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Abstract

Background: Rapid herbivore-induced jasmonic acid (JA) accumulation is known to mediate many induced defense
responses in vascular plants, but little is known about how JA bursts are metabolized and modified in response to repeated
elicitations, are propagated throughout elicited leaves, or how they directly influence herbivores.

Methodology/Principal Findings: We found the JA burst in a native population of Nicotiana attenuata to be highly robust
despite environmental variation and we examined the JA bursts produced by repeated elicitations with Manduca sexta oral
secretions (OS) at whole- and within-leaf spatial scales. Surprisingly, a 2nd OS-elicitation suppressed an expected JA burst at
both spatial scales, but subsequent elicitations caused more rapid JA accumulation in elicited tissue. The baseline of
induced JA/JA-Ile increased with number of elicitations in discrete intervals. Large veins constrained the spatial spread of JA
bursts, leading to heterogeneity within elicited leaves. 1st-instar M. sexta larvae were repelled by elicitations and changed
feeding sites. JA conjugated with isoleucine (JA-Ile) translates elicitations into defense production (e.g., TPIs), but
conjugation efficiency varied among sectors and depended on NaWRKY3/6 transcription factors. Elicited TPI activity
correlated strongly with the heterogeneity of JA/JA-Ile accumulations after a single elicitation, but not repeated elicitations.

Conclusions/Significance: Ecologically informed scaling of leaf elicitation reveals the contribution of repeated herbivory
events to the formation of plant memory of herbivory and the causes and importance of heterogeneity in induced defense
responses. Leaf vasculature, in addition to transmitting long-distance damage cues, creates heterogeneity in JA bursts
within attacked leaves that may be difficult for an attacking herbivore to predict. Such unpredictability is a central tenet of
the Moving Target Model of defense, which posits that variability in itself is defensive.
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Introduction

Herbivory by leaf-chewers elicits a rapid, but transient,

accumulation of the oxylipin, jasmonic acid (JA), in the attacked

leaves of vascular plants. JA and its metabolites elicit the

expression of defense-related genes and large-scale changes in

the transcriptome, proteome, and metabolome after leaf wounding

and herbivory [1–3] and is associated with a repression of growth

and activation of defense-related processes [4–7]. Regulatory roles

have also been suggested for members of the extensive jasmonate

family [8–10], including a central role for an isoleucine conjugate

(JA-Ile) that promotes the SCFCOI1-mediated degradation of JAZ

repressors of transcription factors that regulate JA-responsive

genes in Arabidopsis thaliana [11,12]. In addition to regulatory roles

in herbivore-attacked tissues, jasmonates have an unidentified but

essential role in the elicitation of the systemic defense response

[13].

Mechanical simulations of herbivory have been effectively

employed to elucidate the complicated temporal dynamics of the

various oxylipins that account for the responses elicited by the JA

signaling network. Such simulations often consist of single, whole-

leaf elicitations, followed by homogenization of the elicited leaf

tissues for analysis. These techniques are suited for identifying key

regulatory nodes in the JA signaling network and studying whole-

plant systemic defense, but do not capture the temporal patterns

and spatial heterogeneity of the responses elicited by a feeding

herbivore. Some recent studies have demonstrated the effect of

repeated elicitations on plant defense. A mechanical wounding

robot programmed to simulate the timing of continuous

Lepidopteron herbivory was able to replicate the induced volatile

profile elicited when Spodoptera littoralis larvae attack lima bean

plants [14,15]. Other studies have highlighted important spatial

heterogeneity in the induced responses. In A. thaliana, more polar

jasmonate metabolites were found in vascular tissues of induced

leaves [16]. MAPK signaling in Nicotiana attenuata after elicitation of

different leaf quarters was activated heterogeneously within

elicited leaves [17]. In tomato, direct vascular connectivity to a

crushed leaf determined the induction of TPIs in systemic leaves
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and contributed to spatial heterogeneity of induced TPIs within

those systemic leaves [18]. The factors responsible for heteroge-

neity within elicited leaves, however, remain largely unexplored.

Recently, the non-uniform distribution of glucosinolates within A.

thaliana leaves was shown to influence the feeding behavior of

Lepidopteran herbivores [19]. Characterizing the temporal

patterns and spatial heterogeneity of induced defenses at an

appropriate scale is therefore critical for understanding plant-

herbivore interactions.

N. attenuata provides an ecologically informed model for

reconsidering temporal patterns and spatial heterogeneity of the

JA-mediated induced defense response, particularly in response to

Lepidopteran herbivory. Annually established populations of this

native tobacco encounter highly variable herbivore communities

as plants germinate from seed banks that respond to smoke cues

from wildfires in the Great Basin Desert [20,21]. N. attenuata is

known to respond specifically to attack from the larvae of the

specialist Lepidopteran herbivore, Manduca sexta [22]. Wound-

induced JA accumulation is amplified by M. sexta oral secretions

(OS), but JA-dependent nicotine synthesis is inhibited by ethylene

when this nicotine tolerant herbivore initiates feeding [23]. JA-Ile

dependent TPI activity effectively reduces larval growth rates

[24,25], but expression of TPIs is costly for N. attenuata in the

absence of herbivores [26].

