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Abstract

Background: In recent years, epigenetics has gained a central role in the understanding of the process of natural
selection. It is now clear how environmental impacts on the methylome could promote methylation variability with
direct effects on disease etiology as well as phenotypic and genotypic variations in evolutionary processes. To identify
possible factors influencing inter-individual methylation variability, we studied methylation values standard deviation of
166 healthy individuals searching for possible associations with genomic features and evolutionary signatures.

Results: We analyzed methylation variability values in relation to CpG cluster density and we found a strong association
between them (p-value < 2.2 x 10~ '°). Furthermore, we found that genes related to CpGs with high methylation variability
values were enriched for immunological pathways; instead, those associated with low ones were enriched for pathways
related to basic cellular functions. Finally, we found an association between methylation variability values and signals of
both ancient (p-value < 2.2 x 107 ') and recent selective pressure (p-value < 1x 10”4,

Conclusion: Our results indicate the presence of an intricate interplay between genetics, epigenetic code and evolutionary

constraints in humans.
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Background

Although methylation is the major covalent DNA modifica-
tion that is present across many different species, the com-
plexity of its function is only partially decoded [1].
Methylation is variable and susceptible to environmental
changes due to its main function, which is regulating the
gene transcription depending on the cell’s needs. Thus, the
hypothesis that this modification could persist across gener-
ations is counterintuitive, especially if we consider the de-
methylation process that occurs during the epigenetic
reprogramming in the mammals embryonic development
[2]. However, despite these considerations, there is emer-
ging evidence showing that methylation could be inherited
over generations [3]. Indeed, epigenetic alterations could
explain the inheritance of some parentally acquired traits
that cannot be explained by Mendelian inheritance, DNA
mutations or genetic damages [2]. Although the
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methylation pattern could be trans-generationally inherited,
it is important to underline the variable nature of the
methylation, mostly because the plasticity of the epigenome
is strongly involved in the adaptation to our environment
[2]. Indeed, environmental factors could promote epigen-
etic variation with direct impact both on disease etiology
and on origins of phenotypic/genotypic variations involved
in evolutionary processes [4]. In other words, methylation
helps gene transcription to face environmental changes. If
these changes remain stable enough through different gen-
erations, it could be beneficial to fix the gene transcription
with a new, stable, methylation pattern [3, 5]. So far, no one
has successfully described the hidden mechanism that al-
lows the fixation of the differences in DNA methylation be-
tween human populations, but the scientific community is
apparently moving toward this direction [1, 6, 7]. Actually,
it is rather difficult to analyze such methylation variability,
mostly because individuals, within the same population,
could differ for many parameters (e.g. age, gender, stress,
food intake, or health), and all of them could affect the epi-
genome. In the last decade, the increasing use of Next
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Generation Sequencing (NGS) and “BeadChip” techniques
has produced a huge amount of data on epigenetic ana-
lyses, and methylomes of many individuals are available to
the scientific community in public databases along with as-
sociated information (i.e. gender, age, health status). In this
paper we investigated the variability of methylation values
of 485,000 CpGs among 166 healthy individuals, exploiting
the public data of the Italian section of the European
Prospective Investigation into Cancer and Nutrition (EPIC)
cohort [8]. It is our opinion that a better knowledge of the
variable nature of the methylation could improve our un-
derstanding of many biological processes; to this aim, we
investigated possible novel sources of methylation variation
(henceforward denoted as MV), such as genomic structural
landscape, biological pathways and selective pressure.

Results
Inter-individual Methylation variability is related to CpG
cluster density
In this study, we chose the standard deviation as a meas-
ure to study CpGs inter-individual methylation variabil-
ity (MV). Figure 1 shows the distribution of MV values
in our population (1A), and the comparison between
MV values and methylation beta-values (1B); for the lat-
ter, continuous beta-values were binned in deciles.

We found that MV values were associated with CpGs
methylation levels (One-way; p-value <2.2x 10" 16 In
particular, higher MV values were observed for CpGs with
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intermediate methylation levels, while lower MV values
were associated with CpGs methylation values near the
beta-value limits (0 and 1). To determine if MV values
were associated with genomic structural features, we ana-
lyzed MV values in relation to CpG cluster density. We
classified genomic regions according to their CpGs con-
tent into three groups: high-density (HCs, CG content >
55%, Obs/Exp CpG ratio >0.75 and length > 500 bps),
intermediate-density (ICs, CG content >50%, Obs/Exp
CpG ratio > 0.48 and length >200 bps) and low-density
(LCs, non-HC/IC regions) as proposed by Price and col-
leagues [9]. In our dataset 61,946 CpGs fall in HCs, 72,496
in ICs and 71,999 in LCs. Figure 2 shows the relationship
between CpGs MV and their cluster density.

