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Introduction

Maternal malnutrition during pregnancy can adversely affect 
fetal growth and long-term health outcomes [1,2]. In partic-
ular, infants with low birth weight due to malnutrition have 
a higher risk of obesity and metabolic syndrome (MetS) in 
later life [3,4]. This concept is known as fetal programming, 
in which stimuli at the embryonic and fetal stages affect 
subsequent growth of the offspring and the risk of disease in 
adulthood [2,5]. In rats, the offspring of 50% food-restricted 
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(FR) dams have low birth weight, subsequent catch-up 
growth, and adult-onset obesity [6,7]. Similarly, offspring of 
women exposed to famine were shown to have an increased 
risk of obesity and MetS in a Dutch Hunger Winter study [8]. 
The molecular mechanisms by which maternal diet leads to 
adult diseases are still unknown; however, many studies have 
reported this association.

Neuropeptides released from the hypothalamus that 
regulate feeding and metabolism are primarily affected by 
nutrients and hormone signals [9]. Indeed, adverse intra-
uterine cues can permanently change in the hypothalamic 
pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and 
melanocortin-4 receptor (MC4R) neurons, leading to obesity 
and MetS in later life [10,11]. POMC is involved in utilizing 
stored energy and suppressing food intake, while NPY stimu-
lates feeding and energy storage [12]. MC4R is also a key 
element in the hypothalamic control of short-term and long-
term energy homeostasis [13]. For instance, protein restric-
tion of dams during pregnancy results in impaired appetite-
regulating pathways, such as POMC and NPY pathways, in 
neonates [14,15]. Moreover, MC4R plays a critical role in ma-
ternal diet-induced obesity in rats [16]. Similarly, disruption 
of these hypothalamic neurons causes obesity in humans [10]. 
Leptin, an adipocyte-derived hormone, controls appetite and 

energy homeostasis by activating POMC/MC4R and inhibit-
ing NPY within the hypothalamus [17]. Leptin administration 
in leptin-deficient neonatal mice affects hypothalamic POMC 
and NPY neurons [18].

Epigenetic modification is one of the possible mechanisms 
underlying the contribution of maternal diet to obesity and 
MetS in later life [19,20]. Previous studies have shown that 
alterations in the methylation of POMC and NPY, caused 
by maternal malnutrition, can lead to obesity and MetS in 
offspring [21-23]. Additionally, rats fed a high-fat diet de-
velop obesity as adults due to effects on the methylation and 
expression of MC4R [24,25]. Similarly, our previous study 
showed that POMC methylation in cord blood is associated 
with lower birth weight and metabolic disturbances in child-
hood [26]. Most studies have focused on the short-term 
effects of epigenetic changes in appetite-regulating genes 
of the offspring on the development of obesity and MetS. 
Thus, in this study, we aimed to determine whether maternal 
undernutrition during pregnancy affects the gene expression 
and DNA methylation of appetite regulators in the hypothal-
amus of 3-week-old offspring. Additionally, we investigated 
whether this methylation status at 3 weeks affects the meta-
bolic profiles of the offspring at 3 weeks and 6 months.
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Fig. 1. Experimental design. Eight-week-old male and female Sprague-Dawley (SD) rats (n=8/group) were used in this study. At day 10 of 
gestation, pregnant SD rats were divided into 2 groups: 1) a control group, fed a normal diet throughout the whole experimental period 
and 2) a food-restriction (FR) group, fed a 50% FR diet during pregnancy and a normal diet after delivery.
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Materials and methods

1. Animal model
Eight-week-old male and female Sprague-Dawley rats were 
purchased from Orient Bio Inc. (Seongnam, Korea). Details of 
the experimental design have been reported previously [6]. 
After 1 week of adaptation, the rats were mated and exam-
ined for a vaginal plug. At 10 days of gestation, female rats 
were divided into 2 groups: a control group (n=8), fed a nor-
mal diet of standard laboratory chow (Purina, Pyeongtaek, 
Korea) throughout the pregnancy period and a FR group 
(n=8), fed a 50% FR diet during pregnancy (Fig. 1). At birth, 
the litters were culled to 10 pups/dam and were weaned 
at 21 days of age. The offspring were sacrificed at 3 weeks  
(9 males/9 females) and 6 months of age (8 males/8 fe-
males). After weighing, the hypothalamus and blood samples 
were obtained. Body weight and food intake were measured 
3 days per week until 6 months of age. 