Elicited JA accumulation in N. attenuata is extremely dynamic:

the initial JA burst attains maximum values 45–60 min after OS

elicitation and is quickly metabolized, with JA levels returning to

about 1/8th of peak levels within 2 h and then slowly returning to

undetectable levels [27]. In comparison, A. thaliana maintains

highly induced levels of JA for at least 4 h after wounding [28],

although a biphasic accumulation pattern has been reported with

induced levels increasing even days after a single wounding [29].

Unlike in N. attenuata, wound-induced JA accumulation in A.

thaliana is not known to respond to herbivore-specific cues. The

rapid waxing and waning of the JA burst in N. attenuata may be of

particular importance in tailoring defense responses in response to

sustained herbivore attack.

Here, we characterize and test several aspects of N. attenuata’s JA

burst and its role in plant defense. We focus on responses in the

laminal tissues subtended by leaf vasculature because these are the

tissues primarily attacked by early-instar M. sexta larvae on N.

attenuata. We report that the JA burst in a native population of

genetically heterogeneous plants, exposed to natural abiotic

stresses thought to influence JA signaling (e.g., UV-B), is

surprisingly robust. We demonstrate that repeated elicitations

alter the characteristic patterns of induced JA accumulation at

both whole- and within-leaf scales. Using a scaled-down elicitation

method that mimics herbivory by 1st instar M. sexta larvae, we

show that large vascular structures (the midrib and secondary

veins) inhibit the spread of JA bursts and JA metabolites within

elicited leaves, but that connections between laminal leaf sectors

via secondary veins could account for the apparent unpredictabil-

ity of the between-sector spread of JA bursts. We also show that

larvae are repelled from OS-elicited leaf sectors in a timeframe

correlating to the initial JA burst itself, rather than changes in the

plant defense profile induced by the JA burst; larvae changed

feeding sites from elicited to un-elicited leaf sectors well before the

JA bursts are translated into the expression of JA-associated

defenses such as trypsin proteinase inhibitors (TPIs). JA is

conjugated with Ile to form JA-Ile, which translates elicitations

into defense production (e. g. TPIs) [30]. The efficiency of

conjugation of JA with Ile varied among sectors, with the laminal

sector at the base of the leaf having the lowest efficiency. To

explore the role of transcription factors in the conjugation

efficiency, we used recently characterized, transformed N. attenuata

plants silenced in the expression of two WRKY transcription

factors (NaWRKY3 and 6) that mediate the translation of OS

elicitations into oxylipin signaling [31].

The results of this work highlight the importance of studying the

elicitation of defense responses at spatial scales relevant to the

attacking herbivore and suggest that the JA burst can itself

function as a defense. We consider the temporal and spatial

dynamics of the responses in a framework of memory formation.

The analysis also demonstrates that leaf vasculature, in addition to

transmitting systemic signals among attacked leaves, creates

heterogeneity of the JA burst within attacked leaves, which may

be difficult for the attacking herbivore to predict. Unpredictability

of defense responses is a central tenet of the Moving Target Model

of induced plant defense [32].

Methods

Characterizing the N. attenuata JA burst in a native
population

Since oxylipin signaling is thought to be influenced by abiotic

stresses such as drought, wind stress and UV-B exposure [33,34],

we examined the robustness of the OS-elicited JA burst to

environmental perturbation by eliciting the 1st or 2nd fully

expanded leaf from each of 65 rosette-stage plants growing in a

native population in the Great Basin Desert at Lytle Ranch

Preserve, St. George, Utah, USA. Elicited plants were likely highly

genetically heterogeneous, as was determined by an AFLP analysis

of native N. attenuata plants growing in the same area the previous

year [35]. Elicitation occurred just before elongation of rosette-

stage plants and consisted of making 3 rows of puncture wounds

with a pattern wheel on each side of the midrib (4 puncture

wounds per cm of leaf lamina as in [36]) and immediately applying

either 10 ml of M. sexta OS diluted 1:5 in distilled H2O or 10 ml

distilled H2O. Whole leaves of replicate groups of 5 plants each

were then harvested at 30 min increments after elicitation and

immediately stored and shipped on dry ice for JA quantification.

To visualize the elicited JA burst in this native population, we

constructed a 4 hr kinetic of JA accumulation after elicitation with

OS or the water control by plotting the mean value of quantified

JA in samples from each harvested replicate group along a

horizontal axis based on time elapsed before harvest after the

initial elicitation.

