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Abstract

The purpose of this study was to examine the influence of medium-chain fatty acid-contain-

ing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides, and

their combination on the plasma metabolome of cats (Felis catus), including circulating

microbiome-derived postbiotics. After a 14-day lead-in on the control food, cats were ran-

domized to one of four foods (control, with 6.9% MCT, with fish oil [FO; 0.14% eicosapen-

taenoate, 1.0% docosahexaenoate], or with FO+MCT; n = 16 per group) for 28 days.

Analysis of plasma metabolites showed that the addition of FO and MCT led to synergistic

effects not seen with either alone across a number of lipid classes, including fatty acids,

acylcarnitines, and acylated amines including endocannabinoids. Notably, the FO+MCT

group had an increase in ketone body production relative to baseline and beyond that seen

with MCT alone. N-acyl taurines, the accumulation of which has been implicated in the

onset of type 2 diabetes, were significantly decreased in the FO+MCT group. Significant

decreases in the gut microbiome-derived postbiotic classes of indoles/indolic sulfates and

phenols/phenolic sulfates were observed only the FO+MCT group. Overall, the combination

of MCT and FO led to number of changes in plasma metabolites that were not observed

with either oil alone, particularly in postbiotics.

Introduction

Dietary fatty acids esterified in triglyceride form are an important source of nutritional energy

and consist of diverse carbon chain lengths and degrees of unsaturation. Found at orthogonal

extremes of these characteristics are the medium-chain saturated fatty acids (MCFAs) and the

long-chain polyunsaturated fatty acids (LCPUFAs), each of which is typically consumed in tri-

glyceride form (MCT and LCPUT, respectively).

Differences between LCPUT and MCT are apparent from the outset of their catabolism;

MCTs are hydrolyzed to MCFAs by pancreatic lipase with an avidity exceeding that for long
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chain fatty acid-containing triglycerides [1]. Additionally, LCPUFAs are re-esterified into tri-

glyceride form after absorption into intestinal epithelial cells, incorporated into chylomicrons

before circulating through the periphery and their subsequently arrival at the liver where they

can be incorporated into low density lipoproteins (LDL). In contrast, MCFAs are absorbed

directly to the liver via portal circulation. During catabolic energy production, MCFAs do not

require carnitine to be shuttled into mitochondria and are extensively converted to ketone

bodies in the liver, which are then exported to the systemic circulation, leading to ketonemia

and the designation of MCTs as “ketogenic” [2]. Although long-chain saturated fatty acids

(LCSFAs) are extensively used as sources of energy in the periphery, they must be initially

catabolized in the peroxisome or transported into mitochondria via conjugation with carnitine

[3]. During catabolism, LCSFAs generate acetyl-CoA rather than ketone bodies. LCPUFAs are

not catabolized to energy to the same degree as LCSFA but rather are preferentially incorpo-

rated into phospholipids and subsequently lipid membranes of cells [4]. Consumption of both

MCT and LCPUT modulates physiology beyond provision of dietary energy. Whereas MCTs

are prominent in nutritional prescriptions for modifying metabolic and overweight status,

LCPUTs are often employed to alter the inflammatory state. Both metabolic or overweight sta-

tus and inflammation are known to interact with the gut microbiome to influence the health of

the host.

The ability of the gut microbiome to influence host health and metabolism has become

well-established in recent years. Recent studies have established an association between the

gut microbiome and blood lipids in humans, mice, and rats [5, 6]. Different food types can

alter the host gut microbiome, including types of dietary lipids [7–9]. The gut microbiome has

been shown to generate metabolites, also known as postbiotics, that can be absorbed across the

colon into the host systemic circulation [10, 11]. Postbiotics are metabolic products of the

gut microbiome that originate from microbial catabolism of undigested food that bypassed

absorption in the small intestine. For example, microbial fermentation of fiber generates

short-chain fatty acid postbiotics that influence host health. Relevant to the current study, gut

microbial putrefaction of the amino acids tryptophan and phenylalanine or tyrosine leads to

the production of postbiotic indoles and phenols, respectively, and their absorption in the sys-

temic circulation of the host [12]. Often these microbial postbiotics are conjugated to sulfate

by the intestinal epithelium or liver during reabsorption. Postbiotics derived from microbial

putrefaction of amino acids can have deleterious consequences to host health, particularly as

risk factors for inflammation and renal disease [13].

MCTs modify the gut microbiome and this has been proposed as a mode of action for these

fats to improve the metabolic health of obese individuals [14]. Additionally, MCTs influence

neutrophil functions, including phagocytosis and oxidative bacterial killing, which may impact

the makeup of gut microbiota [15]. MCTs have been shown to positively impact gut barrier

integrity in an inflammatory model [16, 17], which could influence the appearance of micro-

bial metabolites in systemic circulation [18]. Relevant to intestinal inflammation, MCTs

reduce the activity of bacterial-responsive inflammatory pathways and have shown efficacy in

decreasing colitis [19]. LCPUFA(n3) such as eicosapentaenoate (EPA; C20:5n3) and docosa-

hexaenoate (DHA; C22:6n3) are notable for their impact on inflammatory processes, and

intake of these oils has recently been shown to influence composition of the gut microbiome

[8, 20]. Consumption of fish and krill seafood oils rich in polyunsaturated fatty acids has been

shown to impact microbiome community structure as well as the abundances of particular

microbes that are associated with physiologic traits such as obesity [8, 21] and brain aging

[22]. Whereas LCPUFA(n3) are associated with increased beneficial gut microbiota, LCPUFA

(n6) have been shown to have detrimental effects on gut barrier function and microbiome

composition [7, 23]. Consumption of fish oil (FO), a source of LCPUT(n3), and MCT fats
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together produces an interaction that modulates physiological processes and disease risk.

Combinations of long chain triglycerides and MCT have synergistic effects on intestinal adap-

tation and morphology [24], MCT may potentiate the benefits of FO on cardiovascular risk

factors [25], and MCT modulates the effect of FO on inflammatory processes [26–29].

Felines are nutritionally considered obligate carnivores due in part to their inability to

endogenously synthesize certain fatty acids (e.g., arachidonate). Genomic investigations have

recently characterized genetic elements associated with domestication of the housecat (Felis
catus) compared with wildcats and found genes involved in lipid metabolism to be altered,

including representatives of the fatty acid beta oxidation, ether lipid metabolism, and peroxi-

somal lipid metabolism pathways [30]. A few published studies have characterized the feline

circulating metabolome [31–33], however, without specific focus on lipids. The levels and

types of circulating complex lipid classes are not extensively documented in the cat. Given

their interactive effects on physiology and use as dietary fats, it is of interest to characterize the

co-metabolism of dietary FO and MCT. In this study, we documented the impact on the feline

housecat plasma lipidome caused by consumption of dietary triglycerides containing fatty

acids from opposite ends of the spectra of chain length and degree of unsaturation. MCT and

n-3 LCPUT were fed alone or in combination with the objective of determining the degree to

which MCT and LCPUT impacted circulating complex lipids in cats as part of a complete

maintenance food balanced for total dietary fat, protein, and carbohydrate. In addition, the

effect of these dietary oils on the gut microbiome was analyzed via the changes in circulating

putrefactive postbiotics along with their host-conjugated sulfates.

