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INTRODUCTION 
 

A commonly used stable transfection manipulation for 

an exogenous gene with a selectable marker that 

remains in the genome of eukaryotic cells and their 

daughter cells is highly desirable [1]. Cells then remain 

alive and can be further cultivated under selective 

stress with passaging. However, stable transfection 

manipulation induces progressive cellular senescence 

phenotypes, leading to a common problem in cell 

culture. The underlying mechanisms of stable 

transfection-induced cellular senescence remain poorly 

understood. As reported in our previous study [2], 

extended passaging of PANC-1 cells were triggered 

into a replicative senescence process with low CPT1C 

levels. Low CPT1C expression further caused 
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ABSTRACT 
 

Stable transfection manipulation with antibiotic selection and passaging induces progressive cellular senescence 
phenotypes. However, the underlying mechanisms remain poorly understood. This study demonstrated that 
stable transfection of the empty vector induced PANC-1 cells into cellular senescence. Metabolomics revealed 
several acylcarnitines and their upstream regulatory gene, carnitine palmitoyltransferase 1C (CPT1C) involved in 
fatty acid β-oxidation in mitochondria, were strikingly decreased in senescent PANC-1 cells. Low CPT1C expression 
triggered mitochondrial dysfunction, inhibited telomere elongation, impaired cell survival under metabolic stress, 
and hindered the malignance and tumorigenesis of senescent cells. On the contrary, mitochondrial activity was 
restored by CPT1C gain-of-function in senescent vector PANC-1 cells. PPARα and TP53/CDKN1A, crucial signaling 
components in cellular senescence, were downregulated in senescent PANC-1 cells. This study identifies CPT1C as 
a key regulator of stable transfection-induced progressive PANC-1 cell senescence that inhibits mitochondrial 
function-associated metabolic reprogramming. These findings confirm the need to identify cell culture alterations 
after stable transfection, particularly when cells are used for metabolomics and mitochondria-associated studies, 
and suggest inhibition of CPT1C could be a promising target to intervene pancreatic tumorigenesis. 
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mitochondria dysfunction-associated metabolic 

reprogramming and impaired malignancy in senescent 

replicative PANC-1 cells. More importantly, 

knockdown of CPT1C in cancer cells induced 

mitochondrial dysfunction, senescence-like growth 

suppression and cellular senescence and further 

suppressed malignancy and tumorigenesis in vivo and 

xenograft tumor growth in situ. On the contrary, the 

gain-of-function of CPT1C reversed PANC-1 cell 

senescence and enhanced mitochondrial function. 

CPT1C was hence confirmed as a novel biomarker for 

mitochondrial dysfunction-associated cellular 

senescence [2]. Recently, microRNA-1291 and its 

mimic empty vector pCMV stably transfected PANC-1 

cell lines were established to reveal the role of 

microRNA-1291 in pancreatic carcinoma cell 

metabolism and suppressed tumorigenesis [3]. It was 

found that stable transfection manipulation induces 

progressive PANC-1 cell senescence, but whether the 

underlying mechanisms of this senescence are 

mitochondrial dysfunction-associated or CPT1C-

depent remain unclear. Therefore, the current study 

aimed to study the metabolomics change in stable 

transfection-induced progressive PANC-1 cell 

senescence and to reveal the underlying molecular 

signals involved in this progress. The metabolomics 

results demonstrate several acylcarnitines and their 

upstream regulatory gene, CPT1C, were strikingly 

decreased in senescent PANC-1 cells. CPT1C was 

further identified as a crucial regulator in stable 

transfection-induced PANC-1 cell senescence by 

inhibiting mitochondrial function-associated metabolic 

reprogramming. These findings suggest the need to 

identify cell culture alterations after stable 

transfection, particularly when cells are used for 

metabolomics and mitochondria-associated studies, 

and suggest inhibition of CPT1C could be a promising 

target to intervene pancreatic tumorigenesis. 

 

RESULTS 
 

Stable transfection-induced PANC-1 cell senescence  
 

In our previous study, microRNA-1291 and its mimic 

empty vector pCMV stably transfected PANC-1 cell 

lines were established to reveal the role of 

microRNA-1291 in pancreatic carcinoma cell 

metabolism and suppressed tumorigenesis [3]. Here, it 

was confirmed that stable transfection of the empty 

vector pCMV in human pancreatic epithelioid 

carcinoma PANC-1 cells led to severe growth arrest 

and cellular senescence. 

 

Vector PANC-1 cells (PANC-1 cells stably transfected 

with the empty vector pCMV were characterized by an 

enlarged and flattened appearance arranged like 

flagstones with increased granularities in the cytoplasm 

(Figure 1A) compared with mock PANC-1 cells 

(untreated PANC-1 cells). Consistent with this result, 

degenerative changes of enlarged nuclei were also 

observed in vector PANC-1 cells (Figure 1B). To 

examine cell growth suppression of the senescence-

associated phenotypes, flow cytometry was performed to 

determine whether stable transfection of the vector 

caused an increase in the population of vector PANC-1 

cells in G2/M phase (Figure 1C). Vector PANC-1 cells 

exhibited lower proliferation than mock PANC-1 cells, as 

revealed by BrdU incorporation measured during DNA 

synthesis (Figure 1D) and cell growth curve tracing 

(Figure 1E). Furthermore, a weaker ability of vector 

PANC-1 cells to form cell colonies was observed (Figure 

1F). IL-8, a key SA secretory phenotype (SASP) factor 

involved in the senescence process [4–7], was increased 

in vector PANC-1 cells compared to mock PANC-1 cells 

(Figure 1G). IL-8 was negatively correlated (but without 

statistical significance) with CPT1C mRNA expression 

in pancreatic cancer patients (Supplementary Figure 2A), 

further supporting enhanced SASP in low-CPT1C-

induced senescent vector PANC-1 cells. More 

importantly, β-galactosidase (SA-β-gal) staining showed 

that mock PANC-1 cells were nearly negative for β-gal, 

while vector PANC-1 cells were positive for senescent 

signals (Figure 1H). The mRNA levels of TNF-α and its 

receptor TNFR1, were significantly increased in vector 

PANC-1, indicating the activation of extrinsic apoptosis 

pathways in the senescent cells. However, FAS mRNA 

expression was reduced in the senescent cells, which 

might result from the negative feedback regulation of 

activation of TNF-α-TNFR1 pathway (Figure 1I). 

 

Taken together, these data indicate that stable 

transfection of the empty vector triggered PANC-1 cells 

into a strong senescence-like growth suppression and 

severe cellular senescence. 