Inter-individual methylation variability showed a
strong correlation to CpGs cluster density (One-Way
Test, p-value <22x107'%). Furthermore, CpGs
belonging to HCs showed the lowest MV values, while,
on the other hand, those belonging to LCs showed the
highest ones. Finally, CpGs classified as ICs showed
intermediate MV values.

Functional annotations of genes containing CpGs with
different inter-individual Methylation variability

We also investigated whether inter-individual methyla-
tion variability was related to specific functional path-
ways. To attribute to each gene an MV value, we
selected 99,376 CpGs located in genomic regions of
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Fig. 2 Boxplots of CpGs methylation variation (MV) for CpGs
cluster density

3000 base pairs around each Transcription Start Site (for
more details see Materials and Methods). Using this ap-
proach, we generated a ranked list of genes with MV
values of CpGs located in their promoter regions. We
used the obtained ranked list to perform a Gene Set En-
richment Analysis (GSEA) [10, 11] using KEGG pathway
as gene set. With this approach, we were able to identify
18 KEGG enriched pathways (NOM p-value <0.01 and
FDR g-value <0.25) in CpGs with high and 15 with low
MYV values (Table 1).

Interestingly, the enrichment of pathways in CpGs
with high MV values was related to immunological pro-
cesses (e.g. graft vs host disease, allograft rejection, dia-
betes I disease, autoimmune thyroid response, etc.),
while the enrichment of pathways in CpGs with low MV
values was related to basic cellular functions (e.g. Spli-
ceosome, RNA degradation, homologous recombination,
cell cycle, etc.).

CpGs under ancient selective pressure show low MV

We next addressed the role of natural selection in the
shaping of inter-individual methylation variability. An-
cient and recent selective pressure signals can be de-
tected by analyzing inter- and intra-species diversity. As
measure of ancient selective pressure, we used the
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Genomic Evolutionary Rate Profiling - Rejected substitu-
tions (GERP-RS), a well-accepted method based on se-
quence conservation among species [12]. GERP-RS
scores near zero reveal no substitution deficit and no se-
lective pressure signals, while positive GERP-RS scores
represent a substitution deficit, indicating a base conser-
vation during evolution and a possible selective pressure
signal. We divided CpGs GERP-RS values into quartiles,
and then we calculated MV values for each one (Fig. 3).

Figure 3 shows the presence of an inverse relationship
between GERP-RS score and MV (One-Way Test, p-value
<22x107'%). CpGs located in the higher quartile of
GERP-RS score (more conserved during evolution)
showed the lowest level of MV among individuals.

CpGs under recent selective pressure show low MV

Many different measures of recent selective pressure have
been proposed [13], but, unfortunately, none of these seems
to be fully informative. In order to achieve a more conser-
vative approach, we decided to use a combination of these
measures, and additionally filter SNPs that overcame the
threshold for each measure (for more details see Materials
and Methods) [14]. To this aim, we used data from another
Italian population (Tuscans, TSI). By screening the dbPSHP
database (http://jjwanglab.org/dbpshp) and applying the
above mentioned criteria, we obtained 124 SNPs putatively
under recent selective pressure in the Italian population.
For each of these SNPs, we identified CpGs localized in a
region around 2000 base pair, and we named these CpGs as
Recent Selective Pressure CpGs (RSP-CpGs). Figure 4
shows the MV values of RSP-CpGs compared to those who
were not classified as recent (No RSP-CpGs).

We found that MV values were lower in regions under
recent selective pressure (RSP-CpGs) in comparison
with the remaining genomic regions (No RSP-CpGs)
(TSI MV mean =0.027, No RSP-CpGs MV mean =0.
035; bootstrap analysis based on 10,000 Monte Carlo
simulations, p-value <1 x10™%). To confirm this result,
we decided to analyze another Caucasian population
(CEU). Similarly to what we observed for the Italian
population, RSP-CpGs showed lower MV compared to
No RSP-CpGs (CEU mean =0.031, No RSP-CpGs MV
mean = 0.035; bootstrap analysis based on 10,000 Monte
Carlo simulations, p-value <3x1072). For additional
information about CEU population and bootstrap
analyses, see Additional file 1. Finally, we checked
whether the 272 TSI RSP-CpGs showed also signals of
ancient selective pressure as higher GERP-RS score. We
found no differences in terms of GERP-RS scores be-
tween RSP-CpGs and No RSP-CpGs (T-test = NS), thus
allowing us to speculate that the two selective pressure
signatures (ancient and recent), although both showing
association with inter-individual methylation variability,
are probably reflection of two different phenomena.
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Table 1 Gene Set Enrichment Analysis output for CpGs with high or low MV

