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OBJECTIVE—Disturbances in podocytes are typically associ-
ated with marked proteinuria, a hallmark of diabetic nephropa-
thy. This study was conducted to investigate modulation of
Notch-1 signaling in high glucose (HG)-stressed human podo-
cytes and in a diabetic animal model.

RESEARCH DESIGN AND METHODS—Expression of the
Notch signaling components was examined in HG-treated podo-
cytes, human embryonic kidney cells (HEK293), and kidneys
from diabetic animals by RT-qPCR, Western blot analysis, and
immunohistochemical staining. The association between the
Notch signaling, VEGF expression, and podocyte integrity was
evaluated.

RESULTS—Notch-1 signaling was significantly activated in HG-
cultured human podocytes and HEK293 cells and kidneys from
diabetic animals. HG also augmented VEGF expression, decreas-
ing nephrin expression and podocyte number—a critical event
for the development of proteinuria in diabetic nephropathy. After
use of pharmacological modulators or specific shRNA knock-
down strategies, inhibition of Notch-1 signaling significantly
abrogated VEGF activation and nephrin repression in HG-
stressed cells and ameliorated proteinuria in the diabetic kidney.

CONCLUSIONS—Our findings suggest that upregulation of
Notch-1 signaling in HG-treated renal podocytes induces VEGF
expression and subsequent nephrin repression and apoptosis.
Modulation of Notch-1 signaling may hold promise as a novel
therapeutic strategy for the treatment of diabetic nephropathy.
Diabetes 59:1915–1925, 2010

D
iabetic nephropathy is now the most common
cause of end-stage renal disease worldwide (1).
Like many renal diseases, diabetic nephropathy
is characterized by the development of pro-

teinuria followed by decreased glomerular filtration in
association with glomerulosclerosis (2). Development
of proteinuria is mainly due to injury of the glomerular
filtration barrier, which consists of the glomerular endo-
thelium, the glomerular basement membrane, and podo-
cytes located outside of the capillary. Although each layer
within the filtration barrier contributes to the prevention
of proteinuria, emerging evidence suggests that podocytes
function as the predominant component of this barrier (3).

The slit diaphragm (SD) represents the only cell-cell
contact between mature podocytes. A major component of
the SD complex is nephrin, which plays a critical role in
maintaining the glomerular filtration barrier. Mutation or
inactivation of the nephrin gene or reduction of nephrin
expression may result in destabilization of the SD and
consequent proteinuria (4). By contrast, overactive vascu-
lar endothelial growth factor (VEGF)/VEGF receptor sys-
tem was observed in the diabetic kidney (2). VEGF is a
proangiogenic factor that is expressed in podocytes during
kidney morphogenesis (5). Evidence shows that increased
VEGF activity in podocytes mediates the pathogenesis of
focal segmental glomerulosclerosis (6) and is associated
with proteinuria in diabetic nephropathy (7). Attenuation
of the VEGF/VEGF receptor system by VEGF neutraliza-
tion antibodies or VEGF receptor antagonists significantly
ameliorates proteinuria in diabetic mice (6,8,9). Moreover,
amelioration of proteinuria by inhibiting VEGF signaling in
these kidney diseases is linked to restoration of SD density
and nephrin quantity in podocytes (5,7,10), suggesting that
downregulation of nephrin in diabetic nephropathy may be
dependent on overactive VEGF signaling. Although mod-
ulation of VEGF signaling in diabetic nephropathy and
other kidney diseases remains unclear, it must be subject
to exquisite control in response to various environmental
stimuli or stresses (11).

Notch signaling is known to play a critical role in
mammalian kidney development (12). Notch proteins are
single-pass transmembrane receptors with an extracellular
epidermal growth factor and an intracellular domain.
Notch receptors on the cell surface bind various ligands,
including Jagged-1, resulting in a series of sequential
proteolytic cleavage events of the Notch receptor by
proteases, metalloproteases, and �-secretase. The result-
ing Notch intracellular domain (NICD) translocates to the
nucleus (13), where it associates with a DNA-binding
protein, retinol-binding protein-J�, and the coactivator,
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Mastermind like-1 (MAML-1), to form a ternary complex,
which activates the expression of downstream target
genes (14–17). Vooijs et al. (18) have shown that Notch-1
is highly active in the developing kidney; however, in the
mature kidney, very little active Notch-1 can be detected.
Consistent with this observation, Cheng et al. (19,20)
demonstrated that inhibition of Notch signaling during
early development of the mouse kidney using a �-secretase
inhibitor resulted in a severe deficiency in the proximal
tubules and glomerular podocytes, emphasizing the impor-
tance of Notch signaling during kidney development. How-
ever, sustained Notch activation in the mature kidney may
be disastrous; Niranjan et al. (21) reported that Notch
signaling functioned as a driving force behind podocyte
damage and subsequent kidney failure. Inactivation of
Notch signaling via genetic or pharmacologic intervention
was sufficient to prevent and even reverse glomerular
damage (21).