Materials and methods

Ethics statement

The study protocol was reviewed and approved by the Institutional Animal Care and Use

Committee, Hill’s Pet Nutrition, Topeka, KS, USA (Protocol Number: FP579.1.3.0-A-F--

D-ADH) and complied with the National Institutes of Health guide for the care and use of

laboratory animals as well as the guides for the care and use of laboratory animals from the

US National Research Council and US Public Health Service [34]. Inclusion criteria was for

healthy cats, defined as no evidence of chronic systemic disease from physical examination,

complete blood count, serum biochemical analyses, urinalysis, or fecal examination for para-

sites. No invasive procedures or procedures involving suffering were utilized in this study.

Sedation was used prior to phlebotomy in order to minimize stress on cats.

Food formulation and production

Four dry extruded foods, which met the feline maintenance nutrition requirements outlined

by the Association of American Feed Control Officials and National Research Council, were

tested, all with the same base formula consisting primarily of wet chicken meat, corn gluten

meal, whole wheat, and pork fat. Pork fat in the control (CON) food was replaced with MCT,

FO, or MCT and FO in the test foods used in this study (S1 Table). CAPTEX-355 (ViaChem

Inc, Plano, TX, USA) was chosen as the source of MCT as it was enriched for caprylate (C8:0)

over caprate (C10:0) and caproate (C6:0) and contained negligible amounts of the transition

fatty acids laurate (C12:0) and myristate (C14:0), which are typically high in coconut and palm

oils and do not exhibit the same biochemical properties as the canonical MCFAs caproate

(C6:0), caprylate (C8:0), and caprate (C10:0). Analysis of this ingredient through third-party

testing gave the following analytical values: 51.4% caprylate (C8:0), 39.1% caprate (C10:0),

<0.1% laurate (C12:0), and<0.01% each of all other fatty acids (Eurofins Nutrition Analysis

Center, Des Moines, IA, USA). Caproate (C6:0) was not reported, but based on difference
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analysis, it is projected at approximately 8%. Since fish vary in their relative proportions of

EPA (C20:5n3) and DHA (C22:6n3) [27–29], MEG-3™ 0355TG Oil (DSM Inc, Parsippany, NJ,

USA) was chosen as the FO source of LCPUT(n3) as it is enriched for DHA (C22:6n3) over

EPA (C20:5n3), with manufacturer-analyzed values of 36.5% DHA and 5% EPA.

MCT and FO were added to the foods at 7% and 2.85%, respectively, on a dry matter

basis. Predicted composition based on certified analysis of ingredients and formulation

levels indicated that the MCT-containing foods had 0.6% caproate (C6:0), 3.6% caprylate

(C8:0), and 2.7% caprate (C10:0), while the FO-containing foods had 0.14% EPA (C20:5n3)

and 1.0% DHA (C22:6n3), all on a dry matter basis (S2 Table). The MCT level was selected

by choosing a dietary inclusion that would provide 30% of total dietary fat as MCT, which

has been employed with companion animals [35, 36]. The FO level was targeted to be at a

dietary inclusion level considered safe and high, as demonstrated by a published review of

dietary FO levels employed in cats [37]. These levels have been observed to exert physiologi-

cal effects and exert an impact on circulating levels of lipids.

Study design and measurements

Animal care research technicians were blinded to the identity of the foods provided and also

blinded to the group identity of cats for purposes of sample collection. In addition, all sample

analysts were blinded to the group identity origin of samples during sample analysis. All cats

were domestic short hair breed, were owned by the commercial funders of this research, and

were either from on-site husbandry or acquired from licensed breeders. Sample size was based

on effect sizes from a previous study [33] and was designed to achieve 80% power to detect a

20% difference between groups for selected lipids while factoring in the need for correction for

multiple between-group testing and a typical subject dropout rate of 5%. During the washout

period, all cats (N = 64) were fed the control food for 14 days. Cats were then randomized onto

one of four diets (n = 16 each; CON, MCT, FO, FO+MCT) for 28 days by equitably distribut-

ing the cats into groups based on sex, weight, age, and group versus individual housing such

that there were no significant differences in these parameters across groups by one-way

ANOVA (P> 0.8 for all). Cats continued their preferred housing arrangement, as previously

determined by colony veterinarian. Group- and individually housed cats were equally distrib-

uted across dietary groups, with 10 cats from each group being group-housed and 6 cats from

each group individually housed with access to group social areas (S3 Table). All cats had con-

tinual access to electronic feeders which recorded daily food intake (g/day) for each cat. Fresh

food was provided daily and feeders allowed access to food until individuals had consumed an

amount calculated to maintain body weight; water was available ad libitum. On blood collec-

tion days, access to feeders was blocked overnight until completion of phlebotomy the follow-

ing morning.

Plasma was collected for clinical blood chemistry and global metabolomics screening prior

to consumption of test foods at the end of the washout period to serve as a baseline (one day

before consuming test foods) and again at day 28 of feeding the test foods. Cats were fasted for

12 hours prior to plasma collection. The total amount of blood drawn was 11 ml. Clinical

blood chemistry was performed on a COBAS c501 module (Roche Diagnostics Corporation,

Indianapolis, IN, USA). Analysis of plasma metabolomics was performed by Metabolon (Mor-

risville, NC) as previously described [38, 39].

Statistical analysis

Obtained metabolite values were natural log transformed, and statistics were performed on

transformed values. Natural log-transformed metabolite values at baseline were subtracted
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from transformed values at day 28. This allowed for each cat to serve as its own control and for

the reporting of the change in a given metabolite that was induced by the diet rather than a

cross-sectional snapshot.

Difference values are presented as log2 fold change (log2FC) from baseline to day 28.

Changes from baseline across diets for the global plasma metabolome were assessed with

the Metaboanalyst platform v4.0 [40]. Sparse partial least squares analysis (SPLS) was used to

distinguish between diet groups (number of components = 2, validation method = 5-fold cross

validation, number of predictors = 20), and Random Forest was used to detect metabolite

predictors of group identity (number of trees = 2000, number of predictors = 20,

Randomness = On).

The following statistical analyses were performed in JMP (Version 13.1–14.2. SAS Insti-

tute Inc., Cary, NC, 1989–2019): multivariate analysis of variance (MANOVA), one-way

analysis of variance (ANOVA), post hoc analysis using Tukey’s honestly significant differ-

ence (HSD) test, and paired t-test. Determination of whether the change from baseline of a

class of lipids or postbiotics differed across the diet groups was performed by MANOVA

using the Identity function, which fits a model for each metabolite individually and then

jointly tests the models together. The separate MANOVA P values for Wilks’ Lambda, Pil-

lai’s Trace, Hotelling-Lawley, and Roy’s Max Root are reported in S4 Table. Only where P
values for all of these metrics were less than 0.05 was the metabolite class considered signifi-

cantly impacted by diet and allowed to proceed for further analysis. One-way ANOVA with

Cauchy distribution was used to examine changes to individual metabolites within a class

resulting from dietary oil intervention, with P values false discovery rate (FDR) adjusted

according to the Benjamini and Hochberg procedure [41]. With ANOVA p values as an

input, q values were generated for all metabolites in the R computing environment [42]

using the “qvalue” function in the R package qvalue v2.14.1 [43]. Statistical significance was

assigned to a metabolite when both of the following criteria were met: Benjamini and Hoch-

berg FDR P� 0.05 and q� 0.1.