Repeated simulations of M. sexta herbivory at the whole-
leaf scale

Arthropod herbivores—once successfully established on a

plant—rarely stop feeding after the initial attack. We examined

the effect of repeated herbivory events on the highly reproducible

JA burst characterized in this and other studies. Repeated

herbivory events could affect JA accumulations in several ways:

(1) JA levels might be unresponsive or repressed after repeated

herbivory events, (2) repeated herbivory events could maintain a

stable induced level of JA, or (3) lead to increasing JA levels.

Glasshouse plants were germinated from the 17th inbred

generation of seeds originally collected from a native population

in Utah collected at the DI ranch in 1988 [20]. Seeds were

germinated on Gamborg B5 media under sterile conditions, with

gibberellic acid and 1:50 diluted liquid smoke (House of Herbs,

Passaic, NJ, USA) as described in [37]. 10-d-old seedlings were

planted individually in soil in Teku pots. 10 d later, early rosette

stage plants were transferred to soil in 1 L pots and grown in a

glasshouse at 26 to 28uC under 16 h of light per day (Philips Sun-

T Agro 400 W sodium lights, www.nam.lighting.philips.com).

The Within-Leaf JA Burst
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Rosette-stage plants were elicited before elongation. A single

elicitation consisted of 1 row of pattern wheel wounds on each side

of the midrib, which were immediately treated with 10 ml of 1:5

diluted OS per row; rows of successive elicitations were added on

the leaf-margin side of the previous row. Whole leaf replicate

groups were harvested at 30 min increments after the last

elicitation and immediately frozen in liquid N2 and stored at

280uC until JA quantification.

To determine how JA accumulation after the initial burst is

modified by subsequent herbivory events, we OS-elicited the 1st or

2nd fully expanded leaf of glasshouse-grown N. attenuata once per h

and constructed 6 h kinetics of JA accumulation in response to 1,

2, 3, and 4 elicitations using a similar method as above: mean

quantified JA level in samples from each harvested replicate group

were plotted along an axis based on time elapsed before harvest

after the last elicitation.

Simulation and analysis of early-instar herbivory
M. sexta larvae consume 98% of their total food intake during

the 5th instar [38] and can easily consume whole plants; therefore,

induced plant defenses must be targeted at early, more vulnerable

instar stages in order to be effective against these voracious

herbivores. Therefore, we were interested in characterizing the

OS-elicited JA burst on a spatial scale relevant to the feeding

behavior of early-instar larvae. Observations of feeding, 1st instar

M. sexta larvae suggested that the spatial scale of attack could be

simulated by piercing the leaf lamina with a sharp needle and

immediately adding 1 ml of undiluted OS. This localized

elicitation method allowed us to test two aspects of JA

accumulation. First, we determined whether the modifications of

JA accumulation by repeated elicitations that we had observed at

the whole-leaf scale also occurred on a smaller within-leaf spatial

scale. We tested the observed JA accumulation pattern against an

additive model to identify specific alterations of expected JA

accumulation by multiple elicitations. We used the JA kinetic

generated from a single, localized elicitation to create a predictive

model for JA accumulation in response to repeated elicitations.

Based on the hypothesis that successive elicitations do not alter

biosynthetic and metabolic fates of JA, this model predicted net JA

levels at time t after n elicitations by summing the JA levels

resulting from a series of theoretical single elicitations.

Second, we measured the accumulation of jasmonates within

different sectors of an elicited leaf. Wu et al. showed that the

patterns of OS- induced JA accumulations differed among leaf

quarters cut along and across the midrib, depending on the leaf

quarter that was OS-elicited [17]. We hypothesized that the

midrib and the large secondary veins that run roughly perpendic-

ular to the lengthwise gradient constrain the spatial spread of the

OS-elicited JA burst across the leaf lamina, leading to heteroge-

neity of JA accumulation within an elicited leaf. To test this

hypothesis, we dissected elicited leaves into intra-vein laminal

sectors defined by the midrib and secondary veins (Fig. 1) and

quantified jasmonate accumulations in each sector individually.

Localized elicitations were created by pushing a needlepoint

through the 2nd full laminal sector (from the base of the leaf) of

rosette-stage, glasshouse-grown N. attenuata, and adding 1 ml of

undiluted OS (Fig. 1A). 2 non-orthostichous leaves per plant were

elicited for jasmonate quantification kinetics [39]; a sub-set of

Figure 1. Repeated elicitations of N. attenuata leaves at the scale of a feeding, early-instar M. sexta. (A) 1 ml of undiluted M. sexta OS was
applied to a needlepoint wound in a single middle sector of the leaf lamina. This elicitation was repeated 5 times (1 per h). Four laminal sectors were
dissected and extracted (SE*, ST, SB, and SO) for jasmonate (JA) and TPI quantification. (B) OS elicitation results in rapid accumulation of JA, some of
which is rapidly conjugated to Ile. Conjugation requires both NaTD and NaJAR4; silencing NaJAR4 and NaTD transcript accumulation decreases TPI
activity [25,30]. Bioactive JA and JA-Ile can be hydroxylated at C-12 or C-11, or carboxylated at C-12. NaWRKY3 and NaWRKY6 mediate the
accumulation and metabolism of JA by influencing processes upstream of JA biosynthesis [31].
doi:10.1371/journal.pone.0004697.g001
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samples were paired so as to compare potential whole-plant

