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An image interaction approach to quantum-
phase engineering of two-dimensional
materials

Valerio Di Giulio 1, P. A. D. Gonçalves 1 & F. Javier García de Abajo 1,2

Tuning electrical, optical, and thermal material properties is central for engi-
neering andunderstanding solid-state systems. In this scenario, atomically thin
materials are appealing because of their sensitivity to electric and magnetic
gating, as well as to interlayer hybridization. Here, we introduce a radically
different approach to material engineering relying on the image interaction
experienced by electrons in a two-dimensional material when placed in
proximity of an electrically neutral structure. We theoretically show that
electrons in a semiconductor atomic layer acquire a quantum phase resulting
from the image potential induced by the presence of a neighboring periodic
array of conducting ribbons, which in turn modifies the optical, electrical, and
thermal properties of the monolayer, giving rise to additional interband
optical absorption, plasmon hybridization, and metal-insulator transitions.
Beyond its fundamental interest, material engineering based on the image
interaction represents a disruptive approach to tailor the properties of atomic
layers for application in nanodevices.

At the heart of condensed-matter physics is the drive to manipulate
materials in a purposeful fashion to improve or enable functionalities.
To that end, the sustained advances in fabrication capabilities alongwith
the continuous emergence of novel material platforms have together
fueled the field over the past half-century. Moreover, when suitably
engineered, nanostructured materials can generally exhibit new prop-
erties beyond those found in their native, bulk form. A paradigmatic
example that benefited from such approach was the development of
semiconductor devices1,2, whose electronic properties were controlled
by modifying the band structure through, for example, spatially pat-
terning their compositional or doping characteristics2–7.

With the advent of two-dimensional (2D) and atomically thin
materials8–11, those ideas were swiftly transferred to this arena as well,
leading to the realization of 2D superlattices that incorporated not
only vertical stacks, but also laterally assembled heterostructures12–17,
as well as electrically modulated graphene18,19, artificial graphene20,21,
and optical near-field dressing through periodic patterning of the
supporting dielectric substrate22. More recently, similar band struc-
ture engineering concepts have been explored to create moiré

superlattices12,23–26 and moiré excitons27–29, and also to investigate
topological phenomena30–33. However, these approaches are generally
invasive, as they require physical material nanostructuring, the injec-
tion of charge carriers, or interlayer hopping. Now, the question arises,
can a more gentle engineering of a 2D material be realized without
structural modifications or exposure to external fields?

In this work, we introduce a disruptive approach for tailoring the
electrical, optical, and thermal properties of 2D materials based on the
manipulation of their electronic band structures by means of the gate-
free, non-contact image-potential interaction experienced by the elec-
trons of the material in the presence of a neutral neighboring structure
(see Fig. 1). Indeed, when a charged particle (e.g., an electron in the 2D
material) is placed near an interface, an image potential is induced that
affects the particle dynamics. For free electrons, the image interaction is
tantamount to the position-dependent Aharonov–Bohm quantum
phase (Q-phase) imprinted on their wave functions by the self-induced
electromagnetic fields in the vicinity of the interface34. Likewise, valence
and conduction electrons in a material should acquire a Q-phase that
depends on the geometrical and compositional details of the
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environment. This phase is expected to modify the electronic energy
bands and, consequently, the dynamical response and transport prop-
erties of the hosting material. In reference to the origin of these mod-
ifications, hereinafter we refer to such 2D-material-based configurations
as Q-phase materials.

Here, we introduce a specific realization of Q-phase materials
consisting of a 2D semiconductor that is modified by the presence of a
one-dimensional (1D) periodic array of ribbons. Specifically, we
demonstrate that the periodic image potential produced by this pat-
tern on the semiconductor electrons gives rise to substantial mod-
ifications in its band structure that translate into changes in the
optical, electrical, and thermal properties, which are controlled by
purely geometrical parameters (the separation and period of the array,
see Fig. 1). We present rigorous theoretical calculations of the self-
consistent electronic band structure, the ensuing optical response,
and the electrical and thermal conductivities, all of which reveal dra-
matic modulations due to the aforementioned image interaction.
More precisely, we predict the opening of electronic gaps, which
enable interband optical transitions and hybrid plasmon-interband
modes that would otherwise be optically forbidden in the absence of
the image interaction. In addition, we observe a metal-insulator tran-
sition as the pattern is brought closer to the semiconductor and the
image interaction increases, essentially reflecting a reduction in carrier
propagation induced by the periodic patterning. This also affects the
thermal conductivity, which we predict to undergo a corresponding
conductor-insulator transition (along the direction of the periodic
modulation, perpendicular to the ribbons). Importantly, the image
interaction is long-range and nonresonant, so this method can be
generally applied to any 2D material, adding a brand new tool to
design nanodevices.