Although much evidence suggests that Notch-1 signaling
is involved in glomerular disease, the relationship between
the Notch-1 signaling pathway and diabetic proteinuria
remains to be elucidated. In the present study, we inves-
tigated the modulation of the Notch-1 pathway in human
podocytes and human embryonic kidney (HEK)293 cells
cultured in HG conditions. We also evaluated the effects of
Notch-1 signaling on VEGF and nephrin expression in
podocytes and in the kidneys of diabetic animals to further
elucidate the role of Notch-1 in diabetic nephropathy.

RESEARCH DESIGN AND METHODS

Human podocyte and HEK293 cell cultures. Conditionally immortalized
human podocytes (22) were routinely cultured in RPMI-1640 medium supple-
mented with 10% FBS and 1% insulin transferrin disodium selenite (Sigma, St.
Louis, MO) at 33°C. To stimulate cell differentiation, the culture temperature
was changed from 33 to 37°C for 14 days, and the FBS was replaced with
human plasma (23).

HEK 293 cells were maintained in Dulbecco’s Modified Eagle’s Medium
with 10% FBS. Additional incubations with 10 units/ml bovine erythrocyte
SOD-PEG (Sigma), 1 �mol/l N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenyl-
glycine t-butyl ester (DAPT) (Calbiochem, Gibbstown, NJ), or specific mono-
clonal antibodies (R&D Systems, Minneapolis, MN) were also performed in
cultured cells.
RNA extraction, RT-PCR, and quantitative RT-PCR (RT-qPCR). Total
RNA from 1 � 106 cells or from rat kidneys was prepared with QIAzol reagent
(Qiagen, Valencia, CA) or Tri reagent (Sigma) according to the manufacturers’
instructions. RT-qPCR was performed according to the MIQE guidelines (24).
Total RNA (1 �g) was reverse transcribed to cDNA with the Moloney murine
leukemia virus reverse transcriptase (Fermentas, Glen Burnie, MD). The PCR
mixture (25 �l) containing the cDNA template equivalent to 20 ng total RNA,
2.5 �mol/l forward and reverse primers, and 2X iQ SYBR Green Supermix
(Bio-Rad, Hercules, CA) was prepared and subjected to PCR amplification.
The specific primer pairs targeting the Jagged-1, Notch-1, Notch-2, MAML-1,
VEGF, hairy and enhancer of split (Hes)-1, nephrin, and �-actin genes were
generated using the MIT Primer3 software (http://fokker.wi.mit.edu/primer3/).
The individual PCR primer sequences and cycle number used in this study
included the following: 5�-GACTCATCAGCCGTGTCTCA-3� and 5�-TGGGGAA
CACTCACACTCAA-3� for amplifying Jagged-1, 25–28 cycles; 5�-CAATGTG
GATGCCGCAGTTGTG-3� and 5�-CAGCACCTTGGCGGTCTCGTA-3� for
Notch-1, 25–30 cycles; 5�-GGACTTCGAGCAAGAGATGG-3� and 5�-AGCACT
GTGTTGGCGTACAG-3� for Notch-2, 25–30 cycles; 5�-CCCTGATGAGATC
GAGTACATCTT-3� and 5�-AGCAAGGCCCACAGGGATTT-3� for VEGF, 25–28
cycles; 5�-CAGCATCAGTTGCTTTTGGA-3� and 5�-CCCTGTGAACTGTC
CAACCT-3� for MAML-1, 25–30 cycles; 5�-CAACACGACACCGGATAAAC-3 and
5�-TTCAGCTGGCTCAGACTTTC-3� for HES-1, 25–30 cycles; 5�-CACGGTCAG
CACAACAGAGG-3� and 5�- GAAACCTCGGGAATAAGACACCT-3� for nephrin,
30 cycles; 5�-TCCTTCCTGGGCATGGAGTC-3� and 5�-TTCTGCATCCTGTCG
GCAATG-3� for �-actin, 25 cycles; and 5�-GAGTCAACGGATTTGGTCGT-3�
and 5�-TTGATTTTGGAGGGATCTCG-3� for glyceraldehyde-3-phosphate dehy-
drogenase, 25 cycles. All real-time PCR experiments were performed in
duplicate from at least three independent treatments. The relative gene