The sequential statistical process for testing whether a change from baseline for a given

metabolite was significant, whether changes in individual metabolites constituting as class

were different from zero within a group, and whether the changes from baseline for individual

metabolites differed between groups was as follows: when MANOVA determined significance

for a multivariate biochemical class, the delta for each metabolite in that class was subsequently

assessed for a group effect by univariate ANOVA to determine which metabolites in that class

that drove the significance observed for the class as a whole. Then, the degree to which a given

metabolite exhibited a change from baseline within a group was assessed by paired t-test.

Finally, the relative change from baseline for each metabolite was compared for all pairs of

diet groups by Tukey’s HSD and reported using Connecting Letters.

Results

Characteristics of cats in the study

Sixty-four cats were randomized to one of four foods: CON, MCT, FO, or FO+MCT. The

mean age was 5.7 years and mean weight was 5.2 kg; 37.5% were male (S3 Table). All cats

except one were healthy as gauged by the colony veterinarian based on physical examination

and clinical blood work. This cat was in the FO group and was diagnosed with hip dysplasia

and managed hypertension. Participation in this trial was deemed in the best interest of the cat

as FO-containing foods are used in veterinary practice to manage these conditions, and the FO

test food contained therapeutic levels of FO similar to Hill’s Prescription Diet1 j/d, a food pre-

scribed for mobility issues. One cat in the FO+MCT group did not complete the trial due to
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issues unrelated to the trial. Three additional cats (two in the MCT group, one in the FO

+MCT group) completed the trial but were missing a plasma collection, which necessarily

excluded them from a paired analysis for changes between baseline and week 4 of feeding. All

cats returned healthy to the colony after the study.

Impact of dietary oils on clinical blood chemistry

Clinical blood chemistry values did not exceed or diminish beyond normal ranges for healthy

felines (S4 Table). FO consumption significantly decreased total triglycerides from baseline

(delta = -10.8 mg/dL; P = 0.001), consistent with its known effects on blood lipids in other spe-

cies [44]. Circulating cholesterol was decreased from baseline in the MCT, FO and FO+MCT

dietary oil groups but unchanged in the control group. Average reductions from baseline were:

MCT (delta = -23.7 mg/dL; P = 0.009), FO (delta = -10.3 mg/dL; P = 0.052), and FO+MCT

groups (delta = -42.0 mg/dL; P< 0.001). These changes in cholesterol from baseline were sig-

nificantly different among these three groups according to ANOVA, and the decrease induced

by FO+MCT was significantly lower than the decrease for FO alone by Tukey’s HSD post hoc

test.

Impact of dietary oils on the global plasma metabolome

Metabolomic analysis performed on plasma samples taken from cats at baseline and week 4

identified 656 metabolites. Of these, one-way ANOVA showed that 456 metabolites were sig-

nificantly different (Benjamini and Hochberg FDR P� 0.05, q� 0.1) across the 4 dietary

groups. Individual paired t-tests by diet indicated that 108 metabolites changed in the CON

group from baseline values (18 up, 90 down), 199 metabolites changed in the MCT group (34

up, 165 down), 265 metabolites changed in the FO group (106 up, 159 down) and 373 metabo-

lites changed in the FO/MCT group (115 up, 258 down) (S4 Table). During the course of the

study, cats continued their preferred housing arrangement (group versus individually housed)

as previously determined by colony veterinarian. In order to assess if housing type influenced

the circulating metabolome under investigation, all detected metabolites were compared

between group and individually housed cats by independent t-test. Of the 656 metabolites

detected, after false discovery correction for the multiple testing, there were only 7 metabolites

that were significantly different between the individual- and group-housed cats at p< 0.05

and q< 0.1. Further, only 3 of these metabolites belonged to a class of metabolites reported

here (3 metabolites in the sphingolipid and ceramide class). Thus, there was no meaningful

effect of housing type on the circulating metabolome.

Reduction of the high dimensionality of the dataset using SPLS indicated that there were

differences among the groups’ changes from baseline (Fig 1), with greater separation from

control by FO than by MCT feeding. SPLS loadings for components 1 and 2 are provided as

supplemental information (S4 Table). Random Forest analysis provided discrimination

between the dietary groups with an overall out of bounds class error of 8.3%, where 15/16

cats were correctly assigned to the control group (class error 6.3%), 12/14 cats were correctly

assigned to the MCT group (class error 14%), 15/16 cats were correctly assigned to the FO

group (class error 6.3%) and 13/14 cats were correctly assigned to the FO/MCT group (class

error 7.1%) (S1 Fig). The only misclassification among CON and oil groups was between CON

and MCT, as no cats consuming FO or FO/MCT were misclassified as CON or MCT. As

expected, the top 20 ranked Random Forest predictors were lipid species (S1 Fig). Major lipid

classes appearing in the metabolomics data set were chosen for further analysis: non-esterified

fatty acids (NEFA), glycerophosphatidylcholines (GPCs), glycerophosphatidylinositols (GPIs),

glycerophosphatidylethanolamines (GPEs), sphingolipids/ceramides, acylcarnitines, and N-
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acyl amino acids/neurotransmitters (NAAN). Additionally, given the recently noted impact of

dietary lipids on the gut microbiome and justified by the statistical significance of multiple

microbial metabolites by ANOVA (Benjamini and Hochberg FDR P� 0.05, q� 0.1), indoles

and phenols were assessed for differences by food.

Fig 1. SPLS to distinguish among the foods tested. Component 1 segregated groups by the presence of FO in the food, and component 2 segregated

groups by the presence of MCT in the food. Number of components = 2, validation method = 5-fold cross validation, number of predictors = 20. FO,

fish oil; MCT, medium-chain fatty acid-containing triglycerides; SPLS, sparse partial least squares analysis.

https://doi.org/10.1371/journal.pone.0229868.g001
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Impact of MCT and FO on NEFAs

The metabolite class of NEFAs was significantly different across groups in a multivariate man-

ner (MANOVA P< 0.001; S4 Table) with a broad impact of dietary oil inclusion on plasma

NEFAs; 86% (30/35) of the observed NEFA changes from baseline were significantly different

across foods (ANOVA median P< 0.001). Out of the four food types, the FO+MCT group

showed the most consistent increases in circulating NEFAs of all chain lengths and degrees of

unsaturation (Fig 2). In contrast, the CON group remained largely unchanged, the MCT

group exhibited broad decreases in almost all NEFAs, and the FO group showed very specific

increases of the LCPUFA(n3) expected to occur with FO. Provision of FO+MCT shifted the

response of NEFA levels from mainly decreases seen with MCT alone to mostly increases.