Results
Theoretical framework
We consider an atomically thin semiconductor of area L2, doped to a
Fermi level E0

F (corresponding to a carrier density n0 in the conduction
band), and lying in the z=0 plane at a distance d>0 from a 1D periodic
array of conductive ribbons (period a, width b, see Fig. 1b). The latter are
taken to be infinitely extended along the y direction, periodic along x,
and made of a material with a high DC conductivity and low infrared
absorbance (e.g., indium tin oxide35), so that it behaves as a perfect
conductor with regards to the determination of the equilibrium con-
figuration of the electronic structure in the semiconductor. A patterned
and doped semiconductor monolayer with a partially filled conduction
band could serve this purpose.We further consider the periodic array to

be embedded in amedium of permittivity ϵmatching that of the ribbon
material at the optical frequencies discussed below, such that the array
appears to be invisible. The semiconductor electrons can however
interact with the array through a image potential energy −V036–38, which
for distances d ≳ 1 nm can be well approximated by the local electro-
static limit39–41 (i.e., V0 = e2/4ϵd). Incidentally, films consisting of three
atomic layers of hexagonal boron nitride are now commonly used to
introduce a dielectric spacing of ∼1 nm in 2D materfial
heterostructures42, but other materials amenable to exfoliation down to
a few monolayers could also be employed for that purpose, as well as
atomic layer deposition43 methods. Neglecting ribbon edge effects by
assuming d≪a, we describe the image interaction experienced by each
semiconductor electron through the periodic stepwise energy function
V imðxÞ= �V0pðxÞ, where p(x) = 1 for x directly below a ribbon and
p(x) =0 otherwise. In this work, we set ϵ= 1 for simplicity and remark
that the image potential is the result of the Q-phase introduced in the
electron wave functions due to their interaction with the surrounding
patterned structure, as illustrated for free electrons moving near a
material surface34.

We describe the semiconductor electrons in the single-particle
approximation44, and further consider them to be strongly con-
fined to an atomic layer of small thickness compared with the
separation d from the conductive ribbons. This allows us to fac-
torize the one-electron wave functions as ψkkn

ðrÞ=ψkkn
ðRÞψ?ðzÞ,

with out-of-plane components yielding a probability density profile
∣ψ⊥(z)∣2 ≈ δ(z). The remaining in-plane components depend on
R = (x, y) and are determined by the self-consistent equation44

H0 +V im +VH
h i

ψkkn
ðRÞ= _εkkn

ψkkn
ðRÞ, ð1Þ

where H0 = � _2∇2
R=2m

* is the unperturbed electron Hamiltonian, m*

denotes the effectivemass,V im is the aforementioned image potential,
and VH is the Hartree potential. Also, in virtue of Bloch’s theorem, the
electron eigenstates can be labeled by the in-plane wave vector k∥ and
the band index n, such that ψkkn

ðRÞ= eikk�R ukkn
ðRÞ=L, where

ukkn
ðRÞ= ukkn

ðR + ‘ax̂Þ for any integer ‘. In particular, given the
translational invariance of the system under consideration along the
y direction and the periodicity of the image potential along x, we have
(see Supplementary Note 1)

ψkkn
ðRÞ= eikk�Rukxn

ðxÞ=L, ð2aÞ

εkkn
= εxkxn

+ _k2
y=2m

*, ð2bÞ

Fig. 1 | Realization of a quantum-phase (Q-phase) material. a Sketch of the non-
contact interaction between a two-dimensional (2D) material and a neighbor-
ing neutral structure. The image potential experienced by conduction electrons in
the material imprints a Q-phase on their wave functions ψj(r) that in turn changes
the optical, electrical, and thermal transport properties. b Possible realization of a
Q-phase material. In the absence of an additional structure, there is no image
interaction (A), so conduction electrons exhibit a characteristic parabolic

dispersion (B), leading to a collective response function like that of a 2DEG (C). An
image potential landscape (D) is produced by introducing a neighboring neutral
structure (a periodic array of conducting ribbons of period a, width b, and
separation d). The electron wave functions then acquire a Q-phase that reshapes
the band structure, opening gaps (E) and enabling additional electronic transitions
that translate into modifications of the material properties (F), including its col-
lective excitations.
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where ukxn
and εxkxn

are directly obtained by projecting Eq. (1) on
Fourier components (i.e., by expanding the potentials and the wave
function in the form f(x) =∑ G f G eiGx, where the sum extends over
reciprocal lattice vectors G that are multiples of 2π/a, as detailed in
Methods and in the Supplementary Note 1).

