 This year it is estimated that ~ 22 000 women will be
newly diagnosed and 414 000 will succumb to this lethal disease
in the United States.1 Most cases of EOC are high-grade serous
cancers HGSOC, which are initially highly sensitive to standard
treatment of cytoreduction surgery and platinum-based che-
motherapy with response rate close to 85%.2 In spite of such high
initial response to platinum the outcomes are poor with 5-year
survival being o30% and the majority of women who initially
respond to platinum therapy relapse due to development of
chemoresistance.2 Therefore, novel therapeutic options are
required in order to improve the lives of women diagnosed
with HGSOC.
Traditional drug development is expensive and time-consum-

ing, taking an average of 14 years and costing 4$2 billion to
bring a drug to market. During drug development, ~ 90% of
drugs fail because of safety concerns or lack of efficacy.3,4

Computation-based drug-repositioning approaches that automa-
tically integrate and analyze vast amounts of data for tens of
thousands of drugs and diseases can greatly speed up the
traditional drug discovery process.5 The primary advantage of
drug repositioning is that it starts from compounds with well-
characterized pharmacology and safety profiles that can greatly
reduce the risk of attrition in drug development in clinical phases.6

We have recently developed novel computational algorithms that
identified repurposed drug candidates to treat neuropsychiatric
disorders, including schizophrenia7 and Parkinson’s disease,8–10

infectious diseases including dengue fever11 and malaria;12

cancers including glioblastoma;13,14 and immune-mediated dis-
eases including Crohn’s disease,15 inflammatory bowel disease16

and rheumatoid arthritis.17 However, to date, systematic and
comprehensive computation-based approaches to identify and
validate drug-repositioning candidates for HGSOC have not been
undertaken. Here we present a novel drug discovery strategy that
combines a novel computational drug-repositioning system
(DrugPredict) and experimental validation to rapidly identify
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repositioned drug candidates for the treatment of HGSOC.
Interestingly, among top-ranked drug candidates predicted by
DrugPredict, two COX-2 selective inhibitors (Celecoxib, Nimesu-
lide) and one non-selective COX inhibitor (Indomethacin) were in
the top three ranked non-steroidal anti-inflammatories (NSAIDs),
higher than top 3.5% ranking for carboplatin which is used as
standard therapy for the majority of EOC patients. Intriguingly,
several epidemiological studies have suggested that regular intake
of NSAIDs in women could reduce the risk of ovarian cancer.18–21

Indomethacin (ranked at top 0.5%) is one of the most potent
NSAIDs and is a common constituent of rheumatic disease
treatment regimens in women to decrease the inflammation-
associated pathogenesis. However, the use of NSAIDs as
chemoadjuvant compounds is not very well understood in ovarian
cancer. In this study, we found that Indomethacin inhibits cellular
survival and induces apoptosis in primary HGSOC patient-derived
cell lines with minimal effect on non-transformed fallopian tube
and ovarian surface epithelium. Functionally, we show that
Indomethacin inhibits β-catenin and represses several Wnt
signaling targets including Lgr5 and Axin2. In addition, we found
that platinum-resistant ovarian tumor cells were more sensitive to
Indomethacin potentially due to the dependency on β-catenin.
Together, through the combination of a novel computational
drug-repositioning system and functional validation of a highly
ranked drug candidate we uncovered that NSAIDs, namely
Indomethacin, may have potential chemoadjuvant applications
in HGSOC.

RESULTS
DrugPredict: a computational drug-repurposing system
Current repositioning strategies can be categorized as drug-based,
disease-based and profile-based. Drug-based and disease-based
approaches exploit drug–drug or disease–disease similarity and
existing drug-treatment knowledge to infer new disease–drug
associations.22,23 Drug similarities are often based on pharmaco-
logical data, such as drug chemical structure and drug side-effects.
Disease similarities are often calculated using disease phenotype,
disease genetic and genomic data. Recently, profile-based
repositioning strategies have successfully found new drug
candidates for inflammatory bowel disease24 and small cell lung
cancer.25 Here we present DrugPredict, which is a profile-based
drug-repositioning system. Compared with both drug- and
disease-based approaches, profile-based approaches do not rely
on the knowledge of existing drug treatments, and have increased
ability to discover new drug-disease pairs compared with drug-
based and disease-based strategies. Existing profile-based drug-
repositioning approaches mainly exploit the gene expression
profiles of drugs and diseases, and have an inherent challenge: the
lower-level genomics profile similarities between drugs and
diseases do not necessarily translate into higher-level drug-
treatment efficacy in diseases. Recently, the MGI (Mouse Genome
Informatics) has made available large amounts of phenotypic
descriptions for mouse genetic mutations based on systematic
gene knockouts,26 which are impossible on human. These causal
gene–phenotype associations in mice have been demonstrated
useful in discovering new drug targets27 and also have the
potential to overcome the challenge in profile-based drug-
repositioning approaches.
DrugPredict is a profile-based drug-repositioning system that

performs both genome- and phenome-wide analysis to match
disease to drug candidates. For a given disease (EOC in this study),
DrugPredict first finds the mouse mutational phenotype profile
that is significantly enriched for the disease-associated genes. It
then systematically scans all chemicals/drugs to identify/prioritize
them based on the similarities between disease-specific pheno-
type profile and drug-specific phenotype profiles. The inputs to

DrugPredict are a specific disease or a set of disease-associated
genes, mouse genome mutation phenotype data, chemical/drug
genetics. The output is a list of drugs ranked based on how likely
the drugs can be used to treat the disease.
The experimental outline in applying DrugPredict for OC drug

repurposing is shown in Figure 1 and consists of the following
steps: (1) obtain a list of genes that are differentially expressed in
high-grade serous ovarian cancer (HGSOC) patients from TCGA
(HGSOC genes); (2) correlate HGSOC genes to their homologs in
mouse models and construct a mouse mutational phenotype
profile for HGSOC genes; (2) construct mouse mutational
phenotype profile for chemicals/drugs; (3) develop algorithms to
match the HGSOC-specific phenotype profile to drug profiles and
prioritize Food and Drug Administration (FDA)-approved drugs
based on the phenotypic similarities; and (4) analyze repositioned
drug candidates to evaluate the predictions and identify
interpretable mechanisms of actions.