The MCFA caprate (C10:0) (bar 5 in Fig 2) was significantly different across groups by

ANOVA (P� 0.001), and while both the MCT and FO+MCT groups exhibited significantly

increased levels of caprate (C10:0) from baseline, only the increase in the MCT group was sig-

nificantly different than all other groups. Another MCFA, caproate (C6:0), differed by food

(bar 2 in Fig 2) and significantly increased from baseline in the MCT group, but by pairwise

assessment this change was not different from that observed for the other groups once Tukey’s

HSD corrected for multiple group-wise testing. The remaining MCFA, caprylate (C8:0) (bar 4

in Fig 2), was not different across the foods although it was increased in the FO+MCT group

Fig 2. Change from baseline to day 28 (log2 fold change) in plasma levels of non-esterified fatty acids. Cats were fed A) control food, B) food with

MCT, C) food with FO, or D) food with MCT and FO. Lipid metabolites are presented in order of increasing chain length and, within a chain length, by

increasing unsaturation. Green bars indicate fatty acids found in the MCT ingredient; blue bars indicate fatty acids in the FO ingredient. FC, fold

change; FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g002
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alone. The changes from baseline for the transition fats laurate (C12:0) and myristate (C14:0)

(bars 6 and 8 in Fig 2, respectively) were significantly different across the food groups. How-

ever, the predominant response was a decrease in these fatty acids, even in the MCT food

group, which is consistent with their absence in the MCT oil employed in this study.

Since MCFAs are extensively converted to ketone bodies in the liver, circulating levels of

the ketone body beta-hydroxybutyrate (BHBA) were examined in the metabolomics data.

BHBA differed according to food group (P< 0.001) but only the FO+MCT group had a signif-

icant change from baseline, an increase in log2FC of 1.50 ± 0.18 (P< 0.001) which was numer-

ically higher than the next highest group. The log2FC of BHBA in other groups did not reach

significance: CON, -0.17 ± 0.18; MCT, 0.29 ± 0.19; FO, 0.38 ± 0.19. These data indicate that

the addition of FO to MCT promoted the conversion of dietary MCFA to ketone bodies.

The following LCPUFA(n3) were strongly and significantly altered by food type: stearido-

nate (18:4n3), EPA (20:5n3), heneicosapentaenoate (21:5n3), docosapentaenoate (DPA,

22:5n3), and DHA (22:6n3) (bars 20, 28, 29, 33, and 35 in Fig 2, respectively). All these were

significantly increased from baseline in both the FO and FO+MCT groups except stearidonate

(18:4n3) in the FO group, and levels of these LCPUFAs were significantly higher than in the

CON and MCT groups. The inclusion of MCT with FO did not impact accumulation of any of

these LCPUFA, as they were not significantly different between the FO and FO+MCT groups.

With regards to n6 fatty acids, the n6 LCPUFA docosapentaenoate (n6 DPA, 22:5n6; bar 34

in Fig 2) was also increased from baseline in the groups that consumed FO or FO+MCT, and

these groups exhibited levels significantly higher than the CON or MCT groups. Changes from

baseline in arachidonic acid (C20:4n6; bar 27 in Fig 2), a precursor to proinflammatory lipid

signaling mediators including prostaglandins, thromboxanes, and leukotrienes, was not

affected by the LCPUFA(n3)-containing foods (FO, FO+MCT). However, the change from

baseline of arachidonic acid (C20:4n6) did vary across the groups, which was entirely driven

by a decrease in the MCT diet group.

Impact of dietary oils on complex lipids

GPCs. The metabolite class of GPCs was significantly different across food groups in a mul-

tivariate manner (MANOVA P< 0.001; S4 Table). Generally, there was a broad impact of die-

tary oil inclusion on GPC in that 87% (34/39) of observed GPC changes from baseline were

significantly different across the groups (ANOVA median P< 0.001; Fig 3). This effect may

have been slightly driven by reduced availability of GPC precursors. Choline differed signifi-

cantly by food group, and although the CON and FO groups had no change from baseline, the

MCT (log2FC -0.28 ± 0.07; P = 0.002) and FO+MCT groups (log2FC -0.29 ± 0.07; P< 0.001)

had reduced choline levels relative to baseline. This response of choline in the MCT and FO

+MCT groups was significantly different from that in the CON and FO groups. It is unlikely that

this reduction in choline was due to a paucity of methylation donors, as an examination of tri-

methylglycine in the metabolomics dataset showed significant increases from baseline in the

MCT (log2FC 0.40 ± 0.09; P< 0.001) group and to a lesser degree in the FO (log2FC 0.20 ± 0.09;

P = 0.05) and FO+MCT (log2FC 0.37 ± 0.12; P = 0.01) groups. There were weakly significant

decreases from baseline of glycerophosphocholine for both the FO (log2FC -0.12 ± 0.05;

P = 0.02) and FO+MCT (log2FC -0.18 ± 0.07; P = 0.02) groups.

In contrast to the broad decreases of NEFAs in the MCT group, the MCT effects on GPCs

were less pronounced. Another response-type differentiating NEFAs from GPCs was exhibited

by FO, which produced highly specific effects on a select few NEFAs but had a broad impact

on GPCs. The combination of FO+MCT produced an effect on GPCs that was as pervasive as

for NEFAs, but the predominant changes for GPCs were decreases in this metabolite class but
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increases in NEFAs. The MCT food produced one of the few observed increases in a GPC con-

taining two saturated fatty acids; 1,2-distearoyl-GPC (18:0/18:0; bar 29 in Fig 3) differed across

foods, and this effect was driven by the MCT food group. This increase was not observed in

the FO+MCT group, perhaps due to a moderating impact of FO incorporation of saturated

fatty acids into phospholipids. In contrast, both of the other di-saturated fatty acid-containing

GPCs observed in the data set (1,2-dipalmitoyl-GPC [16:0/16:0; bar 15 in Fig 3] and 1-palmi-

toyl-2-stearoyl-GPC [16:0/18:0; bar 17 in Fig 3]) were significantly decreased by MCT food.

None of the 18:0-containing GPC with an unsaturated fatty acid present at position 2 were

increased by the MCT food. The presence of a saturated fatty acid at position 2 of GPC is less

common than an unsaturated fatty acid at this position. This result may indicate a specific

effect of MCT to increase 1,2-distearoyl-GPC (18:0/18:0).

Although the CON food had no impact on any arachidonate (C20:4n6)-containing GPC, 5

out of 6 GPCs detected in the metabolomics dataset that contain this proinflammatory n6

LCPUFA were affected by food type, with the MCT, FO, and FO+MCT diets all decreasing

these C20:4n6-containing GPCs from baseline. The only C20:4n6-containing GPC observed

in the metabolomics dataset that was not decreased by the MCT, FO, or FO+MCT foods was

Fig 3. Change from baseline to day 28 (log2 fold change) in plasma levels of glycerophosphatidylcholines. Cats were fed A) control food, B) food

with MCT, C) food with FO, or D) food with MCT and FO. Lipid metabolites are presented in order of increasing chain length and, within a chain

length, by increasing unsaturation. Blue bars indicate those with a 22:6n3 chain. FC, fold change; FO, fish oil; MCT, medium-chain fatty acid-

containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g003
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1-myristoyl-2-arachidonoyl-GPC (1-C14:0-2-C20:4n6-GPC; bar 14 in Fig 3). GPCs containing

FO-derived EPA (20:5n3) were not detected in the metabolomics dataset. However, levels of

three DHA (22:6n3)-containing GPCs were significantly increased from baseline by both FO

and FO+MCT foods (bars 21, 33, and 35 in Fig 3) but were not changed by the CON or MCT

foods.