We solve Eq. (1) iteratively by partially updating the Hartree
potential VHðRÞ= e2 R d2R0 nðR0Þ � n0

� �
=∣R � R0∣ at each step, introdu-

cing the electron density nðRÞ=2Pkkn
f kkn

∣ψkkn
ðRÞ∣2 calculated from

the (spin-degenerate) electron wave functions and the Fermi–Dirac
distribution f kkn

[e.g., f kkn
=θðEF � _εkkn

Þ at T=0K]. Importantly, we
assume the semiconductor to remain electrically neutral in its envir-
onment, so that no charge imbalance is introduced by external dopants.
Then, the charge neutrality condition

R
d2R nðRÞ � n0

� �
=0 needs to

hold at every iteration step and is used to determine the Fermi energy
EF, which generally deviates from the value E0

F in the homogeneous
semiconductor (i.e., in the absence of image interaction). Incidentally,
we note that the parabolic band assumed to describe the unperturbed
conduction band of the doped semiconductor should be an excellent
approximation because the patterning period a exceeds by several
orders of magnitude the interatomic distance, thus leading to a com-
paratively small 1D first Brillouin zone (1BZ) of extension 2π/a.

Modulation of the electronic band structure
Once the conducting ribbons are brought close to the semiconductor,
electrons in the latter are no longer free to move along the patterning
direction x because they are modulated by the self-induced potential
resulting from the image interaction. In particular, the electronic band
structure is modified by the emergence of band gaps at the center and
edges of the 1BZ (see Fig. 2a), which also imply changes in the electron
velocity component ∂kx

εxkxn
� vkxn

and the effective mass. We note that
the normalized band energies _εxkxn

=E0
F and the dimensionless eigen-

vectors aψkkn
ðRÞ depend only on four independent parameters: (1) the

geometrical ratio b/a (see Fig. 1b), which regulates the tunneling rate
across barriers introduced by the image potential; (2) the size of the 1BZ
kBZ =π/a relative to the unperturbed Fermiwave vector (i.e., kBZ=k

0
F ); (3)

the strength of the image energy relative to the unperturbed Fermi
energy, V0=E

0
F ; and (4) the normalized electron-electron Coulomb

interaction energy across a unit cell VC=E
0
F , where VC = e 2/a. As illu-

strated in the dispersion diagrams shown in Fig. 2a for different values
of V0=E

0
F , when the ribbons are moved far apart, and thus V0=E

0
F

approaches 0, we recover a folded 2DEG (2D electron gas, dotted
curves) at the center of the 1BZ, while small gaps of decreasing size
remain visible at the zone edge. Reassuringly, we find that for a vanish-
ing value of VC=E

0
F the Hartree potential contributes negligibly to the

energy of the system and the eigenvalues εxkxn
agree well with those

obtained in the Krönig–Penney model45. In addition, when varying
the geometrical ratio b/a, we find oscillations in the magnitude of the
band gap produced by the image-interaction modulation (see Meth-
ods), with the extreme cases of b/a=0 and 1 reducing to just a rigid shift
in the energy bands (see Supplementary Fig. 2 and Supplemen-
tary Note 1).

Here, we are interested in a regime where the image potential
strongly affects the transport properties of thematerial. Such a regime
is reached when the total (i.e., summed for all electrons) image energy
E im dominates over the kinetic energy Ekin, as otherwise the latter
would push the system toward a ballistic behavior. The ratio between
these two energies roughly scales as E im=Ekin ∼V0=E

0
F , assuming that

the condition ðVC=E
0
F Þ=ðkBZ=k

0
F Þ

2
= ð2=π2Þ e2m*a=_2 ≫ 1 is satisfied (e.g.,

for a≫ 2.6 nm ifm* = 0.1me, see Supplementary Note 2). This behavior
is observed in the band structure calculations presented in Fig. 2a,
where the influence of the image potential is visible through a mono-
tonic increase in the band gaps with increasing strength of the image
interaction V0 (i.e., when bringing the ribbon pattern closer to the
semiconductor). The reshaping of the semiconductor energy bands
also produces a wealth of new dynamical and static properties, which
we investigate below. It should be noted that, in order to open a band
gap Vgap ∼kBZV0=k