DrugPredict ranked FDA-approved EOC drugs highly
We first evaluated the performance of DrugPredict using 16 FDA-
approved EOC drugs. DrugPredict found 15 FDA-approved EOC
drugs (recall = 0.94) and ranked them highly. Among a total of
6996 prioritized chemicals (including 1096 FDA-approved drugs),
the 15 FDA-approved EOC drugs had a median ranking of 1.34%
and mean ranking of 6.44% (Figure 2a). For example, paclitaxel,
carboplatin and cisplatin that are used as first-line standard
therapy ranked among the top 10%: paclitaxel ranked at 0.1%,
carboplatin at 3.7% and cisplatin at 4.5% (Figure 2a).

NSAID ranked significantly high
Among the 6996 prioritized chemicals, a total of 1096 are FDA-
approved drugs. We classified these, 1096 drugs using the ATC
(Anatomical Therapeutic Chemical) Classification System codes.
Among a total of 882 fourth-level drug classes, 31 classes of drugs
ranked significantly higher than random expectation. As expected,
anticancer drugs (platinum compounds, pyrimidine analogs and
other antineoplastic agents) ranked highest (Figure 2b). For
example, the pyrimidine analogs (for example, azacitidine,
gemcitabine, capecitabine, fluorouracil) have a mean ranking of
2.26% and a median ranking of 2.09%, which rank significantly
higher than random (Po1.74E-08): azacitidine ranked at 0.34%,
gemcitabine at 0.80%, capecitabine at 3.33% and fluorouracil at
3.49%. The fact that anticancer drugs ranked highly demonstrates
the validity of DrugPredict. Interestingly, the drug class 'Anti-
inflammatory preparations, non-steroid' was also ranked signifi-
cantly high (Po0.009), with a mean ranking of 23.55% and a
median ranking of 14.08% (Figure 2b). The top three ranked
NSAIDs were 2 COX-2 selective inhibitors (Celecoxib, Nimesulide)
and one non-selective COX inhibitor (Indomethacin). Nimesulide is
a controversial drug and is under limited use in some countries
and hence we did not include it in our study.28 Celecoxib is known
to be effective against ovarian cancer cells but it is reported to
induce epithelial–mesenchymal transition in ovarian cancer thus
raising concerns about using it as a potential therapeutic option in
ovarian cancer.29 In addition, COX-2 selective inhibitors like
Celecoxib are known to increase risk of thromboembolism and a
recent meta-analysis of 421 000 cases of venous thromboembo-
lism (VTE) showed an increased risk of VTE with use of COX-2
selective inhibitors.30,31 VTE is an important determinant while
considering novel therapeutic options in ovarian cancer, as VTE
incidence is very high in ovarian cancer compared with other
cancers and in fact this is further complicated by the fact that
cisplatin chemotherapy is associated with a high incidence of
thromboembolic complications.32,33 Hence, we focused on the
non-selective COX inhibitor Indomethacin that is on the contrary
shown to be a possible treatment option to decrease VTE
complications34 and its role as a chemoadjuvant in ovarian cancer
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has yet to be explored. Indomethacin is also reported to be
effective in eradicating tumor-initiating cells (TICs) in cancers35

and these TICs are identified to be the root cause of
chemoresistance and tumor recurrence in ovarian cancer.36

Hence, Indomethacin could be evaluated as a potential TIC
targeting drug in ovarian cancer. Also, an ongoing phase I trial is
currently evaluating the efficacy of combining Indomethacin with
Cisplatin in ovarian cancer patients (NCT01719926), which further
prompted us to focus on evaluating Indomethacin as a potential
chemoadjuvant in ovarian cancer.

Indomethacin decreases survival of both platinum-sensitive and
platinum-resistant ovarian tumor cells
We first looked at the effect of Indomethacin on primary HGSOC
ovarian tumor cells. Indomethacin decreased cellular viability in all
primary serous ovarian tumor cells tested (OV78: Stage IV HGSOC,
OV81: Stage IIIC HGSOC, OV82: Stage IIIC low-grade serous EOC,
OV84: Stage IIIC HGSOC) (Figure 3a). In addition, two pairs of
isogenic platinum-resistant cell lines (OV81/CP1014 and A2780/
CP70) were also sensitive to Indomethacin (Figure 3a, right panel).
We further confirmed the effects of Indomethacin on cellular
survival of the OV81.2 and OV81.2-CP10 cells using clonogenic
assays (Figure 3b). Intriguingly, though both the sensitive and
resistant cells responded to indomethacin, the platinum-resistant
derivatives displayed a more robust induction of G1/S cell cycle
arrest upon treatment with Indomethacin (Figure 3c) and cell
death analysis by Annexin-V staining also showed increased cell
death in platinum-resistant cells as compared with platinum-
sensitive cells (Figure 3d). Interestingly, Indomethacin had minimal

effects on non-transformed fallopian tube and ovarian surface
epithelium cells at the doses with which it induced robust cell
death in ovarian tumor cells (Figure 3d) suggesting that the
pathways targeted by Indomethacin may be critical regulators of
EOC pathogenesis and would not affect normal ovarian function.
In addition, cleaved-PARP and γ-H2AX, markers of apoptosis and
DNA damage, were greatly elevated in Indomethacin treated
OV81.2-CP10 and CP70 cells (Figure 3e).