2. Measurement of metabolic parameters
To assess changes in metabolic parameters at 2 time points 

(3 weeks and 6 months of age), the offspring of each group 
were fasted overnight, and blood was collected via cardiac 
puncture into heparinized tubes after rapid decapitation. 
Plasma glucose, triglyceride (TG), total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and low-density 
lipoprotein cholesterol (LDL-C) levels were analyzed by an en-
zymatic colorimetric method using a Cobas 8000 instrument 
(Roche Diagnostics GmbH, Mannheim, Germany). Insulin and 
leptin levels were also assayed using a rat insulin enzyme-
linked immunosorbent assay (ELISA) kit (Alpco, Salem, NH, 
USA) and a leptin ELISA kit (BioVendor, Modrice, Czech Re-
public), respectively, according to the manufacturers’ instruc-
tions.

3. DNA methylation analysis by pyrosequencing
Genomic DNA was extracted from hypothalamus tissues of 
3-week-old offspring (n=8) using a DNeasy Blood and Tissue 
Kit (Qiagen, Hilden, Germany) and was modified by sodium 
bisulfite using the EZ DNA Methylation kit (Zymo Research, 
Irvine, CA, USA) according to the manufacturers’ protocols. 
The methods used for pyrosequencing analysis have been 

Table 1. Body weight and metabolic profiles in the offspring of the control and FR group

Period Variable
Male Female

Control FR P-value Control FR P-value

3 weeks Body weight (g) 56.12±3.66 59.13±8.51 0.540 56.60±0.76 54.58±8.48 0.620

Glucose (mg/dL) 342.00±16.00 395.00±33.51 0.070 365.00±59.00 361.60±29.98 0.930

TC (mg/dL) 104.00±17.00 151.75±8.18 0.004 109.00±7.00 140.60±13.05 0.010

TG (mg/dL) 101.33±15.50 173.00±38.94 0.020 69.67±33.50 141.33±3.21 0.020

HDL-C (mg/dL) 36.00±6.00 42.60±4.93 0.140 33.67±1.15 43.00±2.00 0.002

LDL-C (mg/dL) 25.00±3.00 45.25±6.24 0.004 32.50±0.50 44.25±7.27 0.040

Insulin (ng/mL) 0.02±0.15 0.03±0.21 0.730 0.02±0.01 0.01±0.01 0.530

Leptin (ng/mL) 496.67±125.03 610.00±30.00 0.260 450.00±132.29 580.00±48.99 0.120

6 months Body weight (g) 555.50±49.50 705.00±50.84 0.020 341.00±19.98 417.00±36.06 0.030

Glucose (mg/dL) 405.00±5.00 582.00±80.00 0.020 377.67±59.69 434.67±85.17 0.400

TC (mg/dL) 64.75±6.24 66.67±1.53 0.630 67.33±8.62 63.67±11.24 0.680

TG (mg/dL) 110.75±37.54 208.25±13.72 0.003 110.00±41.75 336.00±10.00 <0.001

HDL-C (mg/dL) 32.00±4.00 24.00±2.16 0.020 32.00±1.73 34.00±5.29 0.570

LDL-C (mg/dL) 7.67±0.58 11.75±0.96 0.001 7.33±1.53 9.33±2.52 0.310

Insulin (ng/mL) 0.01±0.001 0.10±0.09 0.160 0.02±0.01 0.02±0.001 0.470

Leptin (ng/mL) 122.50±124.73 1,900.00±65.32 0.001 570.00±130.00 1,740.00±260.00 0.002

Values are given as means±standard deviation. P-values were analyzed using a Student’s t-test.
FR, food restriction; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein choles-
terol.
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reported previously [26,27]. Pyrosequencing primers were 
designed by PSQ Assay Design software (Biotage AB, Up-
psala, Sweden), using data from previous studies to search 
cytosine-phosphate-guanine (CpG) islands in promoter re-
gions [24,28] (Supplementary Table 1). The CpG sites of each 
gene are as follows: POMC (−166, −164, −156, and −152 
bp upstream of the transcription start site [TSS]), NPY (region I: 
−464, −459, −445, and −439 bp and region II: −167, −164, 
−157, and −153 bp upstream of the TSS), and MC4R (region 
I: +62 and +64 bp and region II: +288 and +282 bp down-
stream of the TSS).