0
F in the infrared range (e.g., 0.1–0.2 eV) using a

ratio V0=E
0
F ∼3 and an image potential energy V0∼0.3 eV (requiring a

patterningdistanced∼ 1.2 nm) in combinationwith aperioda = 10 nm,
materials with m*/me∼0.1–0.4 are needed (see, for example, Fig. 2a
and Supplementary Fig. 4a). Such values are found in black
phosphorus46 and transition-metal dichalcogenides47, from which
monolayers can be isolated for a direct implementation of the con-
cepts explored here.

Fig. 2 | Modulation of the electronic band structure and optical response in a
Q-phase material. a Electronic bands (solid curves) in the periodic patterning
direction for different strengths of the normalized image potential V0=E

0
F (see

color-matched labels), along with the corresponding normalized Fermi energies
(dashed lines). Dotted curves stand for the 2D-electron-gas (2DEG) limit. Single-
particle excitationsdescribedby the 2Dnoninteracting susceptibility ~χ000 (b–e) and
collective response resonances revealed by the loss function Imfrp00g (f–i) as a
function of transferred energy ℏω and in-plane wave vector q∥ = ∣(qx, qy)∣,

normalized to the Fermi energy E0
F and wave vector k0

F , respectively, for fixed
qx=k

0
F =0:1. In b, the black-dashed curves indicate the boundaries of the con-

tinuum of electron-hole pair excitations _ω=E0
F =qkð2± qk=k0

F Þ=k0
F . The plasmon

dispersion relation in a 2DEG is shown for comparison in f–i (white-dashed curves),
along with its qk=k

0
F≪1 limit (green-dashed curves). All calculations are performed

for E0
F =0:29 eV, m*/me = 0.1, a = 10 nm, and b = 5 nm.
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Optical response of Q-phase materials
The modifications produced in the electronic band structure by the
image interaction translate into substantial changes in the optical
response. Given the symmetry of the system, we can work in the in-
plane reciprocal space and separately deal with each 2D wave vector q∥

(with qx within the 1BZ). In addition, our structures involve small dis-
tances and periods compared with the light wavelength, so that
the optical response can be well described in the electrostatic limit.
Consequently, we consider an external electric potential ϕextðqk,z,ωÞ=P

Gϕ
ext
G ðqk,z,ωÞeiðqk +Gx̂Þ�R acting on the Q-phase material at optical

frequency ω and expanded in Fourier components labeled by 1D reci-
procal lattice vectors G. Introducing a matrix notation, we can express
the resulting induced potential in terms of the Coulomb interaction υ
and the noninteracting 2D susceptibility ~χ0 as ϕindðqk, z,ωÞ= υðqk, zÞ�
~χ0ðqk,ωÞ � ½I � υðqk, 0Þ � ~χ0ðqk,ωÞ�

�1 � ϕextðqk, 0,ωÞ, where dots indi-
cate matrix multiplication, ϕext and ϕind are vectors of components ϕext

G
andϕind

G , respectively, andweuse thematrices IGG0 = δGG0 , υGG0 = δGG0υG,
and ~χ0GG0 . More precisely, the diagonal Coulomb matrix elements take
the form υGðqk,zÞ=2π e�∣qk +Gx̂∣∣z∣=∣qk +Gx̂∣, while we adopt the
random-phase approximation (RPA) to evaluate the susceptibility from
the one-electron eigenstates as39,44 (see Methods)

~χ0GG0 ðqk,ωÞ=
e2

2π2_

X
nn0

Z π=a

�π=a
dkxM

nn0
G ðkx , qxÞ Mnn0

G0 ðkx ,qxÞ
h i*

×
Z 1

�1
dky

f kk�qkn0 � f kkn

ω� εkkn
+ εkk�qkn0 + i0+ ,

ð3Þ

where we have introduced the matrix ele-
ments Mnn0

G ðkx ,qxÞ= ð1=aÞ
R a
0 dx e�iGx u*

kx�qxn0 ðxÞukxn
ðxÞ.