Gene set name NOM p-val FDR g-val MV

OLFACTORY TRANSDUCTION 0.000 0.000 High
GRAFT VERSUS HOST DISEASE 0.000 0.000 High
ALLOGRAFT REJECTION 0.000 0.000 High
ASTHMA 0.000 0.000 High
TYPE | DIABETES MELLITUS 0.000 0.000 High
NEUROACTIVE LIGAND RECEPTOR INTERACTION 0.000 0.000 High
AUTOIMMUNE THYROID DISEASE 0.000 0.000 High
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION 0.000 0.001 High
METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 0.000 0018 High
ANTIGEN PROCESSING AND PRESENTATION 0.005 0.032 High
DRUG METABOLISM CYTOCHROME P450 0.004 0.035 High
CELL ADHESION MOLECULES CAMS 0.002 0.033 High
VIRAL MYOCARDITIS 0.009 0.033 High
COMPLEMENT AND COAGULATION CASCADES 0.010 0.032 High
RETINOL METABOLISM 0.008 0.053 High
CYTOKINE CYTOKINE RECEPTOR INTERACTION 0.001 0.052 High
SYSTEMIC LUPUS ERYTHEMATOSUS 0.007 0.054 High
LEISHMANIA INFECTION 0.005 0.064 High
SPLICEOSOME 0.000 0.000 Low
RNA DEGRADATION 0.000 0.000 Low
HOMOLOGOUS RECOMBINATION 0.000 0.000 Low
UBIQUITIN MEDIATED PROTEOLYSIS 0.000 0.000 Low
CELL CYCLE 0.000 0.001 Low
N-GLYCAN BIOSYNTHESIS 0.000 0.004 Low
PARKINSONS DISEASE 0.000 0.006 Low
RNA POLYMERASE 0.003 0.007 Low
LYSINE DEGRADATION 0.000 0.009 Low
HUNTINGTONS DISEASE 0.000 0013 Low
PROTEASOME 0.004 0018 Low
TERPENOID BACKBONE BIOSYNTHESIS 0.003 0.017 Low
OXIDATIVE PHOSPHORYLATION 0.000 0.016 Low
AMINOACYL TRNA BIOSYNTHESIS 0.000 0.015 Low
RIBOSOME 0.000 0018 Low
Discussion demonstrated [18]. DNA methylation variability

Epigenetics is a field of growing interest among scientists
involved in different research areas (e.g. cancer, molecu-
lar medicine, behavior, development, physiology, morph-
ology, cell biology).

Previous studies investigated the DNA methylation
variability in healthy individuals. While the presence
of a stochastic component of such variability is indis-
putable, its relationship with demographic variables
such as age [15], gender [16], and smoking behavior
[17] is well established. Similarly, the functional im-
pact of this variability on phenotypes has been also

among healthy individuals has been also hypothesized
to influence susceptibility to common diseases, as well
as response to drug treatments [6, 19]. In addition,
DNA methylation has been also described to differ
between ethnic populations [16, 20, 21].

Epigenetics is also achieving a role in our understand-
ing of natural selection and evolution. In a recent review
[22], the authors found that about 1% of epigenetics
studies were focused on investigating relationships with
natural selection and evolution. Most of these papers
highlighted the conservation of DNA methylation
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Fig. 3 Boxplots of CpGs methylation variation (MV) values (y-axis)
and quartiles of Genomic Evolutionary Rate Profiling (GERP) Rejected
Score (RS) (x-axis)

among species [23, 24], while others emphasized on
species-specific DNA methylation [25].

In this study, we analyzed the methylation variability
among healthy individuals to investigate its possible rela-
tionship with genomic features and evolutionary signa-
tures. To this aim, we exploited the methylation data
from the Italian section of the EPIC study [8]. We de-
cided to use, as measure of inter-individual methylation
variation (denoted as MV), the standard deviation ac-
cording to previously published studies [19, 23, 26]. The
MV values distribution in our cohort was in agreement
with that available in literature [19, 26]. To analyze the
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possible relationship between methylation variability and
genomic features, we decided to use the CpG cluster
density, a suitable method to identify biologically-
relevant structures [9]. With this approach, we found a
strong relationship between inter-individual methylation
variability and CpG cluster density, with HC regions
showing low levels of CpG methylation variability, while
IC and LC regions showed increasingly higher levels.
This result is in line with the current knowledge of dir-
ect correlation between methylation levels and CpG
density [23, 26]. To date, only a few papers have focused
on methylation variability. Wagner and colleagues [27]
showed a low inter-individual methylation variation in
CpGs located near a TSS and highly variable CpGs lo-
cated far away from it. This finding is in agreement with
our results. Indeed, high-density CpG clusters are usu-
ally located near a TSS [27]. A possible explanation for
this phenomenon could be found in the common hypo-
methylation across individuals of HC regions, which
could cause small inter-individual methylation variations
[7]. On the other hand, it should be noted that CpGs
with the highest MV, which fall in IC and LC regions,
are poorly probed by Illumina 450 K array and tend to
fall outside the CpG island [7]. In Acute Lymphoid
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Leukemia cells it has been found that CpGs falling out-
side CpG islands show significantly more variation in
methylation levels than those falling within the CpG
islands [28]. With this knowledge, our results are in
agreement with the literature, because the highest num-
ber of CpGs falling outside an island belongs to both LC
or IC classes [9].