expression was calculated as previously described (25) and as described in
the MIQE guidelines (24).
Protein extraction and Western blot analysis. Membrane, cytosolic, and
nuclear extracts from cultured cells were prepared as previously described
(26). Antibodies specific for Jagged-1 (Rockland, Gilbertsville, PA), full-length
Notch-1 (Santa Cruz, CA), NICD (Abcam, Cambridge, U.K.), MAML-1, HES-1
(Abcam), hypoxia-inducible factor (HIF)-1� (Cell Signaling, Beverly, MA),
VEGF (Santa Cruz), nephrin (kindly provided by Prof. Karl Tryggvason,
Karolinska Institute, Stockholm, Sweden), poly(ADP-ribose) polymerase
(PARP)-1 (Cell Signaling), cleaved and full-length caspase-3 (Cell Signaling),
and �-actin (Santa Cruz) were used.

5   15  25  35  15   25  35
D-glucose Mannitol

VEGF
Nephrin
β-actin

mM

Notch-1

HES-1
VEGF

Nephrin
β-actin

24  48 72
Vehicle

Hours 24  48 72
HG

Human podocyte

Jagged-1

Notch-2

24  48  72
Vehicle

 24  48 72
Mannitol

Human podocyte

Fo
ld

  in
cr

ea
se

/v
eh

ic
le

Notch-1
Notch-2
HES-1
VEGF
Nephrin

Jagged-1

#
&

*

@

@#
&

*

$ $ $

7248240
0

2

4

6

Hour(s) after HG treatment

A

B

FIG. 1. HG exposure increased Jagged-1, Notch-1, HES-1, and VEGF
expression, whereas nephrin expression was decreased in human
podocytes. A: Human podocytes (1 � 105) were seeded and cultured in
medium with increasing amounts of glucose (5, 15, 25, and 35 mmol/l)
or mannitol for 48 h. The mRNA expression of VEGF, nephrin, and
�-actin in these cultured cells was determined by RT-PCR. B: Human
podocytes were cultured in medium with HG (35 mmol/l) or high
mannitol (35 mmol/l) at different time points (24, 48, and 72 h). Total
RNA was prepared from these cultured cells and subjected to analysis
of Jagged-1, Notch-1, Notch-2, HES-1, VEGF, nephrin, and �-actin
mRNA expression by RT-PCR. The RT-qPCR was also performed to
determine the relative abundance of Jagged-1, Notch-1, Notch-2,
HES-1, VEGF, and nephrin mRNAs in HG-treated cells (bottom panel).
After normalization to �-actin expression, the fold activation of each
gene was indicated. Experimental results are presented as means � SE
calculated from at least three experiments with duplicate samples.
@#&$*Significant difference (P < 0.05) compared with the control
group.
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Analysis of �-secretase activity. �-Secretase activity was quantified by
fluorescent spectroscopy using a �-secretase assay kit according to the
manufacturer’s instructions (R&D). Briefly, the �-secretase activity was de-
termined using the amyloid precursor protein peptide (GVVIATVIV) conju-
gated with 5-[(2-aminoethyl)amino] naphthalene-1-sulfonic acid (EDANS) and
4-(4-dimethylaminophenylazo) benzoic acid (DABCYL) reporter molecules as
a substrate. The cleavage-dependent release was measured using a fluorescent
microplate reader (Anthos Zenyth 3100; Anthos Labtec, Salzburg, Austria) at
495 nm.
RNA interference. Plasmids expressing human Notch-1 shRNA (5�-CCAC
CAGTTTGAATGGTCATT-3�), MAML-1 shRNA (5�-CGAGCAACTCCCTGTT
TCT-3�), and a control shRNA were purchased from SuperArray (Frederick,
MD). Transfection of podocytes or HEK293 cells (1 � 106 cells/well in a
six-well plate) with the indicated plasmids was performed using lipofectamine
reagent (Invitrogen).
Plasmid construction and transfection. The NICD expression plasmid has
been described previously (27); it was transfected into HEK293 cells using
lipofectamine reagent (Invitrogen), and the transfected cells were cultured in
medium with 300 �g/ml G418 (Invitrogen) for screening transient transfec-
tants as previously described (27).
Cell viability and proliferation assay. For determination of cell viability
and proliferation, podocytes under different stimulations were cultured and