 

Metabolomics reveals a lower level of acylcarnitines 

in senescent vector PANC-1 cells, which is linked to 

reduced CPT1C expression 
 

Metabolomics analysis was performed to further 

identify potential regulators or biomarkers underlying 

cellular senescence induced by stable transfection of the 

empty vector pCMV. To identify the general trends in 

an unbiased way, unsupervised principal component 

analysis (PCA) was performed to reveal differences 

between the mock and vector PANC-1 cells. PCA 

scatter diagrams obtained from HILIC-ESI+-MS (Figure 

2A) and HILIC-ESI--MS (Supplementary Figure 3A) 

showed a clear separation between the mock and vector 

PANC-1 cells, suggesting a distinct discrimination in 

the metabolome profiles between these two groups. S-

plot of OPLS/DA models resulting from HILIC-ESI+- 
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Figure 1. Stable transfection-induced PANC-1 cell senescence. (A) Morphology graph of vector PANC-1 cells. (B) Confocal fluorescent 
graph of the nuclei (blue fluorescence) morphology of vector PANC-1 cells. (C) An increased percentage of vector PANC-1 cells was arrested in 
G2/M phase. Graphic (top) and percentage (bottom) representations of cell cycle distributions are shown. This experiment was repeated 
independently three times. (D) Decreased BrdU incorporation during DNA synthesis in vector PANC-1 cells. Data are presented as the mean ± 
S.E.M, n = 4 (**p < 0.01). (E) Cell growth curve shows decreased proliferation of vector PANC-1 cells. Data are presented as the mean ± S.E.M, 
n = 3 (*p < 0.05, **p < 0.01, ***p < 0.001). (F) Decreased ability of vector PANC-1 cells to form colonies when seeded at the indicated 
dilutions. (G) Quantitative RT-PCR analysis of the upregulated key SASP factor, IL-8 mRNA, in vector PANC-1 cells. Data are presented as the 
mean ± S.E.M, n = 3 (***p < 0.001). (H) SA-β-gal staining and positive senescence signal of vector PANC-1 cells. This experiment was repeated 
independently three times. (I) Activation of extrinsic apoptosis pathways was analyzed. See also Supplementary Figures 1 and 2. 
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MS indicated four significantly changed ions 

(Supplementary Figure 3B). The ions were further 

specifically identified as acetylcarnitine (Supplementary 

Figure 3C), propionylcarnitine (Supplementary Figure 

3D), isobutyrylcarnitine (Supplementary Figure 3E) and 

isovalerylcarnitine (Supplementary Figure 3F). 

Interestingly, the relative response of all of the marker 

ions was significantly reduced in senescent vector 

PANC-1 cells (Figure 2B).  

 

To identify the potential drivers behind the dramatic 

decrease in acylcarnitine levels in senescent vector 

PANC-1 cells, the mRNA expression of genes involved 

in acylcarnitine transport was further determined. 

Specifically, CPT1B and CPT2 mRNA levels were 

significantly decreased in vector PANC-1 cells, while 

CPT1A mRNA levels showed a slight increase and 

carnitine O-acetyltransferase (CRAT) mRNA expression 

remained unchanged (Figure 2C). However, CPT1C 

mRNA levels were the most strikingly decreased in 

vector PANC-1 cells compared to mock PANC-1 cells 

(Figure 2C). Furthermore, CPT1C protein levels were 

significantly reduced in senescent vector PANC-1 cells 

(Figure 2D). Together, these data imply that the 

decrease in CPT1C is the most important contributor to 

the transport of decreased acylcarnitines and may 

represent a driver of vector PANC-1 senescence. 

 

Dysfunctional mitochondria and inhibited telomere 

elongation in low-CPT1C-expressing senescent 

vector PANC-1 cells  

 

CPT1C catalyzes the transportation of fatty acids from 

the cytoplasm to the mitochondrial matrix for β-

oxidation in the mitochondrial outer member. 

Mitochondrial function was further examined in 

senescent vector PANC-1 cells. Notably, vector 

PANC-1 cells produced significantly less ATP under 

conditions of culture medium deprivation (Figure 3A). 

Moreover, the reduced intensity of absorbed rh123 

dye indicated the loss of mitochondrial 

transmembrane permeability upon low CPT1C 

expression in vector PANC-1 cells (Figure 3B).  

 

Oxygen consumption rates (OCRs) from vector PANC-1 

cells exhibited lower maximal respiration after the 

injection of FCCP than mock PANC-1 cells (Figure 3C, 

3D). More importantly, the spare respiratory capacity of 

vector PANC-1 cells was significantly decreased (Figure 

3C, 3E), which was indicative of a reduced ability to 

respond to an increased energy demand. However, vector 

PANC-1 cells also exhibited higher basal respiratory rates 

(Figure 3E) and glycolytic function in the forms of 

extracellular acidification rates (ECARs) (Supplementary 

Figure 4A), implying that the cells may adjust to 

mitochondrial respiration to maintain energy supply 

homeostasis under a long-term stable transfection-induced 

progressive senescence program [8]. Together, partially 

impaired mitochondrial respiration integrity upon low 

CPT1C expression was observed in senescent vector 

PANC-1 cells. 

 

PGC-1a mRNA levels were reduced in vector PANC-1 

cells, and its downstream genes, NRF-1 and TFAM 

mRNAs, were also decreased. CYTB, one of the 

representative mtDNA-encoded subunits [9], was 

subsequently lowered (Figure 3F). 

 

Genes encoding mitochondrial fission and fusion 

proteins, including MFN1, MFN2 and OPA1, were 

significantly reduced in senescent vector PANC-1 cells 

(Figure 3G), suggesting the mitochondrial network 

structure integrity was impaired in the senescent cells, 

which might further explain the impaired mitochondrial 

respiration and mitochondriogenesis pathways. PRNK, 

encoding PARKIN protein, was also reduced, while 

PINK1 mRNA expression increased in the senescent 

cells (Figure 3H). Combined with Figure 3G, these data 

suggested that mitochondrial autophagy (mitophagy) 

process might be hampered and a negative feedback 

might exist.  

 

On the contrary, enhanced cellular bioenergetics 

pathways (Figure 3I) were observed in the senescent 

cells overexpressing CPT1C, which suggested 

mitochondrial function was restored by CPT1C gain-

of-function. 

 

Additionally, the shortening or structural changes of 

telomeres at the ends of the chromosomes leads to a 

DNA damage response and ultimately triggers 

replicative senescence [10]. Shown as Figure 4A, stable 

transfection of the vector pCMV remarkably inhibited 

telomerase activity. As a consequence, the length of the 

telomere in senescent vector PANC-1 cells shortened by 

approximately 0.9 kb (Figure 4B).  

 

Taken together, low CPT1C expression contributed to 

stable transfection-related cell senescence in vector 

PANC-1 cells, which may result from decreased 

mitochondrial function and structure integrity, and 

inhibited telomere elongation in the progressive 

senescence program. On the contrary, mitochondrial 

activity was restored by CPT1C gain-of-function in 

senescent vector PANC-1 cells. 