To investigate a possible association between inter-
individual methylation variability and functional path-
ways, we used a GSEA approach. We found an enrich-
ment of pathways related to the immune system in those
CpGs with higher inter-individual variability, while we
proved an enrichment of pathways related to basic cellu-
lar functions in CpGs showing a low inter-individual
variability. Previous studies investigated CpGs methyla-
tion in three different human populations, showing 439
differential methylated CpGs among groups [6]. Interest-
ingly, genes harboring these CpGs in their promoters
are responsible for immune response factors and xeno-
biotic metabolism. Another study analyzed gene expres-
sion from blood samples obtained by 200 healthy
controls, and it showed that hypervariable transcripts
among individuals were enriched for genes mostly in-
volved in mediating immune-related processes [29]. A
possible explanation of these results could be found just
in the biology of the blood samples. Since in these sam-
ples DNA molecules are extracted from white blood
cells, it is reasonable to hypothesize that variable epigen-
etic signals could partly allow us to face different im-
munological scenarios, with differences between
individuals. Expression of genes involved in the immune
response is very variable in a population. Indeed, each
individual, comes in contact with different pathogens or
xenobiotics during his life, activating in different ways
the immune system [30]. In addition, we also examined
the inter-individual methylation variability of CpGs that
are conserved among species positing that they likely
have a biologically relevant function. We found that
those CpGs that are more conserved during evolution
showed the lowest values of inter-individual methylation
variability. Comparing human-mouse methylation, a
study showed that methylation correlates, although
weakly, with sequence conservation [31]. Analyzing the
relationship between DNA methylation, genetics, and
expression in fibroblasts, other authors proved that
CpGs with low inter-individual methylation variation
showed a good degree of sequence conservation [27].
We then tested the hypothesis of the possible relation
between recent selective pressure and inter-individual
methylation variability among individuals of the same
population. We found that inter-individual methylation
variability proved to be lower in regions under recent se-
lective pressure compared to the other regions. A pos-
sible speculation to explain this finding is that our
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results could indicate a recent evolutionary fixation of
the methylation values. In particular, the inter-individual
methylation fixation could indicate both a pure epigen-
etic fixation or a genetic variation associated with a spe-
cific methylation pattern [32]. In the first case, it might
be possible that a random methylation pattern could
have somehow improved the human adaptation, by pro-
viding a favorable phenotype in a specific environment.
On the other hand, in the second hypothesis, it could be
hypothesized that a favorable genetic mutation could be
related to a specific methylation pattern, mostly because
it is the only possible for that specific mutation. With
this knowledge, it is worth to mention that some authors
showed how epigenetic mechanisms can drive genetic
changes [33, 34], while other studies proposed that gen-
etic variation could drive DNA methylation differences,
and suggested that different methylated CpG sites could
work as evolutionarily mediators between the genetic
code and the phenotypic variability [6].

Conclusions

In this study, we investigated novel sources of inter-
individual methylation variation such as genomic struc-
tural landscape, biological pathways and selective pressure.
To this aim, we exploited the public methylation data of
the Italian section of the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) cohort [8].

We found that inter-individual methylation variation is
strongly correlated to CpG cluster density and signals of
both ancient and recent selective pressure. Furthermore,
we found that genes related to CpGs with high inter-
individual methylation variation were enriched for genes
involved in immunological pathways; instead, those asso-
ciated with low one were enriched for pathways related
to basic cellular functions.

Despite the limitation of a small cohort or the use of a
single tissue, our results indicate the presence of an in-
tricate interplay between genetics, epigenetic code and
evolutionary constraints in humans. Further studies, in-
cluding longitudinal ones, in different populations are
needed to confirm our results. It is our opinion that a
better knowledge of the variable nature of the methyla-
tion could improve our understanding of many bio-
logical processes.