GPIs. The metabolite class of GPIs was significantly different across groups in multivari-

ate fashion (MANOVA P< 0.001; S4 Table). Food type differentially affected 83% (10/12) of

observed changes from baseline in GPCs (ANOVA median P< 0.001) (Fig 4). Only decreases

from baseline were observed for all groups; no GPI significantly increased. This effect could

have been driven in part by changes in the precursor inositol. However, myoinositol was the

only circulating inositol detected, and although changes from baseline were weakly signifi-

cantly impacted by food type, only the CON diet showed a significantly change (log2FC

0.35 ± 0.11; P = 0.01). This change was not significantly different than the MCT, FO, and FO

+MCT food groups.

The most pronounced effect on GPIs was seen in the FO+MCT group, with 10/12 GPIs sig-

nificantly changed from baseline. This may have been largely due to the presence of MCT, as

that food group produced a change from baseline for 8/12 GPIs, whereas the FO diet gave

changes in only 3/12 GPIs. Further indicating the influence of MCT intervention, the MCT-

only food reduced all 4 detected arachidonate (C20:4n6)-containing GPIs from baseline and

Fig 4. Change from baseline to day 28 (log2 fold change) in plasma levels of glycerophosphatidylinositols. Cats were fed A) control food, B) food

with MCT, C) food with FO, or D) food with MCT and FO. Lipid metabolites are presented in order of increasing chain length and, within a chain

length, by increasing unsaturation. FC, fold change; FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with

baseline.

https://doi.org/10.1371/journal.pone.0229868.g004
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the FO+MCT group reduced 3 of these, while the FO intervention only reduced one. No EPA

(C20:5n3) or DHA (C22:6n3)-containing GPIs were detected in the metabolomics data set.

GPEs. GPE as a metabolite class was significantly different across groups in a multivariate

manner (MANOVA P< 0.001; S4 Table). There was a broad impact of dietary oil inclusion on

GPE relative to the CON group, with 96% (22/23) of the observed GPEs exhibiting changes

that differed significantly across food types (ANOVA median P< 0.001; Fig 5). Nearly all sig-

nificant changes in GPE were reductions from baseline levels, particularly in the FO and FO

+MCT groups. This effect could have been perhaps driven in part by changes in precursor gly-

cerophosphoethanolamine and phosphoethanolamine, the two ethanolamines detected in the

metabolomics dataset, in the foods containing MCT and/or FO. Phosphoethanolamine

decreased from baseline in the MCT (log2FC -0.27 ± 0.11; P = 0.03) and FO+MCT (log2FC

-0.37 ± 0.15; P = 0.03) groups, and these changes were significantly different than the change

from baseline observed for the CON group (log2FC 0.44 ± 0.10; P< 0.001). Furthermore, gly-

cerophosphoethanolamine decreased from baseline in the FO (log2FC -0.15 ± 0.04; P< 0.001)

and FO+MCT groups (log2FC -0.20 ± 0.0.06; P = 0.01). Taken together, the most consistent

decreases in ethanolamine precursors were in the FO+MCT group.

Consistent with heightened impact of FO+MCT on ethanolamine precursors, the most pro-

nounced effect on GPEs was in the FO+MCT group; 21/23 GPEs significantly changed from

baseline. The group consuming FO produced a change from baseline for 19/23 GPEs, whereas

Fig 5. Change from baseline to day 28 (log2 fold change) in plasma levels of glycerophosphatidylethanolamines. Cats were fed A) control food, B)

food with MCT, C) food with FO, or D) food with MCT and FO. Lipid metabolites are presented in order of increasing chain length and, within a chain

length, by increasing unsaturation. Blue bars indicate those that were strongly increased from baseline in all dietary oil intervention groups. FC, fold

change; FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g005
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MCT induced a change in 12/23 GPEs. Of all the phospholipid classes of metabolites (GPC,

GPI, GPE), the FO+MCT food exhibited its greatest magnitude of effects in the GPI and GPE

series, with respective median log2FC of -0.72 ± 0.11 and -0.77 ± 0.18 compared with

-0.40 ± 0.14 for GPC.

Although the CON food produced no changes from baseline for any arachidonate

(C20:4n6)-containing GPEs, all five observed GPEs that contain this proinflammatory

LCPUFA(n6) were affected by food group, driven largely by decreases in the FO and FO

+MCT groups. The MCT food decreased two of the five C20:4n6-containing GPEs from base-

line and increased one of the five (1-stearoyl-2-arachidonoyl-GPE [1-C18:0-2-C20:4n6-GPE]).

GPEs containing EPA (20:5n3) were not detected in this metabolomics dataset. However,

two DHA (22:6n3)-containing GPE were observed in the metabolomics dataset: 1-palmitoyl-

2-docosahexaenoyl-GPE (16:0/22:6n3) and 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6n3)

(bars 13 and 19 in Fig 5). Both of these 22:6n3-containing GPEs were strongly increased from

baseline by all dietary oil intervention groups (MCT, FO, and FO+MCT). It was unexpected

that the MCT food would increase 22:6n3-containing GPEs, and the magnitude of effect for

MCT was as great as for the FO group. Thus, an additive effect of MCT and FO likely led to

the FO+MCT group having the largest increases in the two 22:6n3-containing GPEs; the

change from baseline for the FO+MCT group was about 50% greater than for the FO or MCT

alone groups.

Sphingolipids and ceramides. The metabolite class of sphingolipids and ceramides sig-

nificantly differed across groups in multivariate fashion (MANOVA P� 0.01; S4 Table).

There was a highly significant and broad effect of dietary oil inclusion on individual sphingoli-

pids and ceramides relative to the CON group, with 83% (44/53) of observed changes from

baseline significantly affected by diet (ANOVA median P< 0.001; Fig 6). As opposed to the

effects of the FO and FO+MCT diets on phospholipid metabolite classes (GPC, GPI, GPE),

where the predominant change was a decrease from baseline levels, there was an mixture of

both upward and downward shifts in sphingolipids and ceramides when cats consumed the

FO or FO+MCT foods. The FO and FO+MCT groups had 12 of their increases and 14 of their

decreases from baseline in common. Particularly, both FO and FO+MCT foods significantly

changed the same 10/11 sphingolipids and ceramides containing a 24-carbon chain moiety

with the same directionality to these changes; 8/10 of these changes were increases. However,

the MCT group produced mostly downward shifts in sphingolipid and ceramide levels from

baseline (only one metabolite in this class was significantly increased, while 28 were signifi-

cantly decreased) in a manner consistent with its effects on the phospholipid metabolite clas-

ses. There were a total of 11/53 common metabolites in this class that were decreased in all

three intervention groups (MCT, FO, FO+MCT), but none was increased in all three groups.