Indomethacin exerts additive effect with cisplatin in ovarian
tumor cells
We next explored the effect of Indomethacin and cisplatin
combination on both cisplatin-sensitive and cisplatin-resistant
ovarian tumor cells to test the utility of Indomethacin as a
potential chemoadjuvant compound. The combination of Indo-
methacin and cisplatin decreased cell viability more effectively
than cisplatin alone in both cisplatin-sensitive and resistant cells
(Figure 4a and Supplementary Fig 1a). Isobologram analysis and
combination index studies showed that Indomethacin exerts
additive effect with cisplatin (combination index ~ 1.0) and
decreased IC50 of cisplatin in both cisplatin-sensitive and resistant
cells (Figure 4b and Supplementary Fig 1b). We further confirmed
that cisplatin and Indomethacin combination decreases cell
survival using clonogenic assays (Figure 4c). We next investigated
the effect of Indomethacin and cisplatin combination on
apoptosis in both cisplatin-sensitive and resistant cells. Indo-
methacin and cisplatin combination induced significantly higher
cell death as measured by Annexin-V-PI staining in both cisplatin-
sensitive (OV81.2) and cisplatin-resistant (OV81.2-CP10 and CP70)

Figure 1. Schematic showing outline of DrugPredict approach.
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cells as compared with the individual drugs alone (Figure 4d). In
addition, cleaved-PARP and γ-H2AX levels were greatly elevated in
cisplatin-resistant cells treated with Indomethacin and cisplatin
combination as compared with cisplatin alone (Figure 4e). These
results unravel a previously unknown possibility that Indometha-
cin could be potentially employed as a chemoadjuvant to
platinum-based treatment regimens in EOC.

Indomethacin downregulates Wnt/β-catenin signaling in
platinum-resistant ovarian tumor cells
NSAIDs that belong to the category of COX-1 inhibitors are
reported to function both by COX-1 dependent and COX-1-
independent mechanisms in functioning as anticancer agents.37

COX-1 driven PGE2 is an important constituent of tumors and is
implicated in regulation of inflammatory processes driven by
tumor microenvironment.38,39 However numerous studies have
concluded that COX-independent mechanisms could be poten-
tially important in determining the anti-tumor effects of
NSAIDs.37,40 One such pathway is the Wnt/β-catenin signaling
pathway, which is reported to be targeted by NSAIDs in exerting
anti-tumor effects especially in colon cancer models.41 Also, PGE2,
which is the main target of COX-1 inhibitors is a known positive
regulator of Wnt signaling.42 Furthermore, we recently identified
β-catenin as a critical regulator of platinum resistance through the
maintenance of TICs in EOC.36 Hence, we hypothesized that
downregulation of Wnt/β-catenin signaling could be one of the
main mechanisms underlying the robust anti-tumor effects of
Indomethacin especially in cisplatin-resistant cells. Interestingly,

we found that Indomethacin decreased β-catenin protein level in
cisplatin-resistant cells (OV81.2-CP10 and CP70) but not in
cisplatin-sensitive cells (OV81.2 and A2780), suggesting that the
mechanisms underlying Indomethacin effects could be different in
the context of cisplatin-sensitive cells (Figure 5a). Also, Indo-
methacin did not decrease β-catenin protein level in non-
transformed non-transformed fallopian tube and ovarian surface
epithelium epithelial cells (Figure 5a). Furthermore, β-catenin
protein level was greatly reduced upon combination treatment of
cisplatin plus Indomethacin as compared with cisplatin alone in
cisplatin-resistant cells (Figure 5a). In addition, numerous tran-
scriptional targets of Wnt/β-catenin signaling implicated in
ovarian tumorigenesis were decreased upon Indomethacin treat-
ment (Figure 5b). Specifically, the expression of LEF-1 and LGR5,
which are essential targets of Wnt/β-catenin pathway and have
been recently reported to be highly expressed in the cancer-prone
niche in ovarian surface epithelium43 as well as in chemoresistant
ovarian tumor cells,36 were decreased by Indomethacin
(Figure 5b). These results suggest that one of the main
mechanisms underlying the increased sensitivity of cisplatin-
resistant cells to Indomethacin and the additive effect of
Indomethacin with cisplatin in these cells could be selective
inhibition of Wnt/β-catenin signaling in these cells since it is
known that Wnt/β-catenin signaling inhibition decreases the
survival of cisplatin-resistant cells and induces chemosensitivity in
these cells.36

As Indomethacin decreased β-catenin protein expression in
cisplatin-resistant cells, we further explored the dependency
of Indomethacin effects on β-catenin, by stably expressing

Figure 2. DrugPredict ranked Non-steroidal anti-inflammatory (NSAID) significantly high. (a) Among a total of 6996 prioritized chemicals
(including 1096 FDA-approved drugs), the 15 FDA-approved EOC drugs had a median ranking of 1.34% and mean ranking of 6.44%
(b) Among a total of 882 fourth-level drug classes, 31 classes of drugs ranked significantly higher than random expectation. As expected,
anticancer drugs (platinum compounds, pyrimidine analogs and other antineoplastic agents) ranked highest and anti-inflammatories were
third highest. (c) List of the highly ranked NSAIDs reveal that celecoxib, nimesulide and indomethacin are the top 3.
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non-degradable β-catenin (which harbors the mutation S33Y)
in OV81.2, which we have previously shown induces a
cisplatin-resistant phenotype36 (Figure 5c). Indomethacin did not
decrease β-catenin protein expression in β-catenin-S33Y over-
expressed cells (Figure 5c). Accordingly, overexpressing β-catenin-
S33Y protein partially rescued Indomethacin’s effects on cell
survival and cell death (Figures 5d and e). Next, given that
β-catenin downregulation formed the critical component of
Indomethacin actions in EOC, we employed loss-of-function
assays to assess whether knockdown of β-catenin further
potentiated Indomethacin actions in EOC (Figure 5f). As expected,
β-catenin knockdown potentiated cell death induced by Indo-
methacin in both OV81.2-CP10 and CP70 (Figure 5g). There was a
twofold increase in cell death induced by Indomethacin upon
β-catenin knockdown in both OV81.2-CP10 and CP70 (Figure 5g).