The energy differences in the denominator of Eq. (3) correspond
to one-electron excitations, which show up as intraband (n=n0) and
interband (n≠n0) transitions in the plots of ~χ0GG0 ðqk,ωÞ presented in
Fig. 2b–e (as well as in Supplementary Fig. 3, in which we separately
show intraband and interband contributions, and in Supplementary
Fig. 4b–e, where we explore different material parameters) as a func-
tion of photon energy ℏω and parallel wave vector q∥ for the G=G0 =0
component and different strengths of the image interaction V0. For
small V0, the dispersion diagram is dominated by the intraband exci-
tation region that characterizes the conduction band of a doped
semiconductor (i.e., the homogeneous 2DEG limit). As we increase V0

(see Fig. 2b–e), the gap openings discussed above (Fig. 2a) enable
interband excitations, and in particular, vertical transitions become
available due to the proximity of the ribbon array.

The RPA accounts for the self-consistent interaction with the
induced potential, thereby resulting in collective electron excitations.
To explore these so-called plasmons, we calculate the Fresnel reflec-
tion coefficient for p-polarizedwaves r p, which relates the induced and
external potentials via48 ϕind

G ðqk,0,ωÞ= �PG0 rpGG0 ðqk,ωÞϕext
G0 ðqk,0,ωÞ.

Using the formalism outlined above, the Fourier components of r p are
given by

rpGG0 ðqk,ωÞ=
I

I � υðqk, 0Þ � ~χ0ðqk,ωÞ
h i�1

�����
GG0

:

In Fig. 2f–i, we plot the loss function ImfrpGG0 g obtained from this
equation as a function of q∥ and ω. We note that even though we
concentrate on the specular-reflection coefficient corresponding to
G=G0 =0, the condition kBZ ≪ k0

F requires the evaluation of G
components up to G≫6k0

F in the υ and ~χ0 matrices to correctly
account for transitions happening close to the Fermi surface.

Collective plasmon excitations are identified as intense features in
Fig. 2f–i, which should be measurable through electron energy-loss
spectroscopy, as we discuss in Supplementary Note 3 and

Supplementary Fig. 1. We expect those features to be qualitatively
similar over the range of material parameters explored in Supple-
mentary Fig. 4f–i. For relatively small V0=E

0
F (Fig. 2f), the dispersion

diagram is dominated by a single, continuous plasmon band, in
excellent agreement with the plasmon dispersion of the textbook
uniform 2DEG (superimposed). This agreement reflects the fact that
the plasmon behavior is mainly controlled by the average electron
density n0, provided the external perturbation produced in the band
structure by the periodic imagepotential is still weak (see the relatively
small gap openings in Fig. 2a for V0 = E

0
F ). Incidentally, at low V0 the

plasmon is qualitatively well described by the dispersion relation
ωpðqkÞ∼e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nqk=m*

q
obtained in the qk=k

0
F ≪ 1 limit. In contrast, as the

ribbon structure is brought closer to the semiconductor, so that the
image potential energy increases and eventually dominates, a zoo of
excitations emerge in the dispersion diagram: besides the 2DEG plas-
mon, features associated with interband transitions and their hybri-
dization with plasmons are revealed. In addition, all of these features
are dressed by electron-electron interactions, leading to a blue shift of
the plasmon relative to the 2DEG limit, as well as spectral shifts of the
interband transitions relative to the undressed excitations depicted in
Fig. 2b–e.

Metal-insulator transition
Beyond the optical response, we expect the image interaction to also
modify the static properties of Q-phase materials, including the DC
electrical conductivity σDC. We compute this quantity in the relaxation-
time approximation49, introducing a phenomenological inelastic
scattering time τ (see Methods), so the conductivity is uniquely
determined by the band energies _εkkn

and the chemical potential,
whichwe approximate by the Fermi energy EF (Fig. 2a).We remark that
this assumption safely holds for temperatures and doping levels such
that kBT ≪ E0

F , a condition that is satisfied over the range of parameters
considered in this work. Because of the symmetry of the system, the
2 × 2 conductivity tensor should only contain diagonal xx and yy
components (i.e., along directions parallel and perpendicular to the
periodic modulation). In addition, the yy component remains
unchanged with respect to the unperturbed semiconductor because
the x-averaged electron density is conserved (i.e.,
σDC
yy = ðe2τ=π2m*ÞPn

R π=a
�π=a dkx

R1
0 dky½eð_εkkn�EFÞ=kBT + 1��1

, which redu-
ces to σDC

yy = e2E0
F τ=π_

2 at zero temperature). The conductivity along x
can then be directly computed from the energy distribution (i.e., the
band structure) in Eq. (2b) through the equation