systemic effects in jasmonate accumulation. We repeated this

elicitation 5 times (1 per h) within the focal sector; successive

elicitations proceeded in a clockwise circle within the elicited

laminal sector. Replicate groups were harvested in 30 min

increments from the time of the last elicitation. During harvest,

leaves were dissected into sectors divided by the midrib and

secondary vasculature and 4 sectors were saved for jasmonate

quantification over a 6 h period: the elicited laminal sector

(referred to as SE*), the sector adjacent to SE* towards the base of

the leaf (SB), the sector adjacent to SE* towards the tip of the leaf

(ST), and the sector opposite from SE* across the leaf midrib (SO).

Plants were grown under identical conditions as those used for the

whole-leaf glasshouse elicitation, but came from the 30th inbred

generation of seeds originally collected at Lytle Ranch Preserve.

All laminal sectors were immediately (,1 min after harvest) frozen

in liquid N2 and stored at 280uC until quantification of JA and

derivatives. This analysis entailed the quantification of 4 sectors

each from 112 individual leaf samples.

Identifying molecular mechanisms regulating the JA
burst and its metabolism

Transcription factors NaWRKY3 and NaWRKY6 are in-

volved in maintaining induced JA levels at the whole-leaf scale

during continuous herbivory [31]. We used stably transformed

lines, which were silenced in the expression of either NaWRKY6

or both NaWRKY3 and NaWRKY6 by RNAi as described in

[31] to determine whether these transcription factors also are

responsible for mediating the temporal patterns of JA accumu-

lation that we observed at the within-leaf spatial scale. Seeds

from these stably transformed lines were germinated and grown

as described for glasshouse wild-type plants, and the within-

laminal sector elicitation scheme and harvest was used to

construct JA and derivative accumulation kinetics. Control wild-

type plants were germinated and grown alongside transformed

plants.

Quantification of JA and its derivatives
For field- and glasshouse-grown plants elicited at the whole-leaf

scale, we were interested in testing the effect of certain factors

(environmental perturbation, repeated elicitations) on the JA burst.

However, for the localized elicitation scheme, we were additionally

interested in how the JA burst is metabolized in order to determine

the contribution of metabolism to the observed temporal and

spatial heterogeneity.

Since the JA burst rapidly wanes after a single elicitation, we

quantified 5 additional metabolites of JA, some of which are

thought to be the elicitors of defense responses (Fig 1B). As JA

accumulates in response to simulated or real herbivory, NaJAR4

catalyzes its conjugation to isoleucine (Ile) to form JA-Ile; silencing

this enzyme impairs the activation of TPI defenses, as does

silencing threonine deaminase (NaTD) which supplies the Ile used

in the conjugation [25,30]. JA is thought to be inactivated by

hydroxylation at carbon 12 or 11 (combined relative quantities are

reported here as 12/11-OH-JA) [40,41]. Recently, a similarly

hydroxylated JA-Ile (combined relative quantities are reported

here as 12/11-OH-JA-Ile) and a dicarboxylic jasmonate (12-

COOH-JA-Ile) have been reported in planta [16,42]. Quantifying

this group of jasmonates allowed us to observe accumulation of the

important signaling molecules JA and JA-Ile, as well as their

metabolism, to better understand the processes responsible for the

waning of the JA burst.

Jasmonates from leaf tissue were extracted in 1 ml ethyl acetate

spiked with D2-JA and 13C6-JA-Ile internal standards (ISTDs).

Whole-leaf samples were first homogenized by grinding in liquid

nitrogen and extracted in ,100 mg aliquots (exact weight of each

aliquot was recorded). Dissected laminal sectors were weighed

before homogenization. Samples were ground to a fine powder

with porcelain beads to ensure thorough homogenization (Fast

Prep homogenizer, www.thermo.com), extracts were centrifuged

in a microcentrifuge (rcf 16,1006g, 20 min, 4uC), and supernatants

evaporated to dryness. Dried extracts were re-suspended in 70%

methanol for HPLC-MS/MS analysis. Amounts of ISTD used for

extraction were adjusted between experiments to match expected

values of jasmonates in the replicates: 100 ng per sample for

whole-leaf extractions, 10 ng per sample for the WT-only laminal

sector extractions, and 50 ng per sample for the WT/ir-wrky6/ir-

wrky3/6 laminal sector extractions.