were evaluated with tetrazolium-based colorimetric assay (XTT assay; Roche,
Mannheim, Germany). Colorimetric changes were measured with a microplate
reader at a wavelength of 450–500 nm (Molecular Devices, Sunnyvale, CA).
Capillary/tube-like forming assay. Conditioned medium isolated from
podocytes treated with various modulators was collected. Angiogenesis
induced by the conditioned medium was determined by coculturing the
conditioned medium with human umbilical vein endothelial cells (HUVECs)
on a Matrigel-coated (Becton Dickinson, Bedford, MA) 48-well culture plate
(1 � 104 cells/well). Formation of capillary/tube-like structures was visualized
and counted 2 h after coculture (28).
Streptozotocin-induced diabetes model and DAPT treatment. Male
Wistar rats 4 months of age and weighing between 220 and 250 g (National
Experimental Animals Production Center, Tapei, Taiwan) were caged and
subjected to streptozotocin (STZ) injection as previously described (29); rats
with blood glucose levels �350 mg/dl were defined as diabetic. Diabetic rats
were treated with DAPT (n 	 6; 5–10 mg/kg) or vehicle (n 	 6; 200 �l corn oil)
via subcutaneous injection once a week for 35 consecutive days. Then, urine
samples were collected from all rats for measurement of total protein and
creatinine concentrations using assay kits (Sigma). The animals were killed,
and the tissues were collected as described previously (25). All in vivo
experimental protocols were approved by the Institutional Animal Care and
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FIG. 2. Effect of DAPT and exogenous SOD on Notch signaling in
HG-stressed human podocytes. A: Human podocytes were pre-
treated with SOD or DAPT for 2 h, after which the cells were
subjected to SOD or DAPT treatment and cultured in normal or HG
medium for 48 h. Gel-based RT-PCR and RT-qPCR were carried out
to analyze the mRNA expression of Notch signaling molecules,
VEGF, and nephrin in these treated cells. For *control and @&#HG
groups, P < 0.05. B: the protein expression of the indicated genes
in the cell samples as described in A was determined by Western
blot analysis with specific antibodies. Notch-1 (FL), full-length
Notch-1 C: Tube-like formation of HUVECs induced by various
conditioned medium. Conditioned medium from human podocytes
treated with HG or a combination of HG and SOD or DAPT was
used to stimulate tube formation in cultured HUVECs. At least six
repeated experiments were performed, and the formation of a
tube-like structure was calculated. For *control and #HG groups,
P < 0.05. D: Repression of �-secretase activity by SOD and DAPT in
HG-stressed cells. For *control and #HG groups, P < 0.05.
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Use Committee of the Chang Gung Memorial Hospital and carried out
according to the National Institutes of Health guidelines.
Immunohistochemistry. Paraffin-embedded tissues were sliced longitudi-
nally into 5-�m-thick sections and subjected to immunohistochemical stain-
ing. Antibodies specific for Jagged-1, NICD, HIF-1, VEGF, nephrin, podocin
(Santa Cruz), and CD2AP (Santa Cruz) were used. Six regions within the renal
glomeruli from three separate sections were obtained from each rat; images
were randomly analyzed (25,29).
Terminal deoxynucleotidyl transferase–mediated deoxyuridine triphos-

phate-biotin nick-end labeling. Paraffin-embedded rat tissues were evalu-
ated for apoptosis using an in situ cell death detection kit according to the
manufacturer’s instructions (Roche, Mannheim, Germany) and as previously
described (29).
Statistical analyses. All values were expressed as means 
 SE from at least
three independent experiments. Wilcoxon’s test was used to evaluate differ-
ences between the sample of interest and its respective control. To analyze the
time course studies, multiple-range ANOVA and post hoc tests were used. P

values �0.05 were considered significant.

RESULTS

HG-induced Notch-1 signaling, VEGF expression, and
nephrin downregulation in cultured human podo-
cytes. Dysregulation of VEGF and nephrin expression is
commonly observed in diabetic nephropathy (7,10). To
determine the effect of HG on human podocyte gene
expression, cells were cultured with increasing amounts
of D-glucose (15, 25, and 35 mmol/l) for 48 h. In normal
control cells, 5 mmol/l D-glucose was maintained in the

culture medium to provide the basal requirement for cell
growth. Additionally, mannitol served as an osmotic con-
trol for HG. As illustrated in Fig. 1A, VEGF mRNA gradu-
ally increased with HG conditions in human podocytes;
downregulation of nephrin mRNA was also observed.
Neither VEGF nor nephrin expression was significantly
altered in the mannitol-treated cells compared with nor-
mal control cells, indicating that HG modulated VEGF and
nephrin expression in cultured podocytes.