σDC
xx =

e2τ
π2_

X
n

Z π=a

�π=a
dkx

Z 1

0
dky

∂2kx
εxkxn

� �
eð_εkkn�EFÞ=kBT + 1
h i�1

:

ð4Þ

We use this expression in combination with the bands plotted in Fig. 2a
to obtain the results presented in Fig. 3. Remarkably, the electrical
conductivity exhibits a steady decrease with increasing image interac-
tion V0, starting from the 2DEG value in the unperturbed semi-
conductor at V0 =0 and evolving towards a substantial suppression
when the V0/EF ratio reaches a few times unity (see Fig. 3a). This beha-
vior is a direct consequence of the reduction in the ability of charge
carriers to move within the periodic potential landscape produced by
the image interaction (due to the modulation of the electronic density
brought about by the image potential). We thus predict a metal-
insulator transition as the latter is switched on by placing the
conductive ribbons closer to the semiconductor (i.e., the transition
happenswith respect to theorder parameterV0=E

0
F , not to be confused

with a phase transition driven by a change in temperature). This
phenomenon is observed for all ribbon sizes under consideration, with
an optimum behavior found for b/a ∼0.75, alongside a weak
temperature dependence up to T = 200 K (see Fig. 3c).
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Inhibition of the thermal conductivity
Similar to the electric conductivity, the electronic thermal con-
ductivity σ th undergoes strong modifications due to the image
interaction, since it is equally mediated by carrier propagation. We
adopt again the relaxation-time approximation49 and compute σth

from the electronic band structure (see Methods). Following similar
arguments as those outlined above, we find the conductivity tensor
to be diagonal, with its yy component almost unaffected by the
image interaction, so it can be well approximated by the relation
σth
yy≈ ðπE0

FkB
2Tτ=9_2Þ½3� ðπkBT=E

0
F Þ

2�. The remaining xx component
can be directly computed from

σth
xx =

1
e2T

σð2Þ
xx � σð1Þ

xx

� 	2
=σDC

xx

h i
, ð5Þ

where σDC
xx is the DC electrical conductivity in Eq. (4) and

σðαÞ
xx =

e2τ
π2kBT

X
n

Z π=a

�π=a
dkx

Z 1

0
dky _εkkn

� EF

� �α

× ∂kx
εxkxn

� �2 eð_εkkn�EFÞ=kBT

eð_εkkn�EFÞ=kBT + 1
h i2 :

ð6Þ

The V0-dependent thermal conductivity plotted in Fig. 3b, d reveals a
transition from a thermal conductor to a thermal insulator analogous
to the electrical behavior both at low and at finite temperatures, which
we also attribute to the reduction in carrier propagation produced by
the periodic image potential. In addition, we observe a clear departure
from theWiedemann–Franz law50 when comparing Fig. 3a with Fig. 3b,
as revealed by the different behavior at finite temperaturedisplayedby
σth
xx as a function of V0 with respect to σDC

xx . Such deviation from the
linear regime, which is also highlighted by the ratio between thermal
and electrical conductivities plotted in Fig. 3e, f for several image
potential strengths and different b/a ratios, stems from the fact that
conduction electrons are not free, in contrast to the ideal-gas
conditions for which the law is best suited. Incidentally, the thermal
conductor-insulator transition is again faster for b/a ∼0.75.

Discussion
In conclusion, we have demonstrated, based on rigorous theory, that
the optical, electrical, and thermal properties of a 2D material can be

substantiallymodified by introducing a neutral, non-contact structure in
its vicinity. This constitutes a genuinely radical departure from currently
available methods to engineer material properties, as instead we capi-
talize on the image interaction, which translates into a quantum phase
imprinted on the conduction electrons of the 2D layer. We remark the
nonresonant nature of such interaction, which should therefore be
generally applicable to modulate the properties of different types of
materials, provided their thickness is small enough as to be strongly
influenced by the image interaction with the added structure.

As a possible realization of these engineered media, which we
term Q-phase materials, we have studied the modification in the
properties of a 2D semiconductorwhen anarray of conductive ribbons
is brought in close proximity. (Incidentally, dielectric ribbons with a
high permittivity contrast should also produce a sufficiently intense
image potential and serve as decorating elements for Q-phase mate-
rials.) Specifically, energy gaps are induced in the electronic band
structure, interband electronic transitions are enabled, a rich land-
scape of additional plasmonbands emerges, and the electrical/thermal
conductivity displays a metal/conductor-insulator transition as the
semiconductor-array distance is reduced and the image interaction is
increased. In the limits of either small ribbons (e.g., b/a =0.1 in Fig. 3a,
b, f) or a ribbon width approaching the period (e.g., b/a =0.9), we
obtain a spatially featureless image interaction, therefore resulting in a
relatively small modulation of the material, and consequently, an
optimized effect is observed at intermediate values of the width-to-
period ratio b/a for a fixed separation from the 2D material.