It may be that the effects of MCT to decrease sphingolipids and ceramides were due to reduc-

tions in precursor metabolites, as MCT significantly decreased 4/4 detected precursors (sphin-

ganine, sphingosine, and their respective phosphorylated congeners). The reduction in

sphingolipid and ceramide precursors largely carried over into the FO+MCT food as all of

these except sphinganine also decreased in the cats consuming this combination of oils; how-

ever, there was no change in these sphingolipid precursors in the CON or FO groups.

Acylcarnitines. The metabolite class of acylcarnitines was significantly different across

food groups in a multivariate manner (MANOVA P< 0.001; S4 Table), with 76% (25/33) of

detected acylcarnitines altered by diet (ANOVA median P< 0.001; Fig 7). There were rela-

tively few changes in acylcarnitines with the MCT food. Relative to transition and long-chain

fatty acids, decanoate (C10:0), a dominant fatty acid in the MCT food, is proportionally more

capable of being catabolized to energy without the strict requirement for conjugation to carni-

tine. Despite this, decanoylcarnitine (C10:0; bar 8 in Fig 7) strongly increased following
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Fig 6. Change from baseline to day 28 (log2 fold change) in plasma levels of sphingolipids and ceramides. Cats

were fed A) control food, B) food with MCT, C) food with FO, or D) food with MCT and FO. Lipid metabolites are

presented in order of increasing chain length and, within a chain length, by increasing unsaturation. FC, fold change;

FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g006
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consumption of the MCT food. A strong increase in decanoylcarnitine (C10:0) was also

observed in the FO+MCT group, but not in the FO or CON groups, indicating that the driver

of increased decanoylcarnitine (C10:0) is the presence of C10:0 MCFA in the MCT ingredient

used to produce the MCT and FO+MCT foods.

Although the MCT food increased decanoylcarnitine (C10:0), the combination of FO

+MCT increased the entire MCFA-carnitine series (hexanoylcarnitine [C6], octanoylcarnitine

[C8], and decanoylcarnitine [C10; bars 6, 7, and 8 in Fig 7]) while MCT alone did not. Neither

the FO alone nor CON foods produced this effect.

Consumption of MCT also led to highly significant reductions of relatively large magnitude

for very long-chain saturated-acylcarnitines. The series of arachidoylcarnitine (C20), behe-

noylcarnitine (C22), lignoceroylcarnitine (C24), and cerotoylcarnitine (C26) (bars 21, 26, 31,

and 33 in Fig 7) were all decreased by MCT consumption but were unaffected by FO and only

the latter two were impacted in the CON group with a smaller magnitude of effect. Of note,

the carryover of this effect to the FO+MCT group was not pervasive. Of this series of very long

chain saturated-acylcarnitines, only the longest (cerotoylcarnitine [C26]) was decreased when

FO was additionally present (FO+MCT food), indicating the modulating impact of FO on

MCT provision.

Fig 7. Change from baseline to day 28 (log2 fold change) in plasma levels of acylcarnitines. Cats were fed A) control food, B) food with MCT, C)

food with FO, or D) food with MCT and FO. Lipid metabolites are presented in order of increasing chain length and, within a chain length, by

increasing unsaturation. Gray bars indicate unacylated carnitine precursors to acylcarnitines, green bars indicate the MCFA-carnitines, and blue bars

indicate LCPUFA(n3) carnitines. FC, fold change; FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with

baseline.

https://doi.org/10.1371/journal.pone.0229868.g007
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Considering the effect of FO on acylcarnitines, the FO food increased several PUFA-carni-

tines, and this effect was also present in the FO+MCT food-fed cats. EPA (20:5n3)-carnitine

was not observed in the metabolomics dataset, but dihomo-linolenoylcarnitine (20:3n3 or 6),

docosapentaenoylcarnitine (C22:5n3), docosahexaenoylcarnitine (C22:6n3) and nervonoylcar-

nitine (C24:1) (bars 24, 29, 30, and 32 in Fig 7, respectively) were all significantly increased in

both the FO and FO+MCT groups, in line with the availability of the precursor fatty acids of

these carnitine conjugates being present in these foods. Both FO and FO+MCT consumption

led to significant increases in arachidonoylcarnitine (C20:4) (bar 25 in Fig 7), although this

carnitine conjugate of a proinflammatory fatty acid was unchanged in the MCT or CON

groups. It is notable that the magnitude of effect to increase the aforementioned LCPUFA-car-

nitine conjugates was quite similar in both the FO and FO+MCT diet groups, which indicates

that the presence of MCT did not appreciably impact the effect of FO on these lipid

conjugates.

NAANs. The metabolite class of NAANs was significantly different across groups in mul-

tivariate fashion (MANOVA P< 0.001; S4 Table) with 19 total metabolites detected and 58%

(11/19) altered by food type (ANOVA median P = 0.0002; Fig 8). The combination FO+MCT

food had significant changes from baseline in 58% (11/19) of NAANs. Further, 4/19 of those

changed in the FO+MCT group were not produced in either FO or MCT oil alone, indicating

a synergistic effect of the combination. The predominant changes from baseline in all four

Fig 8. Change from baseline to day 28 (log2 fold change) in plasma levels of NAAN. Cats were fed A) control food, B) food with MCT, C) food with

FO, or D) food with MCT and FO. White bars indicate the ethanolamide-type, light gray the choline-type, medium gray the amino acid-type, and dark

gray the taurine-type of NAAN. FC, fold change; FO, fish oil; MCT, medium-chain fatty acid-containing triglycerides; NAAN, N-acyl amino acids and

neurotransmitters. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g008
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food types were decreases, with only three significant increases from baseline in any of the oil

intervention foods.

Of the four ethanolamide-type of NAANs detected, two were decreased by MCT consump-

tion (palmitoyl ethanolamide and stearoyl ethanolamide; bars 1 and 2 in Fig 8) and these con-

tained a saturated acyl group. FO also produced a decrease in two ethanolamide-type NAANs

(stearoyl ethanolamide and oleoyl ethanolamide), while FO+MCT decreased only oleoyl

ethanolamide.

There were five choline-type NAANs detected, two of which were decreased by interven-

tion with MCT (oleoylcholine and linoleoylcholine; bars 7 and 8 in Fig 8). This effect was also

present in the FO+MCT combination group, but the FO intervention had no significant effect

on choline-type NAANs, indicating that MCT provision was a driver of the effect on

acylcholines.

In the amino acid-type NAANs, only the combination of FO+MCT showed changes from

baseline, with decreases in both of the detected N-acyl-amino acids N-palmitoylglycine and N-

oleoylserine, bars 10 and 11 in Fig 8, indicating an unanticipated synergistic effect.