Methods

Data preprocessing

Methylome data of 845 participants from the EPIC-Italy co-
hort were obtained by querying GEO database (GSE51032).
The cohort is produced at the Human Genetics Foundation
(HuGeF) in Turin, Italy, and contains raw data and normal-
ized methylation values (beta-values) from peripheral blood
cells of 188 men and 657 women [8]. All the beta-values
from the EPIC project were normalized by the consortium
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using the same routines [8]. In particular: GenomeStudio
software was used for background subtraction and dye bias
correction, while batch effects were corrected using COM-
BAT software [35, 36]. Finally, to test if white blood cell
variability could influence the inter-individual methylation
variability in our data, we performed a test using the cor-
rection described by van Veldhoven et al. 2015 [36]. In
brief, we identified the probes that differed significantly be-
tween each individual cell type and PBMC using the Rein-
ius et al. dataset (GSE35069) [37]. To calculate differential
methylation, we used the linear regression approach
(limma) with the following thresholds: p < 1e-07 and delta-
beta >0.05. No remarkable differences were identified be-
fore and after the filtering of the 8452 CpGs influenced by
the white blood cell variability. Therefore, all the calcula-
tions in this manuscript were made without white blood
cell variability correction. According to the study of J. H.
Kim and colleagues [38], we excluded from our analysis
four participants because of age or sex discrepancies. We
selected 83 healthy males and 83 age-matched healthy fe-
males from the entire cohort (age range = 36—65). Out of
485,512 CpGs, 127,616 were excluded from our analysis for
two main reasons: a) CpGs falling on sex chromosomes or
on SNPs and b) CpGs showing cross-reactivity or polymor-
phisms [9, 39]. We chose the standard deviation as a meas-
ure to study CpGs inter-individual methylation variability
(MV). Since our study was specifically focused on variabil-
ity, we included only the CpGs with methylation values
evaluated in all samples. Therefore, all the CpGs with miss-
ing values were not included in the analysis. At the end of
the filtering process, 206,441 CpGs were obtained. To ob-
tain MV values, we calculated mean, variance and standard
deviation values of all samples for each CpGs. To associate
each MV value to a CpG island density group, we used the
association provided by Price and colleagues [9].

Gene set enrichment analysis

To investigate the association between genes function and
CpGs’ MV values, a Gene Set Enrichment Analysis
(GSEA) was performed. We selected only the CpGs that
fell in a range of 1500 base pairs before and after the Tran-
scription Start Site (TSS) (- 1500, + 1500), and the result-
ing CpGs were associated with a gene according to Price
criteria [9]. MV values of CpGs that were associated with
the same gene were then mediated. In order to use the
GSEAPreranked module on GenePattern [40], all the MV
values were transformed in a z-score using this formula:

2= ((X-))/o

where z is the z-score, X is the MV value of that gene,
p is the population MV mean, and o is the standard
deviation of all the MV values. Using this linear
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transformation, we obtained positive and negative values
that were sorted from the higher to the lower. The
KEGG gene set (“c2.cp.kegg.v5.1.symbols.gmt
[Curated]”) was used to perform the pathway analysis.
We considered statistical significant all the genes sets
that were enriched, at the same time, with a nominal
p-value <0.01 and with a FDR q-val < 0.25.

Analysis of ancient selective pressure

To evaluate the presence of ancient selective pressure,
we used a widely accepted conservation-based method:
GERP-RS (Genomic Evolutionary Rate Profiling -
Rejected substitutions) [12]. Detailed information about
GERP-RS track can be found on UCSC website (http://
genome.ucsc.edu). Briefly, the GERP-RS score estimates
the conservation of each nucleotide in a multi-species
alignment of 35 mammalians to the human genome 19
(hg19). For each base, it associates a “rejected substitu-
tions” score that ranges from a maximum of 6.18 to a
minimum of -12.36. After downloading the entire
GERP-RS track (GRCh37/hgl9) from the UCSC data-
base, we intersected GERP-RS values with CpGs position
using BEDTOOLS [41], and we obtained a GERP-RS
value for each CpG of our data set. GERP-RS scores can
be interpreted as follows: a score near zero represents
no substitution deficit and no signs of base conservation,
while positive GERP-RS scores represent a substitution
deficit, thus indicating that a base might be conserved.
On the other hand, negative GERP-RS scores are diffi-
cult to be interpreted [12]. For this reason, we decided
to remove all CpGs that were associated with a negative
GERP-RS, therefore analyzing a total number of 80,098
CpGs with a GERP-RS score > 0.