In passing, we note that a transition of different nature is expected
when the 2D semiconductor is in contact with the patterned structure
(e.g., through structural reconstruction or via electron hopping), while
here we are concerned instead with transitions occurring without
touching or hopping, in which the order parameter is the strength of
the image interaction. The predicted modifications in the optical,
electrical, and thermal properties of the 2D material are driven by a
rearrangement of its electronic bands in the presence of the image
potential landscape, without requiring any physical contact. However,
the strain caused by the structure could also play a role and introduce
additional modifications in the material properties, although we
expect this effect to be comparatively small when the 2D material and
the patterned structure are separated by at least a few monolayers
through which any possible microscopic reconstructions are
attenuated.

Fig. 3 | Q-phase modulation of the DC electrical and thermal conductivities.
Component of the 2D electrical (a) and thermal (b) conductivity tensors along
the periodicity direction as a function of the normalized image potential
strength V0=E

0
F for several values of the b/a ratio (see legend), calculated at

T = 200 K and divided by the respective conductivities of a 2DEG at the same
temperature. Temperature dependence of the electrical (c) and thermal (d)

conductivities for b/a = 0.5 and different values of V0=E
0
F , normalized to the

respective 2DEG conductivity at T = 200 K. Temperature dependence of the
ratio between thermal and electric conductivities, revealing deviations from the
Wiedemann–Franz law for b/a = 0.5 and various values of the ratio V0=E

0
F (e), as

well as for fixed V0=E
0
F = 5 and several values of b/a (f). We use the samematerial

parameters as in Fig. 2.
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As a practical realization of the present concept, materials such as
black phosphorus46 and transition-metal dichalcogenides47 offer para-
meters similar to those considered above for the 2D layer. In addition,
application of this scheme to graphene is anticipated to produce qua-
litatively different features due to the exotic nature of charge carriers in
this material (e.g., electronic bands would be primarily renormalized in
the direction parallel to the ribbons, in contrast to the results presented
above, see Supplementary Note 4). Furthermore, the decorating
structure could be amenable to modulation through external means of
control (e.g., by resorting to phase-changematerials such as GST51), still
without having physical contact with the 2D layer. Although we focus
here on large features of the decorating structure compared with the
atomic lattice parameters of the material, so that conduction electrons
in the latter are well described in the continuum limit, an interesting
regime comes about when the characteristic patterning length is com-
mensurate with the atomic lattice (e.g., by using a self-organized vicinal
surface52 stamp). From a more general perspective, arbitrarily pat-
terned external structures could be employed to, for example, shape
the Q-phase material into quasicrystals, and even to draw electrical and
thermal circuits controlled by the presence of a nontouching structure.
Our results represent a first step towards the realization of gate-free
material tunability, potentially granting us access into a whole range of
properties that could find application in the design of nanodevices.

Methods
Self-consistent one-electron wave functions
Wenote that Eq. (1) can be solved by factorizing the one-electronwave
functions as ψkkn

ðRÞ=ψkxn
ðxÞφky

ð yÞ, leading to

_2

2m* ∂
2
y + _ε

y
kyn

 !
ϕky

ð yÞ=0, ð6aÞ

_2

2m* ðkx � i∂xÞ2 +V imðxÞ+VHðxÞ � _εxkxn

" #
ukxn

ðxÞ=0, ð6bÞ

where we have used Bloch’s theorem to express
ψkxn

ðxÞ= eikxxukxn
ðxÞ=

ffiffiffi
L

p
in terms of a periodic function ukxn

ðxÞ with
the same period a as the ribbon array. From Eq. (6a), the component
along the direction of translational invariance admits plane-wave
solutions ϕky

ð yÞ= eikyy=
ffiffiffi
L

p
with parabolic dispersion. In the remaining

in-plane direction, Eq. (6b) transforms into an eigenvalue problem by
expanding ukxn

ðxÞ=PGe
iGxukxn,G

as a sum over reciprocal lattice
vectors G (multiples of 2π/a). More precisely, Eq. (6b) becomes