 

Malignance are reduced in low-CPT1C-expressing 

senescent vector PANC-1 cells 
 

The consequences of mitochondrial dysfunction in 

senescent vector PANC-1 cells with low CPT1C 

expression were further examined. Cells were grown at 
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gradually decreasing concentrations of glucose or 

increasing doses of the glycolysis inhibitor, 2-

deoxyglucose (2-DG), for 72 h; fewer vector PANC-1 

cells were detected in cultures (Supplementary Figure 

5A, 5B). Vector PANC-1 cells also showed higher 

sensitivity to 0.5 mM glucose (Figure 5A), or 20 mM 2-

DG (Figure 5B). More importantly, low CPT1C 

expression sensitized vector PANC-1 cells to rapamycin, 

which is also a source of stress and cytotoxicity, and 

triggered a marked decrease in cell survival in vector 

PANC-1 cells (Figure 5C). These data suggest that low 

CPT1C expression may hinder senescent vector PANC-1 

cell growth under various forms of metabolic stress. 

 

Furthermore, compared with controls, the migration and 

invasion abilities of vector PANC-1 cells were 

significantly reduced (Figure 5D), thus further 

attenuating the incidence of tumor progression arising 

from these cells. Tumors from the senescent vector 

PANC-1 group grew much more slowly and were 

lighter than mock control cells (Figure 5E–5G).  

 

Taken together, low CPT1C expression impaired 

metabolic adaptation and the malignancy of senescent 

vector PANC-1 cells in vitro, which further hindered 

the ability of the transformed cells to form tumors in 
vivo. 

 

Signaling pathways involved in low-CPT1C-

expressing senescent vector PANC-1 cells 

 

Several crucial signaling components that regulate 

mitochondrial function and cellular senescence 

significantly were altered in senescent vector PANC-1 

cells. Specifically, a significant decrease in the mRNAs 

of PPARα, TP53 (P53) and its downstream target gene,

  

 
 

Figure 2. Metabolomics reveals a lower level of acylcarnitines in senescent vector PANC-1 cells, which is linked to reduced 
CPT1C expression. (A) PCA score plots of HILIC-ESI+-MS metabolomics profiles obtained from HILIC-ESI+-MS, n = 6/group. (B) Analysis of the 
relative response of acylcarnitine ions in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 6 (***p < 0.001). (C) 
Quantitative RT-PCR analysis of genes related to acylcarnitines. Data are presented as the mean ± S.E.M, n = 3 (ns indicates no significance, *p 
< 0.05, **p < 0.01, ***p < 0.001). The specific human primers to amplify corresponding mRNA were obtained from website of 

http://pga.mgh.harvard.edu/primerbank/ and PrimerDepot, and commercially available (Invitrogen) and shown in Supplementary Table 1. 
(D) Images and densitometric analysis of CPT1C protein bands of senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 
3 (**p < 0.01). See also Supplementary Figure 3. 

http://pga.mgh.harvard.edu/primerbank/
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Figure 3. Dysfunctional mitochondria in low-CPT1C-expressing senescent vector PANC-1 cells. (A) ATP production in senescent 
vector PANC-1 cells, the magnitude of this difference increased as the time in PBS was extended to 24 h. Data are presented as the mean ± 
S.E.M, n = 4 (**p < 0.01, ***p < 0.001). (B) Loss of mitochondrial transmembrane potential measured by the rh123 dequenching method in 
senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 4 (**p < 0.01). (C) Mitochondrial integrity in the forms of OCRs 
(pMol O2.min-1) in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 3. (D) Maximal respiration capacity in the form 
of OCRs in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 3 (**p < 0.01). (E) Spare respiratory capacity in the 
form of OCRs in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 3 (***p < 0.001). (F) Mitochondriogenesis 
analysis in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 3 (*p < 0.05, ***p < 0.001). (G) The mitochondrial 
network structure integrity analysis on the senescent cells. Data are presented as the mean ± S.E.M, n = 3 (***p < 0.001). (H) Mitochondrial 
autophagy analysis on the senescent cells. Data are presented as the mean ± S.E.M, n = 3 (**p < 0.01, ***p < 0.001). (I) Mitochondriogenesis 
analysis on senescent vector PANC-1 cells gaining of CPT1C function. Data are represented as mean ± S.E.M, n = 4 (*p< 0.05). See also 
Supplementary Figure 4. 
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CDKN1A (P21), were observed in senescent vector 

PANC-1 cells (Figure 6A). Reduced protein levels were 

further verified by immunoblotting (Figure 6B). The 

decreased P21 and P16 (Supplementary Figure 6A) 

expression levels also suggested the mitochondrial 

autophagy process was involved in the progressive 

senescence process [11–13]. 

 

The regulation of PPARα on CPT1C was clearly 

illustrated in our previous study [14]. Here, we further 

explored how the transcription factor TP53 regulates 

CPT1C expression. The CPT1C mRNA level was 

upregulated after inducing TP53 mRNA expression 

with 0.7 μM doxorubicin (a positive TP53 agonist) for 

24 h in PANC-1 cells (Figure 6C). CPT1C mRNA also 

increased after over-expressing 2 μg TP53 plasmids for 

24 h in PANC-1 cells (Figure 6D). On the contrary, the 

CPT1C mRNA level was downregulated after 

knockdown of TP53 mRNA expression with 50 μM si-

TP53 for 72 h (Figure 6E). More importantly, 

doxorubicin treatment reversed the si-TP53-induced 

downregulation of CPT1C mRNA expression (Figure 

6F). 

 

Furthermore, CPT1C, a target gene of PPARα [14] and 

TP53 [15], was identified as a novel biomarker and key 

regulator of cancer cell senescence through 

mitochondria-associated metabolic reprogramming [2]. 

PPARα and TP53/CDKN1A are also crucial signaling 

components that regulate mitochondrial function and 

cellular senescence [14, 16]. We further explored the 

connection between CPT1C with PPARα and  

 

TP53/CDKN1A in pancreatic cancer patients 

(Supplementary Figure 7A). According to data from 

Collisson Pancreas cohort, PPARα mRNA level 

positively correlated with CPT1C mRNA expression. 

Both TP53 and CDKN1A mRNA levels had no 

correlation with CPT1C mRNA expression in 

pancreatic cancer patients. 

 

DISCUSSION 
 

Tumor cell lines are widely used experimental models 

for determining the molecular events that drive cell 

growth. However, extended cell culture in vitro 

inevitably triggers culture-related changes of 

phenotypes, including cellular senescence [17, 18]. In 

general, cellular senescence can be divided into 

replicative senescence (RS) and premature senescence. 

RS has been described for all metabolically active cells 

that undergo a spontaneous decline in growth rate [19]. 