Analysis of recent selective pressure

To evaluate the presence of recent selective pressure we
used an ensemble of measures oriented to this aim. We
extracted SNPs from the DataBase of recent Positive Se-
lection across Human Populations (dbPSHP) [14], which
contains lists of positive selected SNPs from the Hap-
Map III and 1000 Genomes Project, filtered according to
the following criteria:

-Derived Allele Frequency (DAF) > 0.05

-Genotype Frequency of Homozygous Derived Allele
(GFHOM]1) > 0.001

-Genotype Frequency of Heterozygote (GFHET) > 0.05
-P-value cutoff of Hardy-Weinberg equilibrium
(HWE2) > 0.0001

-Heterozygosity (HET) < 0.5

-Nucleotide Diversity (PI) < 0.5

-Difference of Derived Allele Frequency (DDAF) > 0.2
-Tajima’s D (TD) <0

-Fixation Index (FST1) > 0.05
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-Integrated Haplotype Score (UIHS) > 1.5
-Cross-Population Extended Haplotype Homozygosity
(UXPEHH) > 1

-Cross-Population Composite Likelihood Ratio
(XPCLR) > 5

For more details, please see http://jjwanglab.org/
dbPSHP. We used these criteria to download SNPs
showing signals of recent selective pressure. Since the
population included in our study is composed of people
from Italy, we decided to use SNPs from populations
with low genetic distance from our cohort. Therefore,
only SNPs from TSI (Tuscany, Italy) and CEU (US resi-
dents with European ancestry) populations were in-
cluded in the analysis. Since for each population, two
different SNP datasets exist (1000 k genomes and Hap-
Map III), they were merged, thus obtaining one final
data set for each population. CpGs located in a range of
2000 base pairs around each filtered SNP were defined
as Recent Selective Pressure-CpGs (RSP-CpGs). RSP-
CpGs were identified using BEDTOOLS [41], obtaining
272 CpGs for TSI and 328 CpGs for CEU.

Statistical analysis

All calculations, statistical analyses, and the bootstrapping
estimations were performed using R statistical package
version 3.2.5, with an alpha value set for p < 0.05.

Additional file

Additional file 1: additional information about CEU population and
bootstrap analyses. (PDF 557 kb)

Abbreviations

dbPSHP: DataBase of recent Positive Selection across Human Populations;
EPIC: European Prospective Investigation into Cancer and Nutrition; GERP-
RS: Genomic Evolutionary Rate Profiling - Rejected substitutions; GSEA:
Gene Set Enrichment Analysis; MV: inter-individual methylation variability;
TSS: Transcription start site

Acknowledgements
Thank to Dr. Sirio Cocozza for the manuscript revision.

Funding

The Doctorate of Molecular Medicine and Medical Biotechnology at
University of Naples “Federico II" and the Epigenomic Flagship Project
Epigen, Research Council of Italy (CNR) supported this work.

Availability of data and materials
The datasets analyzed during the current study are available in the GEO
repository, GSE51032 [8].

Authors’ contributions

DP analyzed the dataset, performed the statistical analyses and wrote the
manuscript. OA helped in statistical analyses and in the manuscript writing.
AM and SC defined and designed the study, helped to interpret results and
helped in the manuscript writing. All authors have read and approved the
manuscript.

Ethics approval and consent to participate
Not applicable.

Page 8 of 9

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1Departmem of Molecular Medicine and Medical Biotechnology (DMMBM),
University of Naples “Federico II", Naples, Italy. “Institute for Experimental
Endocrinology and Oncology (IEOS) “Gaetano Salvatore”, CNR, Naples, ltaly.

Received: 7 November 2017 Accepted: 23 March 2018
Published online: 02 April 2018

References

1. Hernando-Herraez |, Garcia-Perez R, Sharp AJ, Marques-Bonet T. DNA
Methylation: insights into human evolution. PLoS Genet. 2015;11:21005661.
https://doi.org/10.1371/journal.pgen.1005661.

2. Soubry A. Epigenetic inheritance and evolution: a paternal perspective on
dietary influences. Prog Biophys Mol Biol. 2015;118:79-85. https.//doi.org/10.
1016/j.pbiomolbio.2015.02.008.

3. Szyf M. Nongenetic inheritance and transgenerational epigenetics. Trends
Mol Med. 2015;21:134-44. https://doi.org/10.1016/j.molmed.2014.12.004.

4. Skinner MK, Gurerrero-Bosagna C, Haque MM, Nilsson EE, Koop JAH, Knutie
SA, et al. Epigenetics and the evolution of Darwin’s finches. Genome Biol
Evol. 2014,6:1972-89. https://doi.org/10.1093/gbe/evu158.