In addition to VEGF and nephrin, we also examined
the effect of HG on the Notch signaling pathway in
human podocytes. Cells cultured in medium with or
without HG (35 mmol/l) were harvested at different time
points (24, 48, and 72 h). mRNA expression of Notch
signaling components, including Jagged-1, Notch-1,
Notch-2, and HES-1, was determined by RT-PCR (Fig.
1B) or RT-qPCR (Fig. 1B). Because the expression of
�-actin or glyceraldehyde-3-phosphate dehydrogenase
genes in both untreated and glucose-treated podo-
cytes at 24, 48, and 72 h remained invariant under the
experimental conditions (supplementary Fig. 1 in the
online appendix, which is available at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-0663), we subse-
quently used �-actin as an internal reference gene for
expression studies. As shown in Fig. 1B, HG induced the
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Jagged-1, Notch-1, and HES-1 mRNA expression in a
time-dependent manner; however, Notch-2 expression
was unaltered. As expected, increased VEGF and de-
creased nephrin were also detected concomitantly in
HG-treated cells. By contrast, no changes in gene ex-
pression were observed upon treatment with high man-
nitol (35 mmol/l) (Fig. 1B). These results raised the
question whether signaling induced by HG may be
linked to dysregulation of VEGF and nephrin expression
in podocytes.
Inhibitors of Notch signaling abolished the effect of
HG on VEGF and nephrin expression in human podo-
cytes. To examine the relationship between Notch-1 sig-
naling and dysregulation of VEGF and nephrin expression
in HG-stressed podocytes, a �-secretase inhibitor, DAPT,
was used to inhibit Notch signaling. Human podocytes
were pretreated with DAPT for 2 h, and then the continual
DAPT treatment proceeded in the presence or absence of
HG. Treatment with DAPT markedly abolished the upregu-

lation of HES-1 and VEGF and downregulation of nephrin
in HG-treated human podocytes (P � 0.05) (Fig. 2A).
Notably, DAPT did not alter upregulation of Jagged-1 or
Notch-1 mRNAs in HG-treated podocytes (Fig. 2A). Simi-
larly, Western blot analyses (Fig. 2B) revealed that DAPT
significantly inhibited NICD expression alone; Jagged-1
and full-length Notch-1 expression induced by HG re-
mained unchanged. Dysregulation of VEGF and nephrin
induced by HG was also alleviated by DAPT. Superoxide
dismutase (SOD), an enzyme that can scavenge superox-
ide, was also analyzed. Under normal culture conditions,
treatment of human podocytes with exogenous SOD did
not affect basal Notch-1 signaling (supplementary Fig. 2).
However, exogenous SOD inhibited HG-induced Jagged-1,
Notch-1, and HES-1 expression (Fig. 2A and B). Inhibition
of Notch-1 signaling by SOD also relieved the dysregula-
tion of VEGF and nephrin in HG-treated podocytes (Fig.
2A and B).

To further determine the angiogenic activity of VEGF
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secretion from podocytes, a tube-like forming assay was
performed using HUVECs cocultured with conditioned
medium from cultured human podocytes treated with
various reagents. Compared with the normal control con-
ditions, larger and more abundant tube-like structures
were observed upon coculture of HUVECs with condi-
tioned medium isolated from HG-treated cells. However,
reduced tube formation was observed using conditioned
medium from the cells pretreated with SOD or DAPT and
cultured in an HG environment compared with that from
cells treated with HG alone (Fig. 2C). �-Secretase activity
was also examined in response to various stimuli. A
significant increase (P � 0.05) in �-secretase activity was
detected in HG-stressed cells compared with cells cultured
in normal conditions. Enhanced �-secretase activity was
inhibited by SOD and DAPT (Fig. 2D).
Effects of HG on Notch-1 signaling in HEK293 cells
and human podocytes. In addition to human podocytes,
we also determined whether HG affected Notch-1 signaling
and the expression of VEGF and nephrin in the human
embryonic kidney cell line, HEK293. HEK293 cells are
known to express nephrin (30,31), and the cell type-
specific expression of nephrin protein in HEK293 cells was
also confirmed by Western blot analysis (supplementary
Fig. 3). Increased Jagged-1, Notch-1, HES-1, and VEGF
expression and nephrin repression were detected in HG-
treated HEK293 cells by RT-qPCR (Fig. 3A), indicating that
similar regulatory signaling may exist in both podocytes
and HEK293 cells in response to HG. Because of the
pleiotropy of VEGF (7,10), we examined the causative
relationship between VEGF and nephrin expression or cell
apoptosis in both human podocytes and HEK293 cells
cultured in HG conditions. In HG-stressed podocytes,
nephrin repression and apoptotic cellular markers,
cleaved caspase-3 and PARP-1, were consistently detected
(Fig. 3B). Addition of a VEGF monoclonal antibody (10
ng/ml), but not a control antibody, efficiently blocked both
nephrin repression and apoptosis induced by HG (Fig. 3B).
Similar attenuation of nephrin repression and apoptosis by

anti-VEGF antibodies was also observed in HG-stressed
HEK293 cells (supplementary Fig. 4).