Our previous study confirmed that low CPT1C 

expression plays a crucial role in RS and further 

identified CPT1C as a novel biomarker and key 

regulator of cancer cell senescence through 

mitochondria-associated metabolic reprogramming [2]. 

 

Here, PANC-1 cells stably transfected with the empty 

vector, under antibiotic selection with passaging, fell 

into a senescence-like growth suppression and cellular 

senescence process, even without introducing an 

exogenous gene. Metabolomics profiling indicated 

reduced acylcarnitines resulting from the decreased 

expression of their upstream regulatory gene, CPT1C. A 

 

 
 

Figure 4. Inhibited telomere elongation in low-CPT1C-expressing senescent vector PANC-1 cells. (A) Telomerase activity was 
analyzed with the TRAP assay in mock and vector PANC-1 cells. This experiment was repeated three times. (B) Telomere length was 
determined with the TRF length assay in mock and vector PANC-1 cells. 
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decreased CPT1C level caused mitochondrial 

dysfunction, impaired mitochondrial network structure 

integrity, and inhibited telomere elongation, further 

impaired cell survival under metabolic stress, and 

suppressed the malignance and tumorigenesis of 

senescent vector PANC-1 cells. On the contrary, 

mitochondrial activity was restored by CPT1C gain-of-

function in the senescent vector PANC-1 cells. Taken 

together, low CPT1C expression was confirmed to 

cause mitochondria dysfunction -associated metabolic 

reprogramming in senescent vector PANC-1 cells. 

Besides, Lipo2000 reagent was used to establish pCMV 

stably transfected PANC-1 cell line. The lipid 

composition of transfection reagent might get into the 

inner of cells and contribute to the phenotypic changes, 

such as lipid metabolic reprogramming. Stable

 

 
 

Figure 5. Malignance is reduced in low-CPT1C-expressing senescent vector PANC-1 cells. Sensitivity to metabolic stress from (A) 
glucose deprivation (0.5 mM glucose) and (B) glycolytic inhibition (20 mM 2-deoxyglucose) of senescent vector PANC-1 cells at the indicated 
time points. Data are presented as the mean ± S.E.M, n = 5 (*p < 0.05, **p < 0.01, ***p < 0.001). (C) Sensitivity to metabolic stress from 
rapamycin stimuli of senescent vector PANC-1 cells at the indicated concentrations. Data are presented as the mean ± S.E.M, n = 5 (**p < 
0.01, ***p < 0.001). (D) Transwell migration and Matrigel invasion capacities of senescent vector PANC-1 cells. Data are presented as the 
mean ± S.E.M, n = 3 (*p < 0.05, **p < 0.01). (E) Tumor sizes are presented as the mean ± S.E.M over time, (n = 5) (**p < 0.01, ***p < 0.001). 
(F) Images of tumors after excision on day 42 post-implantation. (G) Comparison of dissected tumor weights (mean ± S.E.M, ***p < 0.001). 
See also Supplementary Figure 5. 



 

www.aging-us.com 6741 AGING 

 
 

Figure 6. Signaling pathways involved in low-CPT1C-expression-induced senescence in vector PANC-1 cells and regulation of the 
TP53 signaling pathway on CPT1C. (A) Quantitative RT-PCR analysis for suppressed genes in senescent vector PANC-1 cells. Data are 
presented as the mean ± S.E.M, n = 3 (***p < 0.001). (B) Images and densitometric analysis for protein bands altered in senescent vector PANC-1 
cells. The left panel shared the same GAPDH control with Figure 2D, all these bands were harvested from the same experiment. Data are 
presented as the mean ± S.E.M, n = 3 (*p < 0.05, **p < 0.01, ***p < 0.001). (C) The CPT1C mRNA level is upregulated after inducing TP53 mRNA 
expression with 0.7 μM doxorubicin (Sigma) for 24 h in PANC-1 cells. (D) CPT1C mRNA is increased after overexpressing 2 μg of TP53 plasmids for 
24 h in PANC-1 cells. (E) CPT1C mRNA expression was downregulated after knockdown of TP53 mRNA expression with 50 μM si-TP53 for 72 h in 
PANC-1 cells. The sequences of specific human siRNAs were commercially available (RiboBio) and listed in Supplementary Table 2. The optimal 
sense against TP53 was the following: 5`-GCACAGAGGAAGAGAAUCU dTdT-3'. (F) Doxorubicin reversed the si-TP53-induced downregulation of 
CPT1C mRNA expression. For the statistical analysis of TP53 mRNA expression, 1 si-Control+Doxorubicin vs si-Control+DMSO, ***p < 0.001; 2 si-
TP53+DMSO vs si-Control+DMSO, ***p < 0.001; and 3 si-TP53+Doxorubicin vs si-TP53+DMSO, **p < 0.01. For the statistical analysis of 
CDKN1A/P53 mRNA level, 4 si-Control+Doxorubicin vs si-Control+DMSO, ***p < 0.001; 5 si-TP53+DMSO vs si-Control+DMSO, *p < 0.05; and 6 si-
TP53+Doxorubicin vs si-TP53+DMSO, **p < 0.01. For the statistical analysis of CPT1C mRNA expression, 7 si-Control+Doxorubicin vs si-
Control+DMSO, ***p < 0.001; 8 si-TP53+DMSO vs si-Control+DMSO, *p < 0.05; and 9 si-TP53+Doxorubicin vs si-TP53+DMSO, **p < 0.01. See also 
Supplementary Figure 7. 
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transfection manipulation-induced progressive 

senescence provided further evidence to our previous 

study that low a CPT1C level plays a crucial role in the 

mitochondrial dysfunction and metabolic 

reprogramming-associated RS process [2].  

 

Mounting evidence suggests that aberrant mitochondria 

trigger cellular senescence [20–22]. In our previous 

study, mitochondrial dysfunction-mediated senescent 

phenotypes were observed when CPT1C was efficiently 

depleted in tumor cell lines. Conversely, CPT1C gain-

of-function reversed impaired mitochondrial function 

and cellular senescence [2]. Deregulation of lipid 

metabolism was reported to induce senescence process 

[23], which was further confirmed by our previous 

study that accumulated lipids and lipid toxicity induced 

cellular senescence [24]. In the current study, a 

decreased CPT1C level caused mitochondrial 

dysfunction and impaired mitochondrial structure 

integrity on senescent vector PANC-1 cells, further 

supporting that the absence of CPT1C contributes to 

mitochondrial dysfunction-related cellular senescence. 