5. Dall SRX, McNamara JM, Leimar O. Genes as cues: phenotypic integration of
genetic and epigenetic information from a Darwinian perspective. Trends
Ecol Evol. 2015;30:327-33. https;//doi.org/10.1016/j.tree.2015.04.002.

6. Heyn H, Moran S, Hernando-Herraez |, Sayols S, Gomez A, Sandoval J, et al.
DNA methylation contributes to natural human variation. Genome Res.
2013,23:1363-72.

7. Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population
epigenomic variation. Nat Rev Genet. 2016;17:319-32. https://doi.org/10.
1038/nrg.2016.45.

8. Riboli E, Hunt K, Slimani N, Ferrari P, Norat T, Fahey M, et al. European
prospective investigation into Cancer and nutrition (EPIC): study populations
and data collection. Public Health Nutr. 2002,5:1113. https://doi.org/10.1079/
PHN2002394.

9. Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional
annotation enhances potential for biologically-relevant analysis of the
[llumina Infinium HumanMethylation450 BeadChip array. Epigenetics
Chromatin. 2013;6:4. https.//doi.org/10.1186/1756-8935-6-4.

10.  Mootha VK, Lindgren CM, Eriksson K, Subramanian A, Sihag S, Lehar J, et al.
PGC-1a-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human. Diabetes. 2003;34:267-73.

11, Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, M a G, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:
15545-50. https://doi.org/10.1073/pnas.0506580102.

12. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Distribution SA.
Intensity of constraint in mammalian genomic sequence. Genome Res.
2005;15:901-13.

13. Vitti JJ, Grossman SR, Sabeti PC. Detecting natural selection in genomic
data. Annu Rev Genet. 2013;47:97-120.

14.  Li MJ, Wang LY, Xia Z, Wong MP, Sham PC, DbPSHP WJ. A database of
recent positive selection across human populations. Nucleic Acids Res.
2014;42:910-6.

15. Jones MJ, Goodman SJ, Kobor MSDNA. Methylation and healthy human
aging. Aging Cell. 2015;14:924-32.

16.  Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, et al.
Significant differences in global genomic DNA methylation by gender and
race/ethnicity in peripheral blood. Epigenetics. 2011;6:623-9.

17. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm
F, Kaaks R, et al. Tobacco smoking-associated genome-wide DNA
methylation changes in the EPIC study. Epigenomics. 2016,8:599-618.
https://doi.org/10.2217/epi-2016-0001.


http://jjwanglab.org/dbPSHP
http://jjwanglab.org/dbPSHP
https://doi.org/10.1186/s12864-018-4618-9
https://doi.org/10.1371/journal.pgen.1005661
https://doi.org/10.1016/j.pbiomolbio.2015.02.008
https://doi.org/10.1016/j.pbiomolbio.2015.02.008
https://doi.org/10.1016/j.molmed.2014.12.004
https://doi.org/10.1093/gbe/evu158
https://doi.org/10.1016/j.tree.2015.04.002
https://doi.org/10.1038/nrg.2016.45
https://doi.org/10.1038/nrg.2016.45
https://doi.org/10.1079/PHN2002394
https://doi.org/10.1079/PHN2002394
https://doi.org/10.1186/1756-8935-6-4
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.2217/epi-2016-0001

Palumbo et al. BMC Genomics (2018) 19:229

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Peaston AE, Epigenetics WE. Phenotypic variation in mammals. Mamm 39.

Genome. 2006;17:365-74.
Chatterjee A, Stockwell PA, Rodger EJ, Duncan EJ, Parry MF, Weeks RJ, et al.

Genome-wide DNA methylation map of human neutrophils reveals 40.

widespread inter-individual epigenetic variation. Nat Publ Gr. 2015;

https://doi.org/10.1038/srep17328. 41.

Coit P, Ognenovski M, Gensterblum E, Maksimowicz-McKinnon K, Wren JD,
Sawalha AH. Ethnicity-specific epigenetic variation in naive CD4+ T cells and
the susceptibility to autoimmunity. Epigenetics Chromatin. 2015;8:49.
https//doi.org/10.1186/513072-015-0037-1.

Kader F, Ghai MDNA. Methylation-based variation between human
populations. Mol Gen Genomics. 2016;292:1-31.

Burggren W. O ‘callaghan C, Finne J, Torday JS. Epigenetic inheritance and its role in
evolutionary biology: re-evaluation and new perspectives. Biology (Basel). 2016:4:22.
Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors
underlying variable DNA methylation in a human community cohort. Proc
Natl Acad Sci. 2012;109(Supplement_2):17253-60.

Gokhman D, Lavi E, Priifer K, Fraga MF, Riancho JA, Kelso J, et al.
Reconstructing the DNA Methylation. Science (80- ). 2014;344:523-8.

Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV. Divergent
whole-genome methylation maps of human and chimpanzee brains reveal
epigenetic basis of human regulatory evolution. Am J Hum Genet. 2012,91:
455-65. https//doi.org/10.1016/j.ajhg.2012.07.024.

Jiang R, Jones MJ, Chen E, Neumann SM, Fraser HB, Miller GE, et al.
Discordance of DNA Methylation variance between two accessible human
tissues. Sci Rep. 2015;5:8257. https://doi.org/10.1038/srep08257.

Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The
relationship between DNA methylation, genetic and expression inter-
individual variation in untransformed human fibroblasts. Genome Biol. 2014;
15:R37. https://doi.org/10.1186/gb-2014-15-2-r37.

Milani L, Lundmark A, Kiialainen A, Nordlund J, Flaegstad T, Forestier E, et al.
DNA methylation for subtype classification and prediction of treatment
outcome in patients with childhood acute lymphoblastic leukemia. Child A
Glob J Child Res. 2010;115:1214-25.

Ecker S, Chen L, Pancaldi V, Bagger FO, Ferndndez JM, Carrillo de Santa Pau
E, et al. Genome-wide analysis of differential transcriptional and epigenetic
variability across human immune cell types. Genome Biol. 2017;18:18.
https://doi.org/10.1186/513059-017-1156-8.

Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene
expression in the immune system. Immunology. 2013;139:285-93.

Xin Y, O'Donnell AH, Ge Y, Chanrion B, Milekic M, Rosoklija G, et al. Role of
CpG context and content in evolutionary signatures of brain DNA
methylation. Epigenetics. 2011,6:1308-18.

Klironomos FD, Berg J, Collins S. How epigenetic mutations can affect
genetic evolution: model and mechanism. BioEssays. 2013;35:571-8.
Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced
epigenetic transgenerational inheritance of sperm epimutations promote
genetic mutations. Epigenetics. 2015;10:762-71.

Jablonka E. Epigenetic inheritance and plasticity: the responsive germline.
Prog Biophys Mol Biol. 2013;111:99-107. https://doi.org/10.1016/j.
pbiomolbio.2012.08.014.

Demetriou CA, Chen J, Polidoro S, Van Veldhoven K, Cuenin C, Campanella
G, et al. Methylome analysis and epigenetic changes associated with
menarcheal age. PLoS ONE. 2013;8:1-11. https://doi.org/10.1371/journal.
pone.0079391.

van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, et

Page 9 of 9

Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al.
Discovery of cross-reactive probes and polymorphic CpGs in the lllumina
Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203-9.

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.
Nat Genet. 2006;38:500-1. https://doi.org/10.1038/ng0506-500.

Quinlan AR, BEDTools HIM. A flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841-2.

al. Epigenome-wide association study reveals decreased average
methylation levels years before breast cancer diagnosis. Clin Epigenetics.
2015;7:67. https://doi.org/10.1186/513148-015-0104-2.

Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al.
Differential DNA methylation in purified human blood cells: implications for
cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7:1-13.
https://doi.org/10.1371/journal.pone.0041361.

Kim JH, Park J, Kim S. Non-negligible occurrence of errors in gender
description in public data sets. Genomics Inform. 2016;14:34. https.//doi.org/
10.5808/G1.2016.14.1.34.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



https://doi.org/10.1038/srep17328
https://doi.org/10.1186/s13072-015-0037-1
https://doi.org/10.1016/j.ajhg.2012.07.024
https://doi.org/10.1038/srep08257
https://doi.org/10.1186/gb-2014-15-2-r37
https://doi.org/10.1186/s13059-017-1156-8
https://doi.org/10.1016/j.pbiomolbio.2012.08.014
https://doi.org/10.1016/j.pbiomolbio.2012.08.014
https://doi.org/10.1371/journal.pone.0079391
https://doi.org/10.1371/journal.pone.0079391
https://doi.org/10.1186/s13148-015-0104-2
https://doi.org/10.1371/journal.pone.0041361
https://doi.org/10.5808/GI.2016.14.1.34
https://doi.org/10.5808/GI.2016.14.1.34
https://doi.org/10.1038/ng0506-500

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Inter-individual Methylation variability is related to CpG cluster density
	Functional annotations of genes containing CpGs with different inter-individual Methylation variability
	CpGs under ancient selective pressure show low MV
	CpGs under recent selective pressure show low MV

	Discussion
	Conclusions
	Methods
	Data preprocessing
	Gene set enrichment analysis
	Analysis of ancient selective pressure
	Analysis of recent selective pressure
	Statistical analysis

	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