The taurine-type NAANs manifested the greatest disparity in number of observed changes

among dietary oil intervention groups. Whereas 1/8 taurine-type NAAN was decreased by the

MCT food, 4/8 changed with the FO treatment (two decreased and two increased) and 6/8

were altered with the combination of FO+MCT (five decreased and one increased). Perhaps

the most interesting change was an increase in the taurine-type NAAN conjugated to the ara-

chidonoyl acyl group (N-arachidonoyltaurine) (bar 19 in Fig 8). Intervention with FO alone or

FO+MCT, but not MCT alone, significantly increased N-arachidonoyltaurine. However, the

magnitude of the log2FC increase was twice as large in the FO group (1.81 ± 0.16) as it was in

the FO+MCT combination group (0.99 ± 0.32), suggesting that MCT had an ameliorating

effect on N-arachidonoyltaurine induction by FO. It is perhaps surprising that FO and the FO

+MCT diets led to an increase in N-arachidonoylcarnitine and N-arachidonoyltaurine but did

not increase any other arachidonoyl (C20:4n6)-containing lipids among any of the metabolite

classes examined here. Unlike N-arachidonoylcarnitine and N-arachidonoyltaurine, arachido-

nate-containing NEFA, GPC, GPI, and GPE are substrates for production of pro-inflamma-

tory prostaglandins, leukotrienes, and thromboxanes and were unaltered by either FO or FO

+MCT.

Impact on microbial postbiotics

Indoles/indolic sulfates. The metabolite class of indoles and indolic sulfates was signifi-

cantly different across groups in a multivariate manner with 15 total metabolites detected

(MANOVA P< 0.001; S4 Table), 73% (11/15) of which were altered by food type (ANOVA

median P< 0.001; Fig 9). Most (80%; 12/15) of the detected indoles and indolic sulfates were

altered by the combination food FO+MCT, and all were decreases. In the FO+MCT group,

there were decreases in not only indoles but also in the host-conjugated sulfated indoles. These

decreases in the FO+MCT group did not appear to be derived from additive effects of the sepa-

rate oils since the MCT group showed a change in only one of these metabolites, and the five

changes in the FO group were all increases. Thus, there is an unanticipated and synergistic

effect of FO+MCT combination food on indole postbiotics.

Phenols/phenolic sulfates. The class of phenols and phenolic sulfates was significantly

different across groups by multivariate analysis (MANOVA P< 0.001; S4 Table), with 24 total

metabolites detected and 83% (20/24) altered by food (ANOVA median P = 0.0002; Fig 10).

Similar to the indoles/indolic sulfates, the phenols and phenolic sulfates were disproportion-

ately impacted by the combination FO+MCT food (14/24 changes from baseline) compared
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with the other food types and all were decreases. In contrast, the significant MCT-induced

changes were both increases, and the changes in the FO group were split between increases

and decreases. Therefore, there is a similar synergistic effect of FO+MCT combination food

on phenol/phenolic sulfate postbiotics as for the indoles/indolic sulfate postbiotic metabolites.

Discussion

This trial assessed the effects of two very different types of fats (long chain polyunsaturated ver-

sus medium chain saturated) and used global metabolomics to survey the levels of several

classes of lipid metabolites: non-esterified fatty acids as well as the structural (GPC, GPI, GPE),

metabolically active (acylcarnitines), and biologically active (NAAN) complex lipids into

which these fats are incorporated. The effect of these dietary fats on circulating microbial

postbiotics was also examined given recent work demonstrating the effects of dietary lipids

on microbiome composition. While the level of MCT was twice the level of FO in the current

study, that is typical and due to their desired characteristics; in general, dietary FO is used at

levels much lower than MCT. Comparison of identical dietary levels of FO and MCT is not an

accurate representation of the use of these fats in nutrition; fatty acids from FO exert an effect

through prostaglandin hormone signaling, while MCT deliver dietary caloric energy (FO fatty

acid contribution to dietary energy is largely negligible).

Felines were selected as test subjects as they have been assessed for response to intake of die-

tary lipids previously, but previous studies did not assess the global lipidome and did not com-

pare the effects of FO and MCT alone and in combination. Cats can benefit from dietary

Fig 9. Change from baseline to day 28 (log2 fold change) in plasma levels of postbiotic indoles/indolic sulfates. Cats were fed A) control food, B)

food with MCT, C) food with FO, or D) food with MCT and FO. Gray bars indicate the sulfated metabolites. FC, fold change; FO, fish oil; MCT,

medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g009
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lipids, but the degree to which they might respond to the intervention described here was not

previously reported.

Relatively few studies have directly compared changes of diverse circulating lipid classes in

response to dietary MCT and n-3 LCPUT in combination versus the provision of these oils

alone. You et al. provided n-6 LCPUT and MCT alone and in combination via enteral infusions

into the cannulated small intestine of rats and found that the fatty acid composition of the tri-

glyceride fraction of plasma largely followed the differences in the n-6 LCPUT and MCT sources

[45]. The effect of addition of FO to MCT on plasma NEFAs and the fatty acyl component of

phospholipids has been assessed, although the identity of the phospholipid class (choline, inosi-

tol, ethanolamine, sphingolipid) was not analyzed and there was no control intervention that

contained neither MCT nor FO [46]. The impact of either FO or MCT on lipoproteins and

lipases in a patient with familial chylomicronemia was assessed, but NEFA, phospholipids, and

other complex lipids were not reported and there was no combination of FO with MCT [47].

The effects of dietary coconut oil and FO on circulating NEFA, acylcarnitines, and lysophospho-

lipids in cats [33] and dogs [48] has been reported. Compared to the current study, the Hall stud-

ies did not test intervention diets containing MCT without FO, the dietary levels of caprate

(C:10) were 5-fold (feline study) to 20-fold (canine study) lower due to the use of coconut oil

rather than purified MCT, there was no reported caprylate (C:8) in the foods, EPA (C20:5n3)

was higher than DHA (C22:6n3), and DHA (C22:6n3) was present at levels an order of magni-

tude lower in the foods. Importantly, assessment of whether the effects were different between

oils was not reported in felines.

Fig 10. Change from baseline to day 28 (log2 fold change) in plasma levels of postbiotic phenols/phenolic sulfates. Cats were fed A) control food,

B) food with MCT, C) food with FO, or D) food with MCT and FO. Gray bars indicate the sulfate-containing metabolites. FC, fold change; FO, fish oil;

MCT, medium-chain fatty acid-containing triglycerides. �P< 0.05 compared with baseline.

https://doi.org/10.1371/journal.pone.0229868.g010
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Circulating levels of the ketone body BHBA are known to be elevated after administration

of MCT [2]. The current data indicate that co-administration of FO+MCT resulted in an

apparent increase in the production of BHBA beyond that produced by MCT alone. This

observation has not been previously reported elsewhere. Enhanced conversion of MCFA to

BHBA may at least partially explain why circulating levels of caprate (C10:0) in the FO+MCT

diet group were less than half of the levels observed in the MCT diet group.