Down-regulation of mitochondrial fission and fusion 

genes [25] and the PINK1/PARKIN pathway [26], and 

the decreased P21 and P16 mRNA expression [13, 27], 

suggested that impaired mitochondrial autophagy 

process might be induced in senescent cells with low 

CPT1C expression [28]. On the contrary, mitochondrial 

activity was restored by CPT1C gain-of-function in 

senescent cells. Moreover, several well-characterized 

triggers of senescence were identified, including 

shortened telomeres, activated oncogenes, and 

genotoxic and oxidative stress [10, 29]. RS results 

primarily from the shortening and other structural 

changes of telomeres at the ends of chromosomes and 

further triggers the DNA damage response [10]. Here, 

we demonstrated that stable transfection with the vector 

pCMV remarkably inhibited telomerase activity and 

further depressed telomerase activity-catalyzed telomere 

elongation in senescent vector PANC-1 cells with low 

CPT1C expression. 

 

The suppression of proliferation of senescent cells, to a 

large degree, is mediated by cyclin-dependent kinase 

inhibitor p21WAF1 and the tumor suppressor p53 

pathway [30, 31]. Depletion of the novel p53 target 

gene, cpt1c, delays tumor growth in the 

neurofibromatosis type I tumor model [15]. Hence, we 

speculated that CPT1C regulates cellular senescence via 

its upstream gene, TP53. Here, decreased expression of 

TP53 and its downstream target gene CDKN1A/P21 

was observed in senescent vector PANC-1 cells, 

supporting the crucial role of the TP53/CDKN1A 

pathway in regulating cellular senescence. Moreover, 

our previous study demonstrated that PPARα regulates 

cellular senescence by its novel target gene, CPT1C 

[14]. Here, PPARα expression was downregulated in 

senescent PANC-1 cells. In pancreatic cancer patients, 

the PPARα mRNA level positively correlated with 

CPT1C mRNA expression, while both TP53 and 

CDKN1A mRNA levels had no correlation with CPT1C 

mRNA expression. CDKN1A/P21 is a  

well-known inhibitor of cell cycle and can arrest the 

DNA damage-induced cell cycle progression in G1/S 

and G2/M transitions by inhibiting mitotic CDK4, 

6/cyclin-D and CDK2/cyclin-E complexes, respectively 

[13]. Our data also showed increased G2/M phase arrest 

in the population of vector PANC-1 cells with 

senescence phenotypes and low CPT1C expression. 

TP53-P21 pathway plays a prominent pro-apoptotic 

role, while reversely it also promotes tumor cell 

survival in response to metabolic stress [15]. The two-

sided effects of TP53-P21 pathway may explain the 

decrease in TP53, P21 and CPT1C in senescent vector 

PANC-1 cells. Feedback regulation for cells to maintain 

homeostasis status in the progressive senescence 

program, may explain no correlation between TP53/P21 

levels and CPT1C expression. 

 

CPT1C, an enzyme located in the outer mitochondrial 

membrane [32], is involved in lipid metabolism, cellular 

energy supply [33–35] and other physiological or 

pathological processes [36–39]. The knockdown of 

CPT1C inhibited the tumorigenesis of PANC-1 cells in 

vivo [2, 33] and further suppressed xenograft tumor 

growth in situ [2], suggesting that CPT1C represents a 

therapeutic target for cancer treatment. In summary, 

stable transfection-induced progressive PANC-1 cell 

senescence is involved in decreased CPT1C expression 

through the collapse of mitochondrial function-

associated metabolic reprogramming. These results 

confirm the need to identify cell culture alterations after 

stable transfection, particularly when used for 

metabolomics and mitochondria-associated studies, and 

further suggest that inhibition of CPT1C has the 

potential to be a target to intervene pancreatic 

tumorigenesis. 

 

MATERIALS AND METHODS  
 

Cell culture 

 

PANC-1 cell line was purchased and authenticated with 

STR genotyping from Guangzhou Cellcook Biotech 

Co., Ltd., and further verified without mycoplasma 

contamination (Beyotime).  

 

Cells were grown in the Dulbecco's modified Eagle's 

medium (DMEM, Cellgro) with 10% fetal bovine serum 

(FBS, Gibco), 100 U/mL penicillin sodium (Lonza) and 

100 μg/mL streptomycin sulfate (Lonza) at 37 °C in a 

humidified atmosphere with 5% CO2. 
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Establishment of pCMV stably transfected PANC-1 

cell line 

 

As shown in our previous study [40], 2 × 105 PANC-1 

cells in exponential growth were seeded into a well of a 

6-well plate. After 24 hours, cells were transfected with 

2.5 mg of pCMV empty vector with a selectable marker 

using Lipo2000 (Invitrogen). Culture media was 

replaced after 24 hours, then cells were selected with 

500 mg/mL G418. After 3~5 weeks, G418-resistant 

clones were selected with a cloning ring for 

amplification in further culture.  

 

Senescence-like growth suppression and cellular 

senescence analysis 

 

Cell morphology photographs were taken by a 

microscope (×200, Olympus). Cells plated onto 

coverslip (NEST) were fixed with 4% 

paraformaldehyde, cell nuclei were stained with 

ProLong Gold Antifade Reagent with DAPI 

(Invitrogen), the cell nuclei morphology was then 

observed with a laser confocal microscope (Zeiss). Cells 

fixed in cold 70% ethanol overnight were stained with 

propidium iodide (PI, Beyotime) staining buffer in the 

dark at 37 °C for 30 min, cell cycle was then analyzed 

on an EPICS XL flow cytometer (Beckman Coulter). 

Cells were labeled with 5-bromo-29-deoxyuridine 

(BrdU) for 72 h, then fixed in situ and incubated with 

anti-BrdU antibodies for 90 min. Rinsing with PBS, 

cells were incubated with substrate solution for 5 min. 

The absorbance was measured at 370 nm with a 

reference wavelength at 492 nm [41]. A cell growth 

curve was also drawn to observe the cell growth rate. 

Cells were seeded into 6-well plates at a density of 1 × 

105 cells/well, cultured under standard culture 

conditions, and counted under a microscope with trypan 

blue on the indicated days. 5000, 2500 or 1250 cells 

were cultured for 2 weeks, then fixed and stained with 

Diff-Quik (Propbs), colony areas were quantified with 

ImageJ software to investigate colony formation ability. 

The induction of IL-8 mRNA expression was analyzed 

by quantitative RT-PCR to evaluate SASP as previously 

reported [7]. The SA-β-gal assay (Beyotime) is the most 

commonly used method to detect senescent cells [42]. 

Cells were fixed and stained with staining working 

solution containing X-Gal at 37 °C overnight, the 

population of SA-β-gal positive cells was then counted. 

 

Apoptosis pathway analysis 

 

For apoptosis pathway analysis, the TNF-α, TNFR1 and 

Fas mRNA expression was analyzed by quantitative 

RT-PCR [43].  

Metabolomics analysis 

 

The collection, preparation and UPLC-ESI-QE-MS 

analysis on the cell sample for metabolomics were 

performed as described in our previous reports [3, 44]. 

An aliquot (5 μL) of samples were subjected to an ultra-

high performance liquid chromatography electrospray 

ionization mass spectrometry (UHPLC-ESI-MS). 