10 ml extract aliquots were analyzed by reverse-phase HPLC

coupled to a Varian 1200 L triple-quad mass spectrometry (MS/

MS) system (www.varianinc.com). Multiple reaction monitoring

(MRM) was conducted on parent-ion/product-ion selections after

negative ionization: 213/59 (D2-JA), 209/59 (JA), 225/59 (12/11-

OH-JA), 328/136 (13C6-JA-Ile), 322/130 (JA-Ile), 338/130 (12/

11-OH-JA-Ile), 352/130 (12-COOH-JA-Ile). The area beneath

the MRM product ion peak was recorded for detected analytes and

ISTDs. MRM for 12/11-OH-JA and 12/11-OH-JA-Ile returned 2

separate peaks reflecting the different position of OH moieties:

retention time (RT) for 12-OH-JA = 5.317 min, RT11-OH-JA =

5.564 min, RT12-OH-JA-Ile = 5.671 min, RT11-OH-JA-Ile = 5.963 min.

For these analytes, the areas beneath the 2 peaks were combined. The

concentration of analytes was quantified by multiplying the analy-

te:ISTD ion peak area ratio by the mass of ISTD added during the

extraction. D2-JA was used as ISTD for 12/11-OH-JA and 13C-JA-Ile

was used as ISTD for 12/11-OH-JA-Ile and 12-COOH-JA-Ile and

values relative to the respective ISTDs were reported.

Testing caterpillar feeding behavior in response to an
elicited JA burst

The OS-elicited JA burst is known to be essential for the

activation of defense responses, which in turn influence the feeding

patterns of M. sexta larvae among leaves on a plant [38,43,44]. To

determine if the rapid accumulation of JA in response to

herbivory, or later JA-associated defense processes, influenced

caterpillar feeding behavior within a leaf, we placed larvae on the

underside of WT N. attenuata leaves that had been elicited with a

single, needle-point wound and 1 ml of undiluted M. sexta OS on

SE* (1) 2 h before larval placement, (2) 15 min before larval

placement, or (3) not elicited.

Eggs of M. sexta obtained from North Carolina State University

(Raleigh, NC, USA) were hatched at 24 to 26uC under 16 h light

and fed for 36 h on stably transformed as-lox3 N. attenuata plants

before the experiment started to ensure that larvae would not be

exposed to JA-induced responses during their first leaf meal

(inserted lox3 anti-sense construct characterized in [43]). 36-h-old

individuals were starved in a plastic box for 30 min before the

experiment to promote immediate feeding. The three leaf

treatments (elicitation 2 h prior to experiment, elicitation 15 min

prior, and control) were paired on each plant; the 1st, 2nd, and 3rd

fully expanded leaves of partially elongated plants were used and

treatments were moved among the different leaves on replicate

plants. Caterpillars were observed every 5 min for 1 h to record

location and time of the first feeding event. Feeding was

constrained to SE* to ensure that the first tissues larvae sampled

on the experimental plants were from SE*. Larvae that failed to

feed within 1 h were discarded from the analysis. Groups of 7 or 8

plants (3 caterpillars each) were observed each day on 4

consecutive days.

The Within-Leaf JA Burst
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Radial diffusion assay of trypsin proteinase inhibitor
activity due to single or repeated elicitations

To understand how a leaf integrates the temporal and spatial

dynamics of the JA (or JA-Ile) burst into a defense response

effective against early instar M. sexta larvae at a molecular level, we

measured trypsin proteinase inhibitor (TPI) activity at 12 and 24 h

after a single, localized elicitation and 5 repeated elicitations in

each of the laminal sectors described above. Wild-type N. attenuata

were grown and elicited in the glasshouse as described above.

Replicate leaves were dissected into laminal sectors and frozen in

liquid N2 at 12 or 24 h after the time of 1st elicitation.

Water-soluble proteins were extracted from ground leaf tissue

[45] and total protein content in each sample was determined by

the Bradford assay against serial dilutions of an immunoglobulin G

standard (Sigma-Aldrich, www.sigmaaldrich.com). Approx. 25 ml

of protein extract from each sample was loaded into wells on gel

plates containing trypsin (Sigma-Aldrich) dissolved in plant agar.

Serial dilutions of soybean TPI (Sigma-Aldrich) were used as

standard on each gel plate. Active TPI from samples was allowed

to radially diffuse out from each loaded well for 14 h. Plates were

then stained to reveal extent of TPI diffusion [45,46]; TPI activity

was quantified by standardizing the diameter of the diffusion ring

from each sample against the soybean TPI curve and dividing by

total water-soluble protein [47]. Statistical analyses (ANOVA and

Fisher’s PLSD) were performed with StatView (Adept Scientific,

citewise.adeptscience.co.uk/statview/).