In many cases the effects of FO+MCT to alter lipid class levels was greater than for either oil

alone, and simple mathematical addition of the effects of MCT to those of FO does not account

for the increased effects of FO+MCT. It appears that when combined, FO+MCT acts synergisti-

cally. One of these metabolites that significantly increased in the FO+MCT group but was sig-

nificantly decreased in the MCT group and relatively unaffected in the FO group was

stearidonate (18:4n3), which has potential health benefits [49]. In contrast to the synergism

observed for some lipid species, for the lysolipid subclasses of GPC, GPI, or GPE phospholipids,

there was no differential effect of oil intervention on the number of significant changes from

baseline, and their directionality was not different than it was in the class as a whole. Levels of

biologically active NAAN were also altered by FO+MCT to an extent not observed for the FO

or MCT oils interventions alone. Accumulation of N-acyl taurines has been implicated to

increase insulin secretion, leading to β cell dysfunction in type 2 diabetes in mice [50]. Five of

eight N-acyl taurines detected were significantly decreased in the FO+MCT group in this study,

indicating that this combination may have beneficial effects on insulin regulation in cats. Perti-

nent to this observation, clinical chemistry analysis showed that blood glucose decreased in the

FO+MCT group (from 84.6 to 78.4 mg/dL; P = 0.001) but was unchanged in the groups con-

suming either MCT or FO alone (see S4 Table). It might be expected that the FO+MCT combi-

nation would also produce physiological effects on satiety, neuromodulation, GI motility, and

vascular tone. Future studies will be needed to assess the physiological consequences of combin-

ing these oils. In other cases, co-inclusion of FO in the FO+MCT food appears to have abro-

gated the effects of MCT alone. Arachidonic acid (C20:4n6) was only significantly changed

(decreased) in the group that consumed the MCT food. This effect of MCT on arachidonic acid

(C20:4n6) has previously been observed in a rat model [51].

Although structurally divergent, fatty acids in FO and MCT utilize common processes of

beta oxidation, chain elongation, and (de)saturation for metabolism. Further, there is evidence

for biochemical interaction of these dietary fats. Provision of MCT has previously been shown

to increase the accumulation of long chain fatty acid-containing triglycerides in lymph fluid

[45], both long chain triglycerides and MCT modulate fatty acid desaturase activity [52–55],

MCT can participate as substrates for chain elongation prior to beta oxidation [56], and MCT

have been shown to induce lipogenic fatty acid synthases [57]. These effects could potentially

influence the composition of circulating lipids derived from dietary or endogenous sources

but were not assessed in the current study. Additional studies are needed to determine the

degree to which FO+MCT influenced activity of enzymes involved in fatty acid metabolism to

produce the effects observed on circulating lipids.

Extensive effects of the FO+MCT food on circulating microbial postbiotics in the indole/

indolic sulfate and phenol/phenolic sulfate classes in cats were observed in the current study.

These classes of postbiotics are derived from the putrefaction of aromatic amino acids that

originated from undigested protein having undergone microbial proteolysis in the large intes-

tine [12]. With many of these metabolites considered to be uremic toxins that are correlated

with the progression of renal failure, this combination of FO+MCT may provide a renal-pro-

tective effect [13]. To our knowledge, the observation that a combination of FO and MCT syn-

ergistically decrease circulating putrefactive postbiotics has not been previously published. The

way in which FO+MCT produced a synergistic effect on circulating levels of microbiome
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postbiotics in this study is not readily apparent and additional research will need to be con-

ducted to ascertain the mechanism. However, the documented physiologic effects of FO and

MCT would be expected to impact gut microbiome composition, and indeed FO-derived

PUFA as well as MCT have been shown to effect positive changes in the gut microbiome [14,

20] and to have anti-inflammatory effects and to modulate gut physiology [7, 16, 19, 23]. Gut

barrier integrity is a factor that could influence the migration of microbial postbiotics into sys-

temic circulation [58]. As one example of how FO+MCT might interact to influence microbial

postbiotic levels, MCT can improve intestinal energy metabolism to increase gut barrier integ-

rity [59, 60], while FO reduces inflammation that could otherwise decrease gut barrier integrity

[61–63]. Although not assessed in the current study, it may be that the previously established

effects of FO+MCT on microbiome composition, inflammatory state and gut barrier underpin

the observed differences in circulating microbial postbiotic levels. In terms of the mechanism

behind the differences observed specifically for the host-sulfated postbiotics, the decreases

seen in sulfated forms of both indoles and phenols in the FO+MCT group may be due to a

dearth of indole or phenol substrates available for host sulfation in the intestinal epithelia and

liver. Alternatively, it may involve a direct effect of the FO+MCT food on the process of sulfa-

tion. However, since unconjugated indoles and phenols also decreased in tandem with their

sulfated congeners, it is unlikely that the decrease in indoles and phenols is due to enhanced

sulfation and urinary excretion, although this remains to be tested.

A novel aspect of this study stemmed from the use of caprylate (C8:0)-enriched MCT oil

and DHA (C22:6n3)-enriched FO. Caprylate (C8:0) is known to exert strong metabolic

effects relative to caprate (C10:0) and the transition fatty acids laurate (C12:0) and myristate

(C14:0). DHA (C22:6n3) is known to produce stronger effects on neuromodulation than the

more predominant FO fatty acid constituent EPA (C20:5n3). The extent of the effects of the

FO+MCT combination are likely influenced by their proportions, as evidenced by compari-

son with a prior study in which cats were fed a control food; food with FO (0.23% EPA and

0.14% DPA); or food with FO (0.23% EPA and 0.14% DPA), and coconut oil (0.56% caprate

[C10:0]) [33]. For example, little change was observed in the levels of laurate (12:0) in the

FO+MCT group in this study, but an over 2-fold log increase was seen in the combination

group in Hall et al, perhaps due to the use of coconut oil rather than MCT per se in that

study. Opposite effects were seen in the two studies on levels of palmitoleate (16:1n7) and

oleate (18:1), but levels of EPA (20:5n3), DPA (22:5n3), and DHA (22:6n3) were all increased

relative to baseline. Of note, the control foods in these two studies differed in protein con-

centrations, and the studies were different lengths; this study used a 4-week time period,

while Hall et al. was six months. Both of these factors could also have contributed to the dif-

ferences seen.

The FO and MCT oils employed here are used as nutritional adjuvants in other species

including humans and canine companion animals. It is to be expected that these results will

translate to these and other species based on the published precedents cited herein and the

overlapping metabolic processes these species in common. A limitation of this study could be

the relatively short (2-week) washout feeding period prior to feeding the test foods, as more

changes from baseline occurred in the control group than would be expected by chance (at

alpha = 0.05). However, there was approximately a 2–4 times greater number of significant

changes in the FO, MCT, and FO+MCT oil intervention groups than in the control group (see

S4 Table). Additionally, knowing whether the effects observed in this study can extend into a

longer term resulting in durable health benefits would be of interest. Nevertheless, strengths of

this study are that the combination of FO+MCT could be assessed relative to each oil in isola-

tion and that the use of paired data enabled each cat to serve as its own control to compare the

changes from baseline rather than a post-interventional cross-sectional assessment.
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In summary, the combination of two diverse oil types in cats led to effects on plasma metab-

olites that were not present in either oil alone, particularly in regard to microbiome metabolites.
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