Hydrophilic interaction chromatography (HILIC) 

separation was performed with an Atlantis Silica HILIC 

column (3 μm, 2.1 mm i.d. × 100 mm, Waters) on a 

Thermo Scientific Dionex Ultimate 3000 UHPLC 

system. MS was performed with a Thermo Scientific Q 

ExactiveTM benchtop Orbitrap mass spectrometer in 

ESI positive or negative mode (Thermo Scientific). 

Untargeted profiling analysis acquired the data followed 

by Top-10 data-dependent MS/MS. Total ion 

chromatograms and mass spectra from LC-HRMS runs 

were generated as raw files in Xcalibur (Thermo 

Scientific). 

 

Optimization for comprehensive metabolite phenotypes 

between two groups and discovering differential 

metabolites, data mining consisting of background noise 

subtraction, automated peak detection and integration, 

peak alignment, multivariate principal component 

analysis (PCA) and univariate analysis, were performed 

with Thermo Scientific label-free differential analysis 

bioinformatics software SIEVE 2.2 (Thermo Scientific) 

and SIMCA-P 13.0 (Umetrics). Subsequently, 

metabolites were putatively identified based on accurate 

mass match and fragmentation pattern match. With the 

mass-to-charge (m/z) ratio of the metabolic features, 

putative structural annotation was carried out by 

retrieving the metabolite databases HMDB 

(http://www.hmdb.ca/), KEGG (http://www.genome.jp/ 

kegg/) and METLIN (http://metlin.scripps.edu). Mz 

Cloud (https://www.mzcloud.org/) and METLIN were 

used to match MS/MS spectral.  

 

Quantitative RT-PCR analysis 

 

Analysis was performed as described in a previous 

report [45]. Cells were lysed with Trizol (Invitrogen), 

and total RNA was extracted with ethanol precipitation. 

RNA concentration was measured with a NanoDrop 

Flex Station 3 (Molecular Device). 1 μg purified RNA 

was  randomly reverse-transcribed to cDNA with the 

PrimeScript RT reagent kit with gDNA eraser (TaKaRa 

Biotech). Real-time PCR was then performed with 

SYBR Premix Ex Taq II (Tli RnaseH Plus) kit (TaKaRa 

Biotech) in a 7500 Real-Time PCR System (Applied 

Biosystems). Raw gene expression values were 

normalized with housekeeping ACTB mRNA from  

http://www.hmdb.ca/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://metlin.scripps.edu/
https://www.mzcloud.org/
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the same reaction. The specific human primers  

obtained from website of http://pga.mgh.harvard.edu/ 

primerbank/ and PrimerDepot, were commercially 

available at Invitrogen Corporation and shown in 

Supplementary Table 1. 
 

Western blot analysis 
 

Analysis was performed as described in a previous report 

[46]. Cells were homogenized with the 

Radioimmunoprecipitation assay (RIPA) lysis buffer 

containing phenylmethylsulfonyl fluoride (PMSF). 

Concentrations of prepared proteins were determined 

with the BCA protein assay (Thermo Scientific). Proteins 

were electrophoresed with a 10% SDS-PAGE and 

transferred to the Polyvinylidene Fluoride (PVDF) 

membranes (Millipore). 5% nonfat milk in Tris-Buffered-

Saline with Tween (TBST) was used to block the 

nonspecific banding, then PVDF membranes were 

incubated with primary antibody overnight at 4°C. The 

antibodies used were: CPT1C (Cat. No.: #ab87498, 

Abcam), TP53 (#ab26, Abcam), P21 (#sc-271610, Santa 

Cruz), PPARα (#ab24509, Abcam) and GAPDH (#2118, 

Cell Signaling Technology). The immunoblot bands were 

visualized by anti-rabbit horseradish peroxidase-linked 

secondary antibody (Cell Signaling Technology) for 1 h 

at 37°C. After washing with TBST for 3 times, protein-

antibody complexes were detected with the 

Electrochemiluminescence (ECL) detection kit (Engreen 

Biosystem) on a chemiluminescence imaging system (GE 

Healthcare). The intensity of immunoblot bands was 

quantitated with the Quantity One software (Bio-Rad 

Laboratories). 

 

Mitochondrial dysfunction analysis 

 

Analysis was performed as described in our previous 

study [2]. To measure the total ATP production, culture 

medium was replaced with PBS for 12 h and 

luminescence representing cellular ATP production 

levels was detected with the CellTiter-Glo Luminescent 

Cell Viability Assay (Promega) on a FlexStation 3 

(Molecular Devices). The mitochondrial membrane 

depolarization was measured via fluorescence 

dequenching of 0.4 μM rh123 (Sigma) as previously 

reported [47]. The mean rh123 (excitation: 485 nm, 

emission: 535 nm) fluorescent intensity of 25 fields in 

each well was calculated with ArrayScanVTI High 

Content Application (Thermo Fisher). Cells were seeded 

into XF24 V7 cell culture plates (Seahorse Bioscience) 

with the same cell density to analyze mitochondrial 

respirations between the two groups as previously 

described [48]. The culture medium was replaced with 

XF assay medium (Seahorse Bioscience) on the next day. 

After incubation without CO2 for 1 h, the rate of change 

for dissolved O2 concentration (measurement of OCR) 

was measured by an XF24 Extracellular Flux Analyzer 

(Seahorse Bioscience). Cells were incubated under four 

conditions sequentially: (a) basal respiration was 

measured without additives; (b) 1 μM oligomycin was 

added to inhibit ATP synthase, mitochondrial Complex V 

and oxidative phosphorylation (OXPHOS); (c) the 

maximal mitochondrial respiration was induced by 

adding 1 μM carbonyl cyanide-4-trifluoro methoxy 

phenyl hydrazine (FCCP, a mitochondrial uncoupler); 

and (d) the reaction was ended with 1 μM rotenone and 1 

μM antimycin A (mitochondrial Complex I and III 

inhibitors and poisons). Considering the size of senescent 

vector PANC-1 cells was larger than the untreated 

PANC-1 cells, the mitochondrial respiration OCRs were 

normalized with the total protein concentration of each 

group after harvesting and lysing the cells for the 

Seahorse experiment. Mitochondrial respirations coupled 

to ATP synthesis were obtained with subtracting 

oligomycin responses from the basal OCRs. The 

difference between maximal respirations and basal 

respirations was defined as spare respiratory capacity. 

Mitochondriogenic pathways and mitochondrial-encoded 

mRNAs were measured via quantitative RT-PCR 

analysis as previously described. For analysis of the 

integrity of the mitochondrial network, the MFN1, MFN2 

and OPA1 levels were measured by quantitative RT-PCR 

[25]. Mitophagy was analyzed for the MFN1, MFN2 and 

OPA1 levels and PINK1/PARKIN pathway using 

quantitative RT-PCR [26]. 