4. Quantitative polymerase chain reaction (PCR)
Total RNA was isolated from the hypothalamus tissues of 
3-week-old offspring (n=8) using TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. To convert RNA to cDNA, reverse transcription was 
performed using SuperScript III reverse transcriptase (Invit-
rogen) in a 25-μL reaction volume containing 1 μg of RNA. 
Quantitative PCR was performed in a 20-μL reaction mixture 
containing cDNA, SYBR Premix EX Taq (Takara Bio, Shiga, 
Japan), and primers for each gene (Supplementary Table 2), 
using an ABI PRISM 7000 sequence detection system (Ap-

plied BioSystems, Foster City, CA, USA). The reactions were 
performed at 95°C for 10 minutes, followed by 40 cycles of 
95°C for 15 seconds and 63°C for 1 minutes and a dissocia-
tion step of 1 cycle of 95°C for 15 seconds, 63°C for 20 sec-
onds, and 95°C for 15 seconds. Comparative quantitation of 
each target gene was performed using the cycle threshold (CT) 
method, with normalization against the CT of glyceraldehyde 
3-phosphate dehydrogenase to calculate ΔΔCT.

5. Western blotting analysis
The hypothalamus tissues of 3-week-old offspring (n=8) 
were homogenized in RIPA buffer (Biosesang, Seongnam, 
Korea) with a protease inhibitor cocktail (Roche, Mannheim, 
Germany). Protein concentration was determined using a 
bicinchoninic acid protein assay kit (Thermo Scientific, Rock-
ford, IL, USA). Forty micrograms of protein were separated on 
an 8% sodium dodecyl sulfate-polyacrylamide gel and then 
transferred to a nitrocellulose membrane. The membrane was 
blocked for 1 hour in 5% skim milk in Tris-buffered saline 
with 0.01% tween-20 (TBS-T). After being washed, the mem-
brane was incubated at 4°C overnight with an anti-POMC 
(1:1,000; Phoenix, Belmont, CA, USA), anti-NPY (1:1,000; 
Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-
MC4R (1:1,000; Abcam, Cambridge, UK), or anti-beta-actin 
(1:3,000; Santa Cruz Biotechnology) antibody. The blot was 
then probed with the corresponding secondary antibody. The 
bands were visualized using enhanced chemiluminescence 
reagents (Amersham Pharmacia Biotech, Piscataway, NJ, USA) 
and densitometric analysis using ImageQuant software.

6. Statistical analysis
Data are presented as mean±standard deviation and were 
analyzed using a Student’s t-test. Pearson’s correlation analy-
sis was performed to access the relationship between DNA 
methylation status at 3 weeks and metabolic profiles in 
3-week- and 6-month-old offspring. Statistical analyses were 
performed with SPSS 24.0 software (IBM, Armonk, NY, USA). 
All analyses were 2-tailed, and P<0.05 was considered to in-
dicate statistical significance.

Results

1. Birth weight and metabolic profiles
Body weight at birth was significantly lower in offspring of 

Table 2. The relationship between POMC methylation at 3 weeks 
and metabolic profiles at 3 weeks and 6 months-old male off-
spring 

Variable

POMC methylation at mean CpG 
sites

3 wk 6 mon

r P-value r P-value

Birth weight −0.56 0.04 - -

Body weight at 3 wk 0.26 0.50 - -

Body weight at 6 mon - - 0.20 0.70

Glucose 0.24 0.65 0.39 0.45

TC 0.60 0.16 0.28 0.54

TG 0.39 0.30 0.72 0.05

HDL-C 0.78 0.02 −0.63 0.13

LDL-C 0.85 0.02 0.76 0.05

Insulin −0.31 0.50 0.41 0.32

Leptin 0.62 0.10 0.71 0.48

P-values obtained from Pearson correlation analysis. 
POMC, pro-opiomelanocortin; TC, total cholesterol; TG, triglyceride, 
HDL-C, high-density lipoproteins cholesterol; LDL-C, low-density lipo-
proteins cholesterol.
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Fig. 2. Relative mRNA and protein expression levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and melanocortin 4 receptor 
(MC4R) in the hypothalamus of 3-week-old offspring. (A) The mRNA expression levels of POMC, NPY, and MC4R were analyzed using 
real-time PCR in the food-restricted (FR) and control (C) groups (n=9 males, 9 females/group). Data are presented as means±standard 
deviation (SD). (B) The protein expression levels of POMC, NPY, and MC4R were analyzed using western blotting in the FR and C groups (n=9 
males, 9 females/group). Data are presented as means±SD. GAPDH, glyceraldehyde 3-phosphate dehydrogenase. a)P<0.05; b)P<0.01;  
c)P<0.001.
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the FR group than offspring of the control group (FR, 6.85 
vs. control, 7.64 g), but rapid catch-up growth was seen, in 
male offspring only, after 3 weeks. In 3-week-old offspring, 
levels of TC, TG, and LDL-C in both males and females were 