To further determine the effect of VEGF on nephrin
expression and apoptosis, podocytes were treated with
exogenous VEGF recombinant protein (1 and 10 ng/ml).
As illustrated in Fig. 3C and D as well as in supplementary
Fig. 5A, exogenous VEGF protein increased cleaved
caspase-3 and PARP-1 levels but reduced nephrin expres-
sion and cell viability. However, reduced expression of
nephrin was not due to reduced cell viability, as demon-
strated in supplementary Fig. 5B. These results indicated
that downregulation of nephrin and induction of the
apoptotic cascade in HG conditions were mediated
through Notch-1/VEGF signaling.

To further delineate the role of the Notch-1 signaling on
dysregulation of VEGF and nephrin in HEK293, a NICD
expression plasmid was transfected into HEK293 cells.
NICD overexpression significantly induced HES-1, HIF-1�,
and VEGF protein expression while reducing nephrin
expression in HEK293 cells (Fig. 3E and F). Taken to-
gether, these results suggest that Notch-1 signaling stimu-
lated by HG induces VEGF expression, which subsequently
mediates nephrin repression and the apoptotic cascade in
human podocytes and HEK293 cells.
Knockdown of Notch-1 signaling molecules in human
podocytes and HEK293 cells. Cells expressing Notch-1
shRNA were created, and the expression of VEGF and
nephrin were evaluated in these cells. To efficiently knock
down the Notch-1 pathway, we generated a pool of trans-
fected podocytes that expressed Notch-1 or control shR-
NAs. Endogenous full-length Notch-1, NICD, and HIF-1�
were substantially reduced in cells expressing Notch-1
shRNA but not in those expressing control shRNA (Fig.
4A). Knockdown of Notch-1 in cells maintained in HG
conditions resulted in reduction of HES-1 and VEGF
expression and restoration of nephrin expression (Fig.
4B). Intriguingly, enhanced levels of MAML-1, a key
coactivator of Notch signaling, were repeatedly de-
tected in HG-treated cells (Fig. 4C and D and data not

TABLE 1
Biochemical properties and immunohistologic analyses in renal glomeruli of normal and diabetic rats and in diabetic rats subjected
to DAPT treatment

Normal
rats

Diabetic rats

Vehicle
5 mg/kg
DAPT

10 mg/kg
DAPT

Biochemical properties
Blood glucose 82 
 1.6 407.2 
 10.6* 400.7 
 7.1* 397.4 
 10*
A1C 4.2 
 0.1 9.6 
 0.8* 10.3 
 0.3* 9.5 
 0.5*
Urinary protein secretion 0.57 
 0.13 4.73 
 2.63* 1.07 
 0.35† 1.08 
 0.2†

Immunohistomorphormetry
Jagged-1 10.4 
 0.4 26.3 
 0.1* 22.9 
 0.9* 22.4 
 0.9*
NICD 4.9 
 0.2 17.5 
 0.7* 7.4 
 0.3*† 3.7 
 0.2†‡
HIF-1 3.2 
 0.1 32.17 
 1.3* 9.8 
 0.4*† 9.4 
 0.4*†
VEGF 13.8 
 0.7 30.9 
 1.3* 23.5 
 1.1*† 17.3 
 1*†‡
Nephrin 20.6 
 1.2 8.2 
 0.8* 13.7 
 0.8*† 18.1 
 0.6†‡
CD2AP 12.1 
 0.5 16.5 
 0.7 15.9 
 0.7 14.6 
 0.6
Podocin 16.1 
 0.7 16.9 
 0.7 18.2 
 0.7 19.8 
 0.8

TUNEL apoptosis 12.3 
 1.0 35.2 
 1.8* 25.9 
 1.2*† 16.8 
 0.9†‡

For the biochemical properties, the data represent means 
 SE calculated from six rats. Glucose (milligrams per deciliter) and A1C
(milligrams per deciliter) were measured from tail vein blood. Total urinary protein secretion (milligrams per milligram creatinine) was
assayed using urinary protein kits and normalized to total creatinine concentrations in urine. For the immunohistologic analyses, the data
are means 
 SE calculated from the percentage of positively stained cells and total cells in each image. Six random images from three
sections obtained from each rat were randomly selected and analyzed. P � 0.05 for *normal mice, †diabetic/vehicle mice, and ‡diabetic mice
treated with DAPT (5 milligrams per kilogram).
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shown). Transfection of MAML-1 shRNA in HEK293
cells not only attenuated HG-induced MAML-1 but also
abrogated HG-induced activation of HIF-1�, HES-1, and
VEGF expression. Nephrin downregulation induced by
HG was also restored in MAML-1 knockdown cells (Fig.
4C and D).
Blockade of the Notch signaling pathway attenuated
proteinuria in diabetic rats. The effects of inhibition of
Notch signaling by DAPT on diabetic nephropathy were
also assessed. Compared with the normal group, diabetic
rats had increased blood glucose and urinary protein
excretion (Table 1). DAPT treatment significantly reduced
urinary protein secretion in diabetic rats; blood glucose
and A1C levels remained unchanged (Table 1). No differ-

ences in overall body weight, organ/body weight ratios as
well as BUN, creatinine, AST, ALT, and CPK levels were
observed between the untreated and DAPT-treated dia-
betic rats (Supplementary Table 1).