 

Telomerase activity and telomere length assays 

 

Telomerase activity analysis was performed with a 

telomeric repeat amplification protocol (TRAP) assay. 

Briefly, approximately 2 × 106 cells were resuspended in 

lysis reagent. Telomeric DNA was elongated and purified, 

and amplification was performed by PCR. PCR products 

were separated on a 10% nondenaturing PAGE gel. The 

gel was fixed, stained using Gel-red (Biotium) and 

photographed. The terminal restriction fragment (TRF) 

length assay was performed to determine the telomere 

length as described in a previous report [41, 49]. Genomic 

DNA was digested with Hinf1/Rsal restriction enzymes. 

The digested DNA fragments were electrophoresed on a 

0.8% agarose gel, transferred to a nylon membrane by 

capillary transfer and then fixed on a wet blotting 

membrane by UV crosslinking. The membrane  

was hybridized with a DIG-labeled hybridization probe 

for telomeric repeats and incubated with anti-DIG-

alkaline phosphatase. The TRF was determined by 

chemiluminescence detection (GE Healthcare). 

 

Metabolic stress stimuli  
 

Analysis was performed as previously described [50]. 

The cells were incubated in culture medium deprived of 

http://pga.mgh.harvard.edu/primerbank/
http://pga.mgh.harvard.edu/primerbank/
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glucose (Sigma). 2-DG (Sigma) in PBS was diluted to 

the required concentrations with culture medium. Cells 

were further treated with pre-optimized 0.5 mM glucose 

or 20 mM 2-DG at the indicated days. Rapamycin 

(Chemietek) in DMSO was diluted to the indicated 

concentrations with culture media, SRB staining was 

performed to evaluate the cell growth after 72 h. 

 

Sulforhodamine B (SRB) assays 

 

Analysis was performed as previously described [51]. 

Cells were fixed in situ with 50 μL of pre-cold 50% 

(w/v) trichloroacetic acid (TCA) for 1 h at 4°C. After 

washing with ultrapure water and drying, each well was 

incubated in 100 μL of 0.4% SRB solution (w/v, SRB 

dissolved in 1% (v/v) acetic acid) for 30 min at room 

temperature. After washing with 1% acetic acid and 

drying, SRB stains were solubilized in 10 mM Tris-HCl 

(pH=10.5) and absorbance was determined at 515 nm. 

 

Transwell migration and matrigel invasion assays 
 

Assays were employed as described in our previous 

reports [3, 50]. Transwell migration and matrigel 

invasion assays were employed to evaluate cell migration 

and invasion capacities, respectively. Briefly, cells 

suspension of 3×104 was added to cell culture inserts 

(Corning) containing a polycarbonate filter with 8 μm 

diameter pores blocked with 2.5% BSA for transwell 

migration assay or coated with 1:5 dilution matrigel 100 

ul/well for matrigel invasion assay. Cells were incubated 

for 17 h under standard culture conditions. Tumor cells 

remaining on the topside of the membrane or gel were 

removed, and cells that had migrated or invaded to the 

underside were fixed and stained with Diff-Quik 

(PolySciences). Five fields per insert were photographed 

and the number of cells was counted under microscope. 

 

Xenograft mice assays  
 

Mouse xenograft model were used as previously 

described [3]. 6~8 weeks old athymic male nude mice 

(BALB/c-nu/nu) were purchased from the Laboratory 

Animal Center of Sun Yat-sen University, and 

maintained with water and chow provided ad libitum 

under standard 12 h light/ 12 h dark cycle. Exponentially-

growing cells were injected subcutaneously into the right 

flank of mice (5 × 106 cells in 0.2 ml of 50% matrigel 

basement membrane matrix (BD Biosciences) per 

mouse). Tumor sizes and body weights were measured 

once a week for 6 weeks, tumor length and width were 

measured with a digital caliper. The formula utilized to 

calculate was: tumor volume (mm3) = 3.14/6*((tumor 

length + width)/2)^3. Mice were sacrificed when the 

tumors reached 2 cm in diameter, and xenograft tumors 

were extracted and weighed. 

Bioinformatics analysis 
 

All cohort data were downloaded at https://www. 

oncomine.org [52] and http://www.cbioportal.org [53, 

54]. The CPT1C reporter (probe) is 227468_at, the 

PPARα reporter is 206870_at, the TP53 reporter is 

201746_at, the CDKN1A reporter is 1555186_at, the IL-8 

reporter is 202859_x_at in Collisson Pancreas cohort  

(n = 27). 

 

Plasmid transit transfection  
 

Analysis was performed as described in a previous 

report [55]. Human CPT1C expression plasmid was 

commercially constructed by Genechem Corporation. 

Human TP53 expression plasmid was obtained from 

Addgene nonprofit plasmid repository. Briefly, the cells 

were grown in 6-well plates at 80% confluence then 

transfected with plasmids using Lipo2000 reagent 

(Invitrogen) in antibiotic-free culture medium following 

the instruction of manufacturer. More detailed, 4 μL 

Lipo2000 reagent or 2 μg DNA was diluted well in 250 

μL Opti-MEM medium then incubated for 5 mins 

respectively. 250 μL diluted DNA was added to 250 μL 

diluted Lipo2000 reagent (1:1 ratio) then incubated for 

20 mins. 500 μL DNA-reagent complex was added to 

the culture medium of each well and mixed gently. 

Quantitative RT-PCR was performed at 24 h post-

transfection as described above. 

 

Gene silencing by RNA interference  

 

Silencing with siRNA was performed as previously 

described [56]. Cells were seeded into 6-well plates at 1 

× 105 cells/well. Cells were transfected with 50 nM 

siRNA or siControl using the Lipofectamine 

RNAiMAX (Life Technologies) on the second day. 

Quantitative RT-PCR was performed at 72 h post-

transfection as described above. The sequences of 

specific human siRNAs were commercially available 

(RiboBio) and listed in Supplementary Table 2.  

 

Statistical analysis 
 

All values were expressed as the mean ± S.E.M. Two-

tailed Student’s t tests and graphs were performed using 

GraphPad Prism v6.0c software. Significance is 

represented by *p < 0.05, **p < 0.01, **p < 0.001 

versus control. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 
 

Supplementary Figure 1. (related to Figure 1). Quantification of the cell nuclei size. (A) The cell nuclei size was quantified with 
Image J software. 

. 
 