Indomethacin exerts additive effect with cisplatin in ALDH pos
ovarian TICs
Aldehyde dehydrogenase 1 (ALDH1) expression is reported to be
very high in cancer-prone niche in ovarian surface epithelium,
suggesting that it could be involved in early transformation events
in EOC.43 ALDH pos ovarian tumor cells have been identified as
the TICs in ovarian cancer and are reported to be chemoresistant,

have high expression of cancer stem cell markers and associated
with poor clinical outcome and ALDH pos ovarian tumor cells are
being employed as a reliable model to study mechanisms
underlying chemoresistance in ovarian TICs.44 We have observed
that platinum-resistant CP70 have very high ALDH1 expression,36

thus we sorted out ALDH-positive cells from CP70 by using
ALDEFLOUR flow cytometry assay. These ALDHposCP70 cells
exhibited increased expression of cancer stem cell markers such as
EpCAM, CD133 and drug resistance markers like ABCG2, exhibited
increased tumor sphere formation in limiting dilution tumor
sphere formation assays and exhibited increased tolerance to
cisplatin (Figures 6a and b). ALDH1 has also been recently
identified as a direct target of β-catenin in ovarian tumor cells,45,36

suggesting that Wnt/β-catenin signaling could have an important
role in regulating TIC functions in EOC. Hence, we next
investigated whether Indomethacin can affect ALDHposCP70 TICs.
We found that Indomethacin induced G1/S cell cycle arrest, and
decreased tumor sphere formation (Figures 6c and d). Further-
more, Indomethacin decreased the expression of Wnt/β- catenin
transcriptional targets that regulate stem-like properties TCF7,
LGR5, CD24 and EpCAM (Figure 6e).
We next examined the combinatorial effects of cisplatin and

indomethacin in the ALDH pos ovarian TICs, similar to the

Figure 3. Indomethacin decreases survival of both platinum-sensitive and platinum-resistant ovarian tumor cells. (a) 48 h MTT assay showing
Indomethacin decreases viability in primary epithelial ovarian cancer cells (OV78: Stage IV HGSOC, OV81: Stage IIIC HGSOC, OV82: Stage IIIC
low-grade serous EOC, OV84: Stage IIIC HGSOC). (b) Dose–response clonogenics assay on day 7 showing both OV81.2 and OV81.2-CP10 are
sensitive to Indomethacin. (c) 48 h cell cycle analysis showing Indomethacin induces G1 arrest and increased cell death in patient-derived
primary platinum-sensitive (OV81.2) and resistant (OV81.2-CP10) cell lines as well as established platinum-sensitive (A2780) and resistant
(CP70) cells. (d) 48 h flow cytometry analysis of Annexin-V PI staining showing robust cell death induced in ovarian tumor cells upon
Indomethacin treatment. (e) Western blots showing elevated cleaved-PARP and γ-H2AX protein levels by 24 h of Indomethacin treatment in
CP10 and CP70 (*Po0.05, **Po0.005 and ***Po0.0005).

Using DrugPredict to rapidly identify potent drug candidates
AB Nagaraj et al

407

Oncogene (2018) 403 – 414



differentiated cells isobologram analysis showed that Indometha-
cin exerts additive effect with cisplatin in ALDH pos ovarian TICs
and decreased the IC50 of cisplatin by ~ 50% in these cells
(Figure 6f). Consistent with these findings, the combination of
indomethacin and cisplatin induced robust cell death and
decreased cell survival in both ALDH pos and ALDH neg CP70
cells (Figure 6g). In addition, cleaved-PARP and γ-H2AX levels were
greatly elevated in Indomethacin and cisplatin combination
treated cells as compared with individual drugs alone
(Figure 6h) and as observed with CP10 and CP70, β-catenin
protein level was greatly reduced upon combo treatment in these
TICs as compared with cisplatin alone (Figure 6h). These results
suggest that Indomethacin could be used as a chemoadjuvant in
EOC to eradicate both non-TICs (ALDH neg) and TICs (ALDH pos)
in ovarian cancer, thus potentially overcoming the barrier of
tumor recurrence in ovarian cancer.

DISCUSSION
There is an urgent need for new treatment options for patients
with recurrent, platinum-resistant EOC. TICs are thought to be the
root cause of tumor recurrence and chemoresistance in EOC, and

platinum-based treatment regimens are known to be ineffective
against these TICs.36 Existing therapies to treat EOC do not
eradicate the TICs thus aiding in tumor relapse and drug
resistance. A greater understanding of the molecular alterations
driving the progression and treatment resistance of the most
common and lethal form of EOC, HGSOC will allow for the
development of rationally designed targeted molecular therapies
to treat the underlying drivers of the disease. At present, there are
no standard therapeutic options for patients with recurrent
chemotherapy resistant tumors.
DrugPredict is a general approach for drug discovery and

repurposing by innovatively interrogating human genes to
corresponding mouse functional phenotypes. There are several
major differences between DrugPredict in this study and our
previously published methods:7,17 (a) DrugPredict is more efficient
and we applied it to search drug candidates (both repositioned
drugs and chemicals) for hundreds of thousands of chemicals
rather then the previously published method which was less
efficient and only applied to o2000 FDA-approved drugs,
(b) DrugPredict uses more stricter criteria in calculating profile
similarities in order to achieve high specificity and our previously
published approach which used semantic distance tends to