Results

The OS-elicited JA burst is highly robust and repeated
elicitations result in non-additive JA accumulations

The kinetics of the OS-elicited JA burst measured from these

genetically heterogeneous native plants that had grown in an

environment replete with insults known to elicit JA bursts was

remarkably similar to those quantified in over 30 individual

glasshouse experiments over the past 13 years (for example [48]):

the JA burst attained a distinctive peak 60 min after elicitation

followed by a rapid decline to baseline levels within 3 h (Fig. 2A).

The mean peak JA concentration, at .3500 ng/g FM, was higher

than those attained in similar glasshouse experiments.

The JA kinetic resulting from whole-leaf elicitations of glasshouse-

grown plants did not exactly match any of the predicted patterns

(Fig. 2B). For example, re-elicitation of leaves already at the peak of

JA accumulation (1 h after 1st elicitation) surprisingly decreased JA

levels and did not increase or even sustain the JA peak. However,

subsequent elicitations again induced JA bursts.

Nonadditive JA accumulations in response to repeated
elicitations

In response to localized elicitation, the elicited laminal sector

(SE*) accumulated peak JA levels (mean JA in SE* = 4800690 ng/

g FM) that were higher than those quantified in homogenized

whole-leaf samples, which suggests that elicitation did not elicit a

JA burst uniformly across the leaf lamina.

In response to repeated elicitations at a frequency of 1 per h,

observed levels of JA within SE* did not match the predicted additive

model, implying that JA biosynthetic and metabolic rates in SE* are

altered by repeated elicitations (Fig. 3A). For simplicity, we only

describe JA accumulation patterns; JA-Ile accumulation followed JA

accumulation closely. As in the whole-leaf elicitation, a 2nd elicitation

in SE* decreased JA accumulations and the predicted 2nd JA burst

was not observed. The 2nd elicitation increased the accumulation of

12/11-JA-OH, so that at the 90 min harvest, mean values were

almost 80% higher after 2 elicitations than after 1 (Fig. 4A).

Immediate increases in 12/11-JA-OH were also apparent after the

3rd and 4th elicitations, but not after the 5th.

Differences between observed and predicted patterns of JA

accumulation were clearer after the 3rd, 4th, and 5th elicitations:

net JA increased immediately after each successive elicitation

instead of following the initial decrease predicted from the model

(Fig. 3A). After the 4th and 5th elicitations, this rapid accumulation

led to peak means that were at least as high as those predicted

from the model, but JA accumulation following the 3rd elicitation

(as after the 2nd elicitation) never reached the predicted levels and

thereby resembled the reduction in net JA accumulation observed

after the 2nd elicitation in the whole-leaf elicitation experiments.

Relative accumulation of 12/11-OH-JA-Ile and 12-COOH-JA-

Ile in SE* were also detected, and net levels of both increased in

response to repeated elicitations (Fig. 4B and Fig. 4C). In general,

12/11-OH-JA-Ile accumulation was responsive to each successive

elicitation except for the 5th, but high variance made it difficult to

detect more specific patterns.

Figure 2. Whole-leaf elicitation: a single OS elicitation induces
a robust, transient JA burst even in a genetically heteroge-
neous native population of N. attenuata, but JA accumulations
in response to repeated elicitations are not additive. (A) A
single whole-leaf OS elicitation of leaves on rosette stage plants from a
native population growing at the Lytle Ranch Preserve, St. George,
Utah, USA, resulted in a robust, transient JA burst similar to that
observed in genetically homogeneous glasshouse-grown plants. Leaves
were elicited by wounding with a pattern wheel and the resulting
puncture wounds were immediately treated with either water (open
squares, dotted line) or 10 ml of 1:5 diluted M. sexta OS in water (solid
triangles, solid line). (B) Repeated whole-leaf OS-elicitations (1 per h) of
leaves from rosette stage, inbred plants grown in the glasshouse
suggest competition between suppression and maintenance of JA
accumulation. Arrows indicate time of each elicitation. All values
represent mean6S.E. (n = 5).
doi:10.1371/journal.pone.0004697.g002

The Within-Leaf JA Burst
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Repeated elicitations result in discrete increases in basal
levels of JA and JA-Ile

After attaining peak values in response to a single elicitation, JA

and JA-Ile in SE* returned to a new, slightly elevated baseline level

(,15% of peak) after 2 h. Successive elicitations increased this

baseline, not in a gradually saturating pattern as predicted by the

additive model, but in discrete steps (Fig. 3B). The JA baseline was

only raised to a higher tier after 4 elicitations and returned to that

same tier after 5 elicitations. The JA-Ile baseline was elevated after

the 2nd elicitation and then again after the 4th elicitation.