significantly higher in the FR group than in the control group 
(P<0.05). In addition, HDL-C levels were significantly higher 
in females of the FR group (P<0.01). After 6 months, the 
body weights of both male and female offspring were signifi-
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cantly higher in the FR group than the control group (P<0.05). 
In males, glucose, TG, HDL-C, LDL-C, and leptin levels were 
significantly higher in the FR group than the control group 
(P<0.05). On the contrary, in females, only TG and leptin lev-
els were markedly higher in the FR group compared with the 
control group (P<0.01) (Table 1).

2. ‌�POMC, NPY, and MC4R gene expression of in the 
hypothalamus of 3-week-old offspring

In both male and female offspring, the mRNA expression 
of POMC and NPY showed a significant decrease in the FR 
group compared with the control group (P<0.05). Similarly, 
the protein expression levels of POMC and NPY were signifi-
cantly lower in the FR group (P<0.05). However, the mRNA 
and protein expression levels of MC4R were significantly 
increased in the FR group compared to the control group 
(P<0.05, Fig. 2).

3. ‌�POMC, NPY, and MC4R methylation in the 
hypothalamus of 3-week-old offspring

POMC was significantly hypermethylated at CpG1 and 
showed high mean CpG methylation levels in males of the FR 
group (P<0.05), but not in females (Fig. 3). However, differ-
ent POMC CpG sites showed similar patterns of methylation 
between the 2 groups. In contrast, NPY and MC4R showed 
relatively low methylation levels in both groups (Figs. 4 and 5).  
Thus, we focused on mean methylation levels across all 
POMC CpG sites in male offspring, which showed a signifi-

cant difference (P<0.05).

4. ‌�The relationship between POMC methylation and 
metabolic profiles

To evaluate the short- and long-term effects of DNA methyl-
ation on metabolic indices, we analyzed the relationship be-
tween POMC methylation at 3 weeks and metabolic profiles, 
which were sampled at 2 time points, i.e., 3 weeks (short-
term) and 6 months (long-term) of age, in male offspring 
(Table 2). Interestingly, there was a significant correlation be-
tween lower birth weights and POMC methylation (r=−0.56, 
P=0.04). At 3 weeks, hypermethylation of POMC showed a 
significant correlation with higher levels of HDL-C and LDL-C 
in male offspring (r=0.78, P=0.02; r=0.85, P=0.02, respec-
tively). Furthermore, the hypermethylation status of POMC at 
3 weeks showed a strong positive correlation with TG, LDL-
C, and leptin levels in 6-month-old male offspring (r=0.72, 
P<0.05; r=0.76, P<0.05; r=0.71, P<0.05, respectively).

Discussion

Using a 50% FR rat model, we explored the effect of epi-
genetic changes in hypothalamic appetite-regulator genes, 
caused by maternal diet, on the metabolic phenotypes of 
their offspring. In this study, maternal undernutrition affected 
the expression of POMC, NPY, and MC4R in 3-week-old off-
spring. In particular, POMC methylation was significantly cor-

Fig. 3. Hypothalamic pro-opiomelanocortin (POMC) methylation in male (A) and female (B) offspring at 3 weeks of age (n=9 males, 9 fe-
males/group). POMC methylation was measured by pyrosequencing in offspring of the food-restricted (FR) and control (C) dams. Data are 
presented as means±standard deviation. a)P<0.05.
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related with LDL-C levels in 3-week- and 6-month-old male 
offspring. These findings suggest that epigenetic changes in 
appetite-regulated genes induced in early life can persistently 
influence metabolic profiles in later life.