Figure 4. Indomethacin exerts additive effect with cisplatin in ovarian tumor cells. (a) 48 h MTT analysis of OV81.2 and OV81.2-CP10 cells
treated with increasing doses of cisplatin and cisplatin plus Indomethacin. (b) Isobologram analysis of the MTT data of Indomethacin cisplatin
combination treatment in OV81.2 and OV81.2-CP10 cells showing additive effect of the combination of the two drugs. (c) Dose–response
clonogenics assay on day 7 showing effect of Indomethacin and cisplatin combination on cell survival in OV81.2 and OV81.2-CP10. (d) 48 h
Flow cytometry analysis of Annexin- V PI staining showing increased cell death upon Indomethacin and cisplatin combination treatment with
the corresponding isobologram doses in OV81.2, OV81.2-CP10 and CP70. (e) Western blots showing elevated cleaved-PARP and γ-H2AX
protein levels upon 24 h Indomethacin and cisplatin combination treatment with the corresponding isobologram doses in OV81.2-CP10 and
CP70 (**Po0.005 and ***Po0.0005).
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introduce more false positives and (c) last, the previously
published method directly used the list of phenotypes associated
with disease genes to construct phenotype profiles, whereas in
this current study in order to increase the specificity of phenotype
profile and repositioned drugs for ovarian cancer, then we first
performed analysis to identify phenotypes that are significantly
enriched for ovarian cancer and then used these significantly
enriched phenotypes to construct phenotype profile. Through this
new method we have now demonstrated DrugPredict’s utility in
drug repurposing for EOC and uncovered that FDA-approved
NSAID Indomethacin represents a potent new compound to treat
HGSOC. Our results show that Indomethacin inhibits cell
proliferation, cell survival and induces robust cell death in
cisplatin-resistant cells and ovarian TICs through the down-
regulation of β- catenin. Furthermore, expression of transcriptional
targets of β-catenin that are directly implicated in ovarian
tumorigenesis and platinum resistance were greatly decreased
by Indomethacin. In addition, we found that Indomethacin
exerted additive effects with cisplatin in both cisplatin-sensitive

and cisplatin-resistant ovarian tumor cells. Overall, our results
identify a hitherto unknown application of Indomethacin as a
potential chemoadjuvant in EOC and also provides with a good
platform to extend this observation to other NSAIDs.
Although the Wnt/β-catenin signaling pathway has been

extensively studied in many cancers, we have only recently
shown that this pathway drives platinum resistance and the
maintenance of TICs in ovarian cancer.36 We have shown that
Wnt/β-catenin signaling confers survival advantage in response to
long-term cisplatin treatment and platinum resistance in ALDH
pos ovarian TICs is driven by β-catenin.36 Hence, drugs affecting
TICs through downregulation of Wnt/β-catenin signaling could
form excellent chemoadjuvant combination with cisplatin where
in both differentiated tumor cells and β- catenin driven TICs can
be efficiently eradicated thus preventing tumor recurrence and
improving survival outcome in EOC. Interestingly, Indomethacin
did not decrease β- catenin protein expression in cisplatin-
sensitive cells that were sensitive to the drug and exhibited
additive cell death upon combination with cisplatin. Cisplatin-

Figure 5. Indomethacin downregulates Wnt/β-catenin signaling in platinum-resistant ovarian tumor cells. (a) Western blot showing robust
decrease in β-catenin protein level by 24 h upon treatment with Indomethacin in OV81.2-CP10 and CP70 cells and enhanced β-catenin
downregulation in cisplatin plus Indomethacin combination treated OV81.2-CP10 and CP70 cells as compared with individual drug treatment
alone 24 h. (b) Real-time PCR analysis 24 h showing Indomethacin decreases mRNA expression of β-catenin transcriptional targets AXIN2,
TCF7, LEF-1 and LGR5 in OV81.2-CP10 and CP70. (c) Western blot showing overexpression of non-degradable β-catenin (β-S33Y) in OV81.2
(left) and effect of Indomethacin on β-catenin protein expression in OV81.2-β- S33Y cells (right). (d) clonogenics assay on day 7 showing
β-S33Y overexpression partially rescues the effect of Indomethacin on cell survival in OV81.2. (e) 48 h Annexin-V PI staining flow cytometry
analysis showing that β-S33Y overexpressing OV81.2 cells are more tolerant to Indomethacin induced cell death. (f) Western blot confirming
lentiviral shRNA mediated β-catenin knockdown. (g) 48 h analysis of Annexin-V PI staining showing increased cell death upon Indomethacin
treatment in OV81.2-CP10 and CP70 sh-β-catenin cells compared with sh-scram control (*Po0.05, **Po0.005 and. ***Po0.0005).
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sensitive cells are known to exhibit less stem-like properties by
virtue of which they are chemosensitive and also exhibit low
activity of Wnt/β-catenin signaling.36 Hence, the mechanisms
underlying effects of Indomethacin in cisplatin-sensitive cells
could be different from cisplatin-resistant cells and could
potentially involve non-TIC related mechanisms. As Indomethacin
induced G1/S cell cycle arrest and DNA damage in ovarian tumor
cells and cisplatin also induces DNA damage and S phase arrest,
cell cycle related mechanisms could underlie the effects of
Indomethacin in these cells. Further understanding of mechan-
isms underlying Indomethacin actions in cisplatin-sensitive cells
would be important in realizing the application of NSAIDs as
chemoadjuvants in the initial regimens of platinum therapy in
patients newly diagnosed with ovarian cancer. Indomethacin has
been reported to be efficient in decreasing tumor burden in vivo
in ovarian cancer but this study looked at the effect of

Indomethacin on a tumor cell line that does not truly reflect
HGSOC pathogenesis in a clinical scenario.46 Also, the utility of
Indomethacin as a potential chemoadjuvant was not tested in this
study. Hence, it is important to test the efficacy of Indomethacin in
patient-derived xenograft models of HGSOC to further validate the
possibility of employing it as a chemoadjuvant tool in EOC. Our
data form a good basis and provides with rationale to test NSAIDs
in such platinum-resistant patient-derived xenograft models and
potentially expanding this to patient clinical trials.
In this study we demonstrate DrugPredict’s utility in drug

repurposing for EOC however we did not tailor the system for
EOC, therefore, we expect that DrugPredict would be equally
effective in identifying drug candidates for other diseases.
Nevertheless, there are some limitations including the inability
to differentiate the associations ('Treat or 'Cause') between the
input disease and drug-associated phenotypes. For example,