JA and JA-Ile bursts decrease dramatically in laminal
sectors separated from the elicitation site by veins and
midribs

Mean JA in both SB and ST 60 min after 1 elicitation was less

than 1/3 of that in SE* (Fig. 5A). Mean JA-Ile in those sectors at

the same time point was less than 1/5 of SE*. The difference in JA

between SE* and the distally adjacent sectors briefly diminished

after the 2nd and 3rd elicitations, but after the 4th and 5th

elicitations the differences again increased so that peak JA means

in SB and ST were again less than 1/3 of those in SE*. Separation

of the analysis site from the elicitation site by the midrib inhibited

the spread of the JA burst: only 2 of the 112 samples analyzed from

SO contained detectable levels of any of the 5 jasmonates

analyzed. In addition to being quantitatively lower than in SE*,

JA and JA-Ile kinetics during the 5 elicitations in SB and ST were

qualitatively less dynamic: peaks and troughs in the distal sector

kinetics were not as distinct. 12/11-OH-JA, 12/11-OH-JA-Ile,

and 12-COOH-JA-Ile were also detected in SB and ST, but mean

values were low and associated with high variance, and were not

very responsive to repeated elicitations (data not shown).

JA-Ile conjugation during the JA burst is sector-specific
and regulated by WRKY transcription factors

JA and JA-Ile kinetics within sectors were closely synchronized,

however, the difference in JA-Ile between distal sectors and SE*

Figure 3. Accumulation of JA in elicited sectors after repeated elicitations is not strictly additive, but baseline JA and JA-Ile increase
in discrete steps. (A) Observed patterns of OS-elicited JA accumulation (triangles, solid lines) differ from those predicted from the addition of
repeated single elicitations (x’s, dotted lines). Arrows indicate time of elicitation (1 per h). The JA burst was suppressed after the 2nd elicitation, but
returned after the 4th and 5th elicitations. (B) JA accumulation due to a single elicitation returned to a lower baseline level after the initial burst. The
additive model in Panel A predicted that this baseline JA level would gradually increase to a saturated level as regular elicitations resulted in a regular
pattern of JA bursts. However, observed baseline return levels of JA and JA-Ile 2 h after repeated elicitations (open bars) increased in discrete steps.
All values represent JA or JA-Ile mean+S.E. (n = 4).
doi:10.1371/journal.pone.0004697.g003
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were consistently greater than the difference in JA. We therefore

analyzed the ratio of JA-Ile to JA in each sample to determine if

conjugation differed among sectors. We regressed JA-Ile content

from each replicate against JA content from each sample (Fig. 5B)

and used the slope of the regressions to describe the efficacy of JA-

Ile conjugation for a given an amount of JA. The calculated slopes

differed significantly between SE* and SB (Student’s t-test,

P,0.001) but not SE* and ST (Student’s t-test, P = 0.38).

Contrary to our initial hypothesis, plants silenced in NaWRKY3

and NaWRKY6 expression were not limited in the ability to

accumulate JA within SE* after repeated localized elicitations (data

not shown). However, from the same regression analysis used to

quantify JA-Ile conjugation efficacy above, we discovered that

elicited SE* sectors of NaWRKY3/6 silenced plants had JA-Ile

conjugation efficiencies as low as those measured in the SB sectors

of WT plants (Fig. 5C).

Spread of the JA burst among leaf sectors is directional,
but inconsistent

We noticed considerably higher variance in mean JA levels in

distal sectors compared with those of SE*. In total, 28 harvests of

each laminal sector were analyzed to create the jasmonate kinetics

presented in this study; of these, 19 sample means in sectors SB

and ST were associated with standard errors greater than 25% of

the mean (n = 4). In contrast, 6 of the means from SE* had relative

standard errors greater than 25%. The number of JA means with

relative standard errors greater than 50%: 11 in SB, 8 in ST, and 1

in SE* (means and variances from SO are not informative as only 2

of the 112 total replicates contained detectable levels of JA).

Reviewing the replicates contributing to each sample mean, we

noticed a pattern that could be explained by vascular transmission

of the JA burst: some replicates from distal sectors did not

accumulate any detectable JA at all, while some replicates from the

same sample group accumulated JA levels as high as those in

replicates from SE*. Furthermore, some samples from SB

accumulated JA levels similar to those in SE*, while samples from

ST on the same leaf did not accumulate JA, and vice versa.