Involvement of Notch signaling in diabetic rats was
examined by immunostaining and immunoblot analyses.
Increased Jagged-1, NICD, HIF-1�, and VEGF expression
were observed in podocytes of glomeruli in the diabetic
group compared with the normal group (Figs. 5A and 6A
and Table 1). In contrast, fewer nephrin-positive cells were
observed in diabetic rats compared with normal rats (Fig.
6A; Table 1). In addition, elevated Jagged-1, full-length
Notch-1, NICD, HIF-1�, and VEGF expression, as well as
reduced nephrin, was detected in tissue lysates from the
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diabetic kidneys upon Western blot (Figs. 5B and 6B) and
RT-qPCR (supplementary Fig. 6A) analyses. No significant
differences in podocin or CD2AP expression levels were
observed between the diabetic and normal rats (Table 1
and supplementary Fig. 6B). Using terminal deoxynucleo-
tidyl transferase–mediated dUTP nick-end labeling (TUNEL)
analysis, elevated podocyte and mesangial cell apoptosis was
detected in diabetic rats compared with normal rats (Fig. 5A
and Table 1).

Inhibition of Notch-1 signaling in diabetic rats by DAPT
resulted in amelioration of enhanced NICD, HIF-1�, and
VEGF (Figs. 5 and 6). DAPT treatment also restored
nephrin downregulation in diabetic rats to the normal level
observed in control rats (Fig. 6). Furthermore, DAPT

treatment resulted in suppression of apoptosis in diabetic
rats (Fig. 5A and Table 1). Although expression of several
Notch-1 signaling molecules was blocked by DAPT, en-
hanced Jagged-1 in diabetic rats was not affected by DAPT
treatment. The ability of DAPT to inhibit �-secretase
activity was confirmed by examining �-secretase activity
in DAPT-treated rats (Fig. 5C). As expected, DAPT treat-
ment significantly repressed �-secretase activity in dia-
betic rats. As shown above, SOD inhibited Notch-1
signaling and VEGF expression in HG-treated human
podocytes (Fig. 2). The effects of SOD on Notch-1 signaling
and expression of VEGF and nephrin in diabetic kidney
were analyzed. Exogenous SOD significantly suppressed
Jagged-1, Notch-1, HES-1, and VEGF expression and re-
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FIG. 6. Representative photographs of HIF-1�, VEGF, and nephrin immunostaining in the glomeruli of normal and diabetic kidneys and
diabetic kidneys with DAPT treatment. A: Intensive HIF-1� and VEGF expression and weak nephrin expression were observed in diabetic
glomerular tissue compared with normal tissue. DAPT treatment attenuated HIF-1� and VEGF expression while restoring nephrin
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stored nephrin expression in the kidney of diabetic rats
(supplementary Fig. 7A). �-Secretase activity in diabetic
rats was also inhibited by exogenous SOD (supplementary
Fig. 7B). These results indicate the involvement of oxida-
tive stress, at least in part, in regulating the Notch signal-
ing pathway in diabetic rats.

DISCUSSION

Podocyte dysfunction is closely associated with marked
proteinuria/albuminuria in diabetic nephropathy (12). In
this study, we show that the Notch-1 signaling is activated
in HG-treated human podocytes and HEK293 cells and
within the glomeruli of diabetic rats (Figs. 1, 2, 3, and 5).
Activation of Notch-1 signaling coincides with increased
VEGF expression, nephrin downregulation, and increased
apoptosis (Figs. 1, 3, 5, and 6). Importantly, overexpres-
sion of NICD in HEK293 cells and treatment of podocytes
with recombinant VEGF are sufficient to induce nephrin
repression and apoptosis (Fig. 3 and supplementary Fig.
4). Furthermore, repression of Notch-1 signaling by phar-
macologic reagents, including DAPT and SOD, and
through genetic knockdown of Notch-1 signaling compo-
nents alleviated VEGF and nephrin dysregulation in HG-

stressed cells and ameliorated urinary protein excretion in
diabetic animal model (Figs. 2, 4, 5 and 6). These findings
underscore the importance of the Notch/VEGF signaling
pathway in diabetic proteinuria (Fig. 7).