Figure 6. Indomethacin exerts additive effect with cisplatin in ALDH pos ovarian tumor-initiating cells (TICs). (a) Real-time PCR analysis
showing increased mRNA expression of cancer stem cell markers EpCAM, CD133 and drug resistance marker ABCG2 in ALDH-positive CP70
cells (left) limiting dilution tumor sphere formation analysis showing increased tumor sphere formation ability in ALDH pos CP70 cells (right).
(b) 48 h MTT analysis showing increased tolerance to cisplatin in ALDH pos CP70 cells. (c) PI staining cell cycle flow cytometry showing cell
cycle arrest in G1 phase and increased SubG1 phase induced by Indomethacin in ALDH pos CP70 cells. (d) × 10 light microscopy images and
10× 10 stitch imaging with integrated metamorph software analysis showing decreased tumor sphere formation by day 6 upon Indomethacin
treatment. (e) Real-time PCR analysis 72 h showing Indomethacin decreases the mRNA expression of β-catenin driven cancer stem cell
transcriptional targets in ALDH pos CP70 cells. (f) Isobologram analysis showing additive effect of Indomethacin cisplatin combination in
ALDH pos CP70 cells. (g) 48 h Annexin-V PI staining flow cytomery analysis showing increased cell death upon Indomethacin plus cisplatin
combo treatment as compared with individual drugs alone in both ALDH neg CP70 (left) and ALDH pos CP70 cells (right) clonogenics assay
on day 7 showing greater decrease in cell survival upon Indomethacin plus cisplatin combo treatment as compared with individual drugs
alone in both ALDH neg CP70 and ALDH pos CP70 cells (right). (h) Western blots showing increased cleaved-PARP and γ-H2AX protein levels
and decreased β-catenin protein level in Indomethacin plus cisplatin combo treated cells as compared with individual drugs alone treated
ALDH pos CP70 cells (*Po0.05, **Po0.005 and ***Po0.0005).
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among top-ranked phenotypes for indomethacin, the phenotype
'decreased inflammatory response' is related to drug treatment
since we know that indomethacin is an anti-inflammatory drug.
Two other phenotypes 'increased myocardial infarction size' and
'increased hepatocyte apoptosis' are also significantly enriched.
Based on our knowledge that indomethacin can cause cardiovas-
cular thrombotic events and hepatotoxicity, we know that the
associations between indomethacin and these two phenotypes
are related to drug toxicities. However, we currently lack
sufficiently fine-grained data to automatically classify the associa-
tions between drugs and phenotypes into 'Treatment' or 'Toxicity'.
A drug (for example, indomethacin) often up-/downregulates
many genes at the same time. The mutations of each gene in
mouse models can cause many phenotypes. Currently, it is
challenging to develop algorithms to automatically summarize the
collective effects of drugs’ genes on a specific phenotype and
classify them into 'Treatment' or 'Toxicity'. Semantically classifying
the associations between drugs and phenotypes is important for
both drug discovery and drug toxicity prediction, which will be
one of the focuses of our future work. Second, although mice and
humans share virtually the same set of genes, the expression
and function of the genes may be different in mouse models and
humans. For example, a recent study by the Mouse ENCODE
Consortium showed that there are considerable differences
between human gene and mouse gene expression profiles
however, the phenotype-level divergence between human genes
and mouse genes may be less prominent.47 Though our study in
prioritizing and validating indomethacin for EOC treatment
provides further support this strategy, due to the inherent
difference between human and mouse models, the functions of
a gene in human may not completely conserved in mouse models.
To summarize, we have developed a novel drug discovery strategy
driven by the novel computational drug-repurposing platform
DrugPredict coupled with validation in ovarian cancer patient-
derived xenograft models and have identified Indomethacin as a
novel potential chemoadjuvant in EOC. Our study highlights the
importance of applying computational drug-repositioning
approaches to TCGA datasets in cancer to reliably identify novel
drug candidates that could be efficiently translated to clinical
settings in a cost-effective manner. Furthermore, given the
relationship between the two drugs use of the combination
treatment may also reduce the typical toxic side-effects seen with
platinum-based therapies because a lower concentration of
cisplatin can be used.

MATERIALS AND METHODS
Performing DrugPredict analysis
Obtaining HGSOC genes from TCGA. The microarray data for
whole-genome mRNA expression were downloaded from TCGA
data portal (https://tcga-data.nci.nih.gov/). This data set contains
587 clinically annotated grade I–IV ovarian cancer samples (6 G1,
78 G2, 487 G3 and 1 G4) and 8 normal fallopian tube samples. A
total of 17 814 mRNA expression profiles were measured in the
Agilent 244 K platform. Data were lowess normalized and log2
transformed within array. Quantile approach was used for
between-array normalization. A total of 1531 deferentially
expressed genes between normal (8 samples) and grade III (487
samples) were identified using limma (R package) with adjusted
P-valueo0.001. The clinical characteristics was also described in a
recently published study.48

Construction HGSOC-specific mouse mutation phenotype profile.
We downloaded the genotypes and Mammalian Phenotype
Annotations data from MGD26 and mapped the mouse genes to
their human homologs using human-mouse homolog mapping
data from the MGD (for example, TP53-4Trp53). We obtained a

total of 178 626 human gene-mouse mutational phenotype pairs
from MGD. One such pair is 'TP53 (tumor protein p53)–increased
ovarian carcinoma incidence'. We then directly linked the 1531
HGSOC genes to mouse mutational phenotypes using the 178 626
human gene-mouse mutational phenotype mappings. A total of
4627 mouse mutational phenotypes are mapped to HGSOC genes.
For each of these mapped phenotypes, we assessed the
probability of this phenotype being associated with HGSOC genes
as compared with the same number of randomly selected genes.
We repeated the random process 1000 times and perform a t-test
to assess the enrichment significance between each phenotype
and HGSOC genes (the list of significantly enriched phenotypes for
HGSOC genes is provided as supplementary materials).