 

 

 
 

Supplementary Figure 2. (related to Figure 1). Correlation of key SASP factor, IL-8 with CPT1C expression in pancreatic cancer 
patients. (A) IL-8 negatively correlates with CPT1C mRNA expression in pancreatic cancer patients. 
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Supplementary Figure 3. (related to Figure 2). Metabolomics profiles reveal significantly decreased acylcarnitines in 
senescent vector PANC-1 cells. (A) PCA score plots of HILIC-ESI--MS metabolomics profiles obtained from HILIC-ESI--MS, n = 6/group. (B) 
S-plot of OPLS/DA models of HILIC-ESI+-MS data. (C–F) Validation of cell metabolite biomarkers by LC-MS/MS analysis. Corresponding MS/MS 
spectra of authentic chemicals (up) and cell samples (bottom) are shown. 
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Supplementary Figure 4. (related to Figure 3). Vector PANC-1 cells exhibited higher glycolytic function. (A) Glycolytic function in 
the forms of ECARs (mpH.min-1) in senescent vector PANC-1 cells. Data are presented as the mean ± S.E.M, n = 3. 

 

 
 

Supplementary Figure 5. (related to Figure 5). Cell sensitivity to metabolic stress. Cell sensitivity to metabolic stress from (A) 
glucose withdrawal and (B) glycolytic inhibition in senescent vector PANC-1 cells at the indicated concentrations is shown. Data are presented 
as the mean ± S.E.M, n = 5 (*p < 0.05, **p < 0.01). 

 

 

 

Supplementary Figure 6. Reduced CDKN1A (P16) mRNA in the senescent vector PANC-1 cells. (A) Quantitative RT-PCR analysis for 
P16 was performed in the senescent vector PANC-1 cells. 
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Supplementary Figure 7. (related to Figure 6). Correlation of crucial signaling components of cellular senescence with CPT1C 
expression in pancreatic cancer patients. (A) Correlation analysis between PPARα, TP53, and CDKN1A with CPT1C mRNA expression in 
pancreatic cancer patients (data from the Collisson Pancreas cohort, n = 27). 
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Supplementary Tables 
 

Supplementary Table 1. Sequence of primers for quantitative RT-PCR analysis. 

Gene  

Name 

Genebank  

Accession 

Species 

Specificity 

Sequences  

of Primers 

β-actin NM_001101 Human forward 5′- CCTTGCACATGCCGGAG-3′ 

reverse 5′-GCACAGAGCCTCGCCTT-3′ 

CPT1A NM_001876 Human forward 5′-GCCTCGTATGTGAGGCAAAA-3′ 

reverse 5′-TCATCAAGAAATGTCGCACG-3′ 

CPT1B NM_004377 Human forward 5′-GGTCCAGTTTACGGCGATAC-3′ 

reverse 5′-CCTCTCATGGTGAACAGCAA-3′ 

CPT1C NM_001136052 Human forward 5′-GGATGGCACTGAAGAGGAAA-3′ 

reverse 5′-TCCTGGAAAAGGCATCTCTC-3′ 

CPT2 NM_000098 Human forward 5′-CGGAGTCTCGAGCAGATAGG-3′ 

reverse 5′- GGAAAAGAACTGCATGAGCA-3′ 

CRAT NM_001257363 Human forward 5′-GGGCTCGAGTAGATGACCAC-3′ 

reverse 5′-ATGAGTTTCAGGCCTCAGGA-3′ 

IL-8 NM_000584 Human forward 5′- ACTGAGAGTGATTGAGAGTGGAC-3′ 

reverse 5′-AACCCTCTGCACCCAGTTTTC-3′ 

PGC-1α NM_013261 Human forward 5′-AATCCGTCTTCATCCACAGG-3′ 

reverse 5′-GGTGCAGTGACCAATCAGAA-3′ 

NRF1 NM_001040110 Human forward 5′-AGGAACACGGAGTGACCCAA-3′ 

reverse 5′-TATGCTCGGTGTAAGTAGCCA-3′ 

TFAM NM_003201 Human forward 5′- ATGGCGTTTCTCCGAAGCAT-3′ 

reverse 5′-TCCGCCCTATAAGCATCTTGA-3′ 

Cytochrome b NM_000101 Human forward 5′-CCCAGTGGTACTTTGGTGCC-3′ 

reverse 5′-GCGGTCATGTACTTCTGTCCC-3′ 

TP53 NM_001126118 Human forward 5′-CAGCACATGACGGAGGTTGT-3′ 

reverse 5′-TCATCCAAATACTCCACACGC-3′ 

CDKN1A NM_078467 Human forward 5′-TGTCCGTCAGAACCCATGC-3′ 

reverse 5′-AAAGTCGAAGTTCCATCGCTC-3′ 

PPARα NM_005036 Human forward 5′-CGGTGACTTATCCTGTGGTCC-3′ 

reverse 5′-CCGCAGATTCTACATTCGATGTT-3′ 

TNFA NM_000594 Human forward 5′-GAGGCCAAGCCCTGGTATG-3′ 

reverse 5′-CGGGCCGATTGATCTCAGC-3′ 

TNFR1 NM_001065 Human forward 5′-AACGAGTGTGTCTCCTGTAGT-3′ 

reverse 5′-GGAGTAGAGCTTGGACTTCCAC-3′ 

FAS NM_000043 Human forward 5′-AGATTGTGTGATGAAGGACATGG-3′ 

reverse 5′-TGTTGCTGGTGAGTGTGCATT-3′ 

FASL NM_000639 Human forward 5′-TGCCTTGGTAGGATTGGGC-3′ 

reverse 5′-GCTGGTAGACTCTCGGAGTTC-3′ 

PRKN NM_004562 Human forward 5′-CCCACCTCTGACAAGGAAACA-3′ 

reverse 5′-TCGTGAACAAACTGCCGATCA-3′ 

PINK1 NM_032409 Human forward 5′-GGAGGAGTATCTGATAGGGCAG-3′ 

reverse 5′-AACCCGGTGCTCTTTGTCAC-3′ 

CDKN2A NM_000077 Human forward 5′-ATGGAGCCTTCGGCTGACT-3′ 

reverse 5′-GTAACTATTCGGTGCGTTGGG-3′ 

OPA1 NM_015560 Human forward 5′-CTGCAGGTCCCAAATTGGTT-3′ 

reverse 5′-TCTTTGTCTGACACCTTCCTGT-3′ 

MFN1 NM_033540 Human forward 5′-CGGGGTGACCTTCGAGC-3′ 

reverse 5′-TTCTGCCATTATGCACCTGGA-3′ 

MFN2 NM_001127660 Human forward 5′-AGCGTTCAGAGGCCATCG-3′ 

reverse 5′-TCCAAGCTTCTTCACCTTCCC-3′ 
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Supplementary Table 2. Sequences of RNAi assay. 

RNAi Name Species Specificity Sequences 

siRNA TP53-1 Human 5′-GGACAUACCAGCUUAGAUU dTdT-3′ 

siRNA TP53-2 Human 5′-GCACAGAGGAAGAGAAUCU dTdT-3′ 

siRNA TP53-3 Human 5′-GACUCCAGUGGUAAUCUAC dTdT-3′ 

 

 