Epidemiological and animal studies have revealed a close 
link between intrauterine growth restriction (IUGR) induced 
by maternal diet and obesity and MetS [3,4,7]. At 3 weeks 
of age, we observed that the offspring of FR dams showed 
IUGR, followed by catch-up growth and increased TC, TG, 
and LDL-C levels. Similar findings have been described by 
Nowacka-Woszuk et al. [29], who reported that rat offspring 
of calorie-restricted dams had a significant increase in LDL-
C at 4 weeks of age, although their body composition did 
not differ significantly from control rats. At 6 months of age, 

we found that the offspring of FR dams were significantly 
heavier and had increased TG and leptin levels. Desai et al. 
[7,30] demonstrated that TG and leptin levels were markedly 
higher in rat offspring of FR dams at 9 months of age, than 
in offspring of control dams, although their TG levels were 
lower at 3 weeks. In addition, rat offspring of malnourished 
dams show a significant increase in leptin levels at 125 days 
[31]. In humans, exposure to the Dutch famine caused high-
er levels of TC, LDL-C, and LDL-C/HDL-C, thereby increasing 
the risk of MetS [8]. Thus, we speculated that these changes 
in lipid profiles were associated with key genes/pathways of 
appetite and metabolism [32].

Next, we investigated whether the maternal diet affected 
hypothalamic appetite-related genes at 3 weeks of age 
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through epigenetic mechanisms. Our results revealed that 
the expression levels of POMC, NPY, and MC4R were altered 
in 3-week-old offspring of FR dams. Among these genes, 
POMC methylation was significantly different between the  
2 groups. Additionally, POMC methylation was negatively 
correlated with the mRNA expression of POMC. Consistent 
with our results, Plagemann et al. [28] previously demon-
strated that neonatal overfeeding leads to increased POMC 
methylation and decreased NPY methylation in FR rats. In 
rats, offspring from protein-restricted dams exhibit increased 
POMC methylation and decreased mRNA expression of 
POMC and NPY in early postnatal life [33]. Conversely, hy-
pomethylation and an increase in POMC expression in the 
hypothalamus have been observed in undernourished sheep 

[34]. In humans, hypermethylation of POMC in blood has 
been found to be associated with childhood obesity [35]. 
This discrepancy may be due to differences in the species and 
target tissues studied. Based on these results, we suggest 
that a lack of nutrients during pregnancy affects appetite sig-
naling in the hypothalamus, due to changes in DNA methyla-
tion, leading to adult obesity and MetS.

We further examined whether POMC methylation caused 
by maternal diet affected short- and long-term health out-
comes. This study focused on male offspring, which showed 
significant differences in POMC methylation between the 
2 groups. First, we identified the short-term effect of DNA 
methylation on metabolic profiles by confirming the signifi-
cant correlation between the hypermethylation of POMC 
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and HDL-C and LDL-C levels at 3 weeks of age. Our previ-
ous studies have demonstrated that hypermethylation of 
POMC is significantly associated with HDL-C levels in children 
[26,27]. Tung et al. [36] reported that POMC and MC4R 
neurons in the hypothalamus regulate HDL-c levels. Further-
more, a POMC mutation has been associated with higher 
LDL-C levels in adolescents [37]. Next, we investigated the 
long-term effect of DNA methylation on metabolic profiles 
by confirming the strong positive correlation between POMC 
methylation at 3 weeks of age and TG, LDL-C, and leptin 
levels at 6 months of age. Our earlier study reported that 
hypermethylation of POMC at birth is significantly associated 
with higher TG levels in children [26]. In addition, Plagemann 
et al. [28] found that hypermethylation of POMC due to 
early overfeeding causes hyperleptinemia in rats. In contrast, 
a high-fat and high-sucrose diet leads to hypomethylation of 
POMC and higher leptin levels in mice [38]. This discrepancy 
may be due to differences in the composition of the diet 
and the period of feeding. Collectively, our data suggest that 
altered POMC methylation in male offspring may contribute 
to the development of MetS in the offspring in later life. Fur-
ther follow-up studies of adults born under conditions of FR 
are needed to verify the long-term impact of altered POMC 
methylation.

This study demonstrated that altered methylation and ex-
pression of the POMC gene, induced by maternal undernu-
trition, can lead to changes in the metabolic profiles of male 
offspring. These changes in early life may directly contribute 
to obesity and MetS, although the difference in methylation 
levels is small. Furthermore, our previous study demonstrated 
that POMC methylation status can be stably maintained 
from birth to childhood [26]. Therefore, we conclude that 
POMC methylation, caused by maternal diet, can persistently 
affect appetite regulation and the development of MetS in 
offspring in later life. However, follow-up studies are needed 
to verify this conclusion.
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