Construction of mutational phenotype profiles for FDA-approved
drugs. We obtained chemical-associated genes from CTD (Com-
parative Toxicogenomics Database).49 CTD provides information
about interactions between chemicals and gene products, as well
as their relationships to diseases. Core CTD content includes
chemical–gene, chemical–disease and gene–disease interactions
that were manually curated from the literature. We used the
chemical-–associations as the resources of drug genetics. We
obtained a total of 973296 chemical–gene interactions from CTD,
including 386 190 interactions in humans. These 386 190 chemi-
cal–gene associations include 7570 chemicals/drugs and 20 116
genes. An example of such chemical/drug–gene association is:
'indomethacin–ABCC1', where indomethacin results in decreased
expression of ABCC1 mRNA. For each of the 7570 chemicals/drugs
(for example, indomethacin), DrugPredict first obtained its
associated genes from CTD. It then linked these genes to their
mouse mutational phenotypes through the 178 626 human gene-
mouse mutational phenotype mappings that we obtained from
MGD. The mouse mutational phenotype profile for each chemical
was constructed in the same way as the HGSOC-specific
phenotype profile (describe above). For example, we obtained a
total 329 indomethacin-associated genes from CTD. We identified
1961 mouse mutational phenotypes that are significantly enriched
for these 329 genes. For example, the phenotype 'decreased tumor
incidence' is associated with 18 indomethacin-associated genes,
and it represents a sevenfold enrichment as compared with
random expectation. The list of phenotypes that are significantly
enriched for indomethacin is provided as supplementary
materials.
As our goal is to find repositioning candidates from FDA-

approved drugs, we filtered chemicals from CTD using 1648 FDA-
approved drugs derived from DrugBank.50 We used CTD instead of
DrugBank to obtain drug–gene associations as CTD contains both
on-target and off-target gene associations for FDA-approved
drugs. As the main goal of our drug-repurposing strategy is to find
surprising/unexprected off-target effects of FDA-approved drugs
in diseases, we used CTD instead of DrugBank, the latter contains
mainly drugs’ on-target information. For example, Drugbank
contains eight genes for indomethacin (for example, PTGS1,
PPARG, GRP44). CTD contains 621 indomethcin–gene associations.

Prioritization drugs based on the similarities between HGSOC-specific
phenotype profile and drug-associated phenotype profiles. Using
the HGSOC-associated phenotype profile (1426 phenotypes) and
drug-associated phenotype profiles as inputs (for example, 1961
phenotypes for indomethacin) as inputs, DrugPredict calculated
the similarity between HGSOC and drugs using the Jaccard
coefficient. Jaccard similarity coefficient is a statistic used for
measuring the similarity between finite sample sets, and is defined
as the size of the intersection divided by the size of the union. For
example, a total of 620 phenotypes are common for HGSOC-
specific phenotype profile and indomethacin phenotype profile.
The Jaccard coefficient is 0.224 (620/(1426+1961–620)) between
HGSOC and indomethacin. On the other hand, a total of 294
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phenotypes are common between HGSOC and ibuprofen profiles
(1039 phenotypes). The Jaccard coefficient is 0.136 (294/(1426
+1039–296)) between HGSOC and ibuprofen. Based on the
Jaccard coefficient values, DrugPredict ranked indomethacin
higher than ibuprofen. PhenoPredict built phenotype profiles for
all drugs and then calculated the Jaccard coefficients for each
drug. The output of DrugPredict is a list of drugs ranked based on
the Jaccard coefficients.

Evaluation of DrugPredict. We evaluated the performance of
DrugPredict in OC drug discovery using 16 FDA-approved OC
drugs (http://www.drugs.com/condition/ovarian–cancer.html). We
calculated the recall, which measured how many of these 16 drugs
DrugPredict could find and the mean and median rankings of
these FDA-approved drugs among all prioritized drugs. The mean
ranking of 1% means that these drugs ranked at top 10% on
average. We also calculated the P-value of the mean ranking as
compared with random expectation.

Analyze repositioned drug candidates. We then evaluated which
categories of drugs ranked significantly highly. We classified drugs
based on the ATC classification system. ATC system consists of 13
first-level codes or classes, 94 second-level codes, 267 third-level
codes, 882 fourth-level codes and 4580 fifth-level codes, which are
individual drugs. In our study, we used both third and fourth-level
ATC codes for drug classification. For each category, we calculated
the mean ranking and median ranking of drugs in the category.
The significance was calculated using t-test to assess whether the
drug class ranked significantly higher than random. For example,
there are a total of seven pyrimidine analogs among our
prioritized drugs with a mean ranking of 2.26% and median
ranking of 2.09%, which is significantly higher than random
expectation (P-value: 1.74E-8).

Cell culture and reagents
A2780 (cisplatin-sensitive) and CP70 (isogenic cisplatin-resistant to
A2780) cells were obtained from Dr Paul Modrich (Duke
University). All cells used were cultivated in DMEM media
supplemented with 10% FBS and 1% Penicillin–streptomycin
(recommended media). Cells were cultured in 10 mm plates in a
humidified atmosphere (5% CO2) at 37 °C. At 70–90% confluence,
trypsin (0.25%)/ethylenediaminetetraacetic acid solution was used
to detach the cells from the culture plate for passaging and used
for further experiments until passage 20. Primary patient cell lines
were generated from tumors or ascites isolated from patients
diagnosed with histologically confirmed HGSOC. Informed con-
sents were obtained from all patients. All experiments were
performed in accordance with relevant guidelines and policies of
University Hospitals Case Medical Center (Cleveland, OH, USA) and
approved by the University Hospitals Case Medical Center IRB
committee. The platinum-resistant derivative of OV81.2 namely,
CP10 was generated by propagating OV81.2 in the presence of
cisplatin for 10 passages.36 MTT, Clonogenics and Annexin-V PI
assays confirmed the resistance of these cells to cisplatin.36

Cisplatin was purchased from Mount Sinai Hospital Pharmacy.
Indomethacin was purchased from Sigma-Aldrich (St Louis, MO,
USA).