_2

2m* kx +G
� 	2 � _εxkxn

" #
ukxn,G

+
X
G0

V im
G�G0 +VH

G�G0

� �
ukxn,G

0 =0, ð7Þ

where V im
G = i V0=aG

� 	
1� e�iGb
� �

and VH
G =2πe2ð1� δG,0ÞnG=∣G∣ are

the Fourier components of the image and Hartree potentials,
respectively (see Supplementary Note 1). Finally, we solve Eq. (7)
iteratively by calculating the components of the electron density
nG = ð2=aÞ

R a
0 dx e�iGxP

kkn
f kkn

∣ψkkn
ðRÞ∣2 at every step and adjusting

the Fermi energy EF to meet the condition that nG=0 is equal to the
unperturbed electron density n0.

Optical response in the RPA
We start by writing the charge distribution ρind induced in the semi-
conductor layer in the presence of an external electric potentialϕext as
ρind = χϕext, where χ is the electric susceptibility and an overall e−iωt

time dependence is understood. We now adopt the RPA44 to write
χ = χ0 � ð1� υ � χ0Þ�1

in terms of the noninteracting susceptibility

χ0ðr,r0,ωÞ= δðzÞδðz0Þ~χ0ðR,R0,ωÞ, where

~χ0ðR,R0,ωÞ= 2e2

_

X
kkk

0
knn0

f k0
kn0 � f kkn

ω� εkkn
+ εk0

kn0 + i0+

×ψkkn
ðRÞψ*

k0
kn0 ðRÞψk0

kn0 ðR0Þψ*
kkn

ðR0Þ,
ð8Þ

and obviously, the full susceptibility also bears an out-of-plane
dependence as χðr,r0,ωÞ= δðzÞδðz0Þ~χðR,R0,ωÞ. Here, υðr,r0Þ is the
Coulomb potential produced at r by a unit charge placed at r0,
including the effect of screening by the surrounding environment. For
simplicity, we assume the material in the ribbon array to be perfectly
conducting at zero frequency, but invisible at the infrared optical
frequencies under consideration (e.g., by embedding the entire
structure in an index-matching medium), so that υ can be well
approximated by the bare Coulomb potential υðr,r0Þ≈ 1=∣r� r0∣ in the
calculation of χ. Now, given the ribbon array periodicity, we have
~χðR,R0,ωÞ= ~χðR + x̂‘a,R0 + x̂‘a,ωÞ for any integer ‘, so we can write
~χðR,R0,ωÞ= ð2πÞ�2P

GG0eiðGx�G0x0 Þ R π=a
�π=a dqx

R1
�1 dqy ~χGG0 ðqk,ωÞeiqk�ðR�R0 Þ,

where the qx integral is limited to the 1D 1BZ of the ribbon lattice and
the components ~χGG0 ðqk,ωÞ are all we need to calculate the optical
response to an external perturbation bearing an in-plane spatial
dependence/ eiqk�R. Finally, inserting the one-electronwave functions
discussed above into Eq. (8), we readily find Eq. (3) in the main text.

Thermal and electrical conductivities
An external static in-plane electric field E produces a 2D current den-
sity je = σDCE, where σDC is the local DC (ω =0) electrical conductivity
tensor. Likewise, an in-plane temperature gradient induces a 2D ther-
mal current density jth = −σth∇RT, where σth is the electronic thermal
conductivity tensor. In the relaxation-time approximation, the effect of
inelastic electron scattering enters via a phenomenological energy-
independent damping time τ, contributed by different scattering
channels such as impurities and acoustic phonons53,54, and we find the
2 × 2 tensors49

σDC =
e2τ
_π2

X
n

Z π=a

�π=a
dkx

Z 1

0
dky

∇kk
� ∇kk

εkkn

eð_εkkn�EFÞ=kBT + 1
,

σth =
1

e2T
σð2Þ � σð1Þ σDC� 	�1

σð1Þ
h i

,

where we have defined

σðαÞ =
e2τ

π2kBT

X
n

Z π=a

�π=a
dkx

Z 1

0
dkyð_εkkn

� EFÞα

× ðvkkn
� vkkn

Þ eð_εkkn�EFÞ=kBT

eð_εkkn�EFÞ=kBT + 1
h i2 ,

with vkkn
=∇kk

εkkn
being the electron group velocity49. Equations (4)

and (5) in themain text follow directly from these expressions by using
the electron dispersion in Eq. (2b).

Data availability
The data that support the findings of this study are readily generated
from the presented self-contained formalism and are also available
from the corresponding author upon reasonable request.
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