Several studies have suggested that overactive Notch
signaling in mature podocytes may result in loss of podo-
cytes, glomerular failure, and the development of glomer-
ulosclerosis and focal segmental glomerulosclerosis
(21,32,33). Consistent with the importance of Notch sig-
naling in the development of glomerular disease, Notch-1
signaling was detected in diabetic animal model (Figs. 5
and 6) along with marked proteinuria and reduction of
podocyte SD. Administration of the �-secretase inhibitor,
DAPT, alleviated proteinuria found within the glomeruli
(Table 1), suggesting that Notch-1 signaling may directly
contribute to the pathogenesis of proteinuria. The strong
correlation between overactive Notch-1 signaling and pro-
teinuria indicates that components of the Notch signaling
cascade could possibly be genetic biomarkers for predic-
tion of the progression of diabetic nephropathy.

Elucidation of the molecular mechanism by which
Notch-1 signaling is modulated in diabetic rats remains to
be addressed. In cultured podocytes or HEK293 cells, an
HG environment induced Notch-1 signaling through many
distinct manners, including Jagged-1 (a ligand of Notch-1),
Notch-1, and MAML-1 (a coactivator of Notch signaling)
expression as well as enhancement of �-secretase activity
(Figs. 1, 2, and 4). Interestingly, exogenous SOD dramati-
cally blocked Notch-1 signaling in HG-treated cells (Fig. 2).
These results imply that superoxide overproduction under
HG stress may act as a trigger in stimulating the Notch-1
pathway.

At the early stages of diabetic nephropathy, the expres-
sion of VEGF and VEGF receptor was upregulated within
the glomerulus—specifically within podocytes (34). Sev-
eral reports have shown that inhibition of VEGF in exper-
imental models of diabetic nephropathy restored the slit
pore density of podocytes and alleviated albuminuria
(5,7,35). Based on our results, we observed elevated VEGF
expression as well as reduced nephrin expression and
podocyte number in diabetic rats compared with normal
rats (Figs. 5 and 6 and Table 1), further supporting the
relationship between VEGF signaling and proteinuria.
Neutralization of VEGF with monoclonal antibodies re-
versed the repression of nephrin and attenuated the cleav-
age of PARP-1 and caspase-3 in HG-treated podocytes and
HEK293 cells (Fig. 3 and supplementary Fig. 4). Although
VEGF is generally regarded as a prosurvival factor (36),
our results revealed that recombinant VEGF stimulates the
apoptotic cascade in human podocytes (Fig. 3B–D). A
growing number of studies have suggested that VEGF
promotes cell death mediated by or in concert with other
apoptotic signaling factors (37–39).

In addition to nephrin, other SD proteins that maintain
the normal function of the glomerular filtration barrier
may be controlled by Notch-1 and VEGF signaling in
diabetic rats. However, no significant changes in CD2AP or
podocin expression were observed in diabetic rats com-
pared with normal controls (supplementary Fig. 6B and
Table 1). Given these results, it can be concluded that
overactive Notch/VEGF signaling specifically modulates
the expression of nephrin.

Previous studies have shown that an HG environment
activated oxidative stress through Ras/Rac/extracellular
signal–regulated kinase–dependent pathways in renal
mesangial cells and ameliorated the deleterious effects of
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FIG. 7. Involvement of superoxide, Notch-1 signaling, and VEGF in
podocyte injury under HG stress. Human podocytes exposed to HG
positively regulated several Notch-1 signaling components, including
Jagged-1, Notch-1, �-secretase, and MAML-1. Activation of Notch-1
signaling may contribute to the enhancement of VEGF expression,
which in turn mediates downregulation of nephrin and promotes cell
apoptosis cascade. Blockers that inhibit the Notch-1 signaling in
podocytes markedly abolish the deleterious effect caused by HG. (A
high-quality digital representation of this figure is available in the
online issue).
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proteinuria in diabetic nephropathy by SOD (29,40).
Crosstalk between reactive oxygen radicals and Wnt/ß-
catenin signaling in modulating the apoptosis of HG-
stressed mesangial cells was also observed (40). In the
present study, superoxide may also serve as a Notch1
signaling modulator, thereby regulating VEGF-mediated
nephrin expression in diabetic nephropathy (Fig. 2 and
supplementary Fig. 7). Therefore, at least two pathways,
including Wnt/ß-catenin and Notch-1, that are controlled
by redox reactions contribute to diabetic nephropathy.

Taken together, we provide evidence that HG augments
Notch/VEGF signaling components. Modulation of the
Notch-1 signaling pathway may provide a therapeutic
strategy for controlling the deleterious effects of diabetic
nephropathy.
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