Generation of stable cell lines
Several stable cell lines were generated for this study and the
same protocol was followed as described below. β-catenin
lentiviral shRNA plasmid (Addgene plasmid 18803 deposited by
Dr Bob Weinberg’s laboratory) and the corresponding pLKO.1
control plasmid (Addgene plasmid 8453 deposited by Dr Bob
Weinberg’s laboratory) were acquired from Addgene. For lentiviral
transfection with the constructs, Lenti Starter Kit (System
Biosciences, Palo Alto, CA, USA) was used. In brief, 3M 293T cells
were plated in 10-cm plate with antibiotic-free media. At 50–70%

confluence, 2 μg of plasmid and 10 μg of pPACKH1-plasmid mix
were co-transfected with Lipofectamine 2000 (Invitrogen, Carls-
bad, CA, USA) following manufacturer’s protocol. Forty-eight hours
later, virus particles were harvested and precipitated. Target cells
were transduced by plating 100 000 cells/well in a six-well plate
with virus particles and 4 μg/ml polybrene and analyzed 72 h later.
β-catenin-S33Y retroviral plasmid was a kind gift from Dr Ken-Ichi
Takemaru (Stony Brook university). For retroviral transfections,
retrovirus was generated by co-transfection of the constructs with
packaging plasmids into Phx cells. Target cells were transduced as
described above.

RNA extraction and Real-time PCR
Total RNA was extracted using the Total RNA Purification plus Kit
(Norgen Biotek, Thorold, ON, Canada) according to manufacturer’s
instructions. For mRNA analysis, cDNA sysnthesis from 1 μg of
total RNA was done using the Transcriptor Universal cDNA Master
kit (Roche, Indianapolis, IN, USA). SYBR green-based Real-time PCR
was subsequently performed in triplicate using SYBR green master
mix (Roche) on the Light Cycler 480 II real-time PCR machine
(Roche).

Immunoblotting
Whole-cell protein extracts were probed with antibodies against
β-catenin (1:500) (Cell Signaling, Danvers, MA, USA), cleaved-PARP
(1:250) (Promega, Fitchburg, WI, USA), phospho-H2AX (1:250) (Cell
signaling) and GAPDH (1:1000) (Santa Cruz, Dallas, TX, USA).
Membranes were exposed using LumiLight or LumiLightplus
(Roche) method following manufacturer’s instructions.

Cell Viability assays
Cells were plated in 12-well plate at 50 000 cells/well and treated
the next day with the corresponding drugs. After indicated time
points, cells were then incubated with 3-(4,5-Dimethylthiazolyl) for
2 h and absorbance was measured at 600 nm. Isobologram
analysis was done using graph pad prism software.

Clonogenics assay
Cell survival was assessed through seeding 2000 cells/well in a six-
well plate and treated with indicated doses drugs every 3 days for
7 days. On day 7, cells were fixed in a 10% acetic acid/10%
methanol (in diH2O) solution and stained with 1% crystal violet (in
methanol) after 7 days of growth. Colonies were counted using
Image J.

Annexin-V/PI staining
Cells were plated 100 000 cells/well in a six-well plate. The next
day, cells were treated with drug and harvested after indicated
time points. Annexin-V/PI Staining was done using the FITC
Annexin-V Apoptosis Detection Kit II (BD Pharmigen, Billerica, MA,
USA). FACS data were acquired using the Coulter Epics XL
machine.

PI staining
Cells were plated 100 000 cells/well in a six-well plate. The next
day, cells were treated with drug and harvested after indicated
time points and stored in 70% ethanol at –20 °C until staining. For
FACS, cell lysates were stained with 50 μg/ml propidium iodide
and 1 mg/ml RNAse, incubated in dark for 30 min and were
resuspended in 200 μl phosphate-buffered saline. Data were
acquired with Coulter Epics XL machine and analyzed using
FlowJo 10.0.6 software.

Tumor sphere formation
For tumor sphere formation assays, 1000 cells per ml were plated
in 2 ml in six-well ultra-low attachment plate (Corning, Corning,
NY, USA) in MammoCult medium (Stem cell Technologies,
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Cambridge, MA, USA) and after the indicated timepoint, 10 × 10
stitch imaging was done at × 10 (100 random images acquired)
using an Retiga Aqua Blue camera (Q Imaging, Vancouver, BC,
USA) connected to a Leica DMI6000 inverted microscope.
Individual images were taken and then a composite image was
generated using the scan slide function in Metamorph Imaging
Software (Molecular Devices, Downington, PA, USA). Subsequent
integrated analysis also used Metamorph software. Limiting
dilution tumor sphere formation assay was done as previously
described.36

Flow cytometry analysis and sorting
For ALDH-based sorting, ALDH assay was done using the
ALDEFLUOR kit as per the protocol instructions (Stem cell
Technologies) and ALDH-positive and -negative cells were FACS
sorted using BD FACS Aria II. For ALDH activity assessment the
same kit was used and the data were acquired with Coulter Epics
XL machine.

Statistical analysis
Unless otherwise noted, data are presented as mean± s.d. from
three-independent experiments, and Student's t-test (two-tailed)
was used to compare two groups (Po0.05 was considered
significant) for independent samples.
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