Because every sample we analyzed was paired with samples from

different sectors on the same leaf, we were able to look for

directional patterns in the spread of the JA bursts within leaves

(Fig. 6A). More than half of the time, JA did not accumulate

substantially in either distal sector (less than 500 ng/g FM; 52

paired samples out of 98 total; 14 paired samples were not

included because no jasmonates were detected in sector SE* of the

leaf in these samples). The remaining samples were divided

between leaves in which JA accumulated above 500 ng/g FM in

both SB and ST (‘‘bi-directional’’; 20 paired samples) and leaves

where JA accumulated above that threshold in one but not in the

other (‘‘uni-directional’’; 26 paired samples). To account for

spurious differences due to an arbitrary ‘‘low’’ threshold of

500 ng/g FM, paired samples had to differ by at least a factor of 3

to be considered ‘‘uni-directional.’’ Additionally, 2 sample pairs

were considered ‘‘uni-directional’’ because they differed by a

factor of 4, even though JA in both samples was above 500 ng/g

FM. Among those paired samples exhibiting uni-directional

accumulation of JA, accumulation in SB occurred almost twice

as often as in ST.

Because on this unanticipated level of inconsistency, we

attempted to determine whether the connectivity of the minor

Figure 4. Accumulation of hydroxylated JA and JA-Ile (at C-12
or C-11) and carboxylated JA-Ile (at C-12) in elicited laminal
sectors (SE*) after repeated elicitations. (A) Hydroxylated JA
begins to accumulate about 60 min after OS-elicitation, when JA attains
maximum levels. Increases in JA accumulation after repeated elicita-
tions could result from limited or suppressed metabolism of JA.
However, repeated elicitations result in immediate increases in
hydroxylated JA (closed triangles, solid lines) compared to hydroxylated
JA levels had the elicitations not occurred (open triangles, dashed lines),
indicating that hydroxylation of JA is not limiting (at least until the 5th

elicitation). Arrows indicate time of elicitation (1 per h). Values represent
relative 12/11-OH-JA mean6S.E. (n = 4) compared to a JA standard. (B)
Relative accumulations of 12/11-OH-JA-Ile in response to 5 repeated
elicitations in elicited laminal sector (SE*). Repeated elicitations result in
immediate increases in hydroxylated JA-Ile (closed triangles, solid line)
compared to hydroxylated JA-Ile levels had the elicitations not occurred
(open triangles, dashed lines). Arrows indicate time of elicitation (1 per
h). Values represent relative 12/11-OH-JA-Ile mean6S.E. (n = 4),
compared to a JA-Ile standard. (C) Relative accumulations of 12-
COOH-JA-Ile in response to repeated elicitations in elicited laminal
sector (SE*). Repeated elicitations result in immediate increases in 12-
COOH-JA-Ile (closed triangles, solid line) compared to 12-COOH-JA-Ile

levels had the elicitations not occurred (open triangles, dashed lines).
Arrows indicate time of elicitation (1 per h). Values represent relative
12/11-OH-JA mean6S.E. (n = 4), compared to a JA-Ile standard.
doi:10.1371/journal.pone.0004697.g004
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vascular network spanning the laminal sections could play a role in

the observed directional spread of JA accumulation. We applied a

2% crystal violet dye to needlepoint wounds like those used in our

elicitation method (Fig. 6B). Needlepoint wounds that ruptured

minor veins resulted in apoplastic uptake of the dye in the vein that

was ruptured. Based on the location of the wound, apoplastic

uptake of dye either (1) did not occur, or moved (2) toward the

base of the leaf, (3) toward the tip of the leaf, or (4) in both

directions (Fig. 6B). Dye was never observed moving across the

midrib.

OS-elicitation causes 1st instar M. sexta to move and
initiate feeding in unelicited sectors

24 h after elicitation of focal sectors on N. attenuata leaves, a

larger percentage of 1st instar M. sexta larvae had moved away

from leaf sectors elicited 15 min prior to initial feeding than

from unelicited sectors (Fig. 7A; pair-wise x2 = 3.60, P = 0.06).

However, the number of individuals moving from sectors elicited

2 h prior to feeding was not significantly different than from

unelicited sectors (pair-wise x2 = 0.25, P = 0.62). The difference in

individuals moving from sectors elicited 15 min and 2 h prior to

feeding was not statistically distinguishable (pair-wise x2 = 1.86,

P = 0.17), but the potential gradient and overlap of these

treatments at the molecular level makes this comparison difficult

to decipher. Increased movement was associated with increased

feeding initiation: more individuals on leaves elicited 15 min prior

to feeding established more new feeding sites than those from

other treatments (Fig. 7B).

Repeated elicitations uncouple the association of JA/JA-
Ile bursts with TPI activity

Within-leaf TPI activity 24 h after a single elicitation tracked

the pattern of JA-Ile accumulation among the different sectors,

with SE* having significantly higher TPI activity than SO and SB

Figure 5. Spatial heterogeneity in JA accumulation and metabolism within an elicited leaf after repeated OS-elicitations. (A) JA
accumulation in the repeatedly elicited laminal sector (SE*, closed circles on thick solid lines) was 3 times the amount in adjacent, non-elicited sectors
(SB, open triangles, dot-dash lines; and ST, x’s. thin solid lines). Sectors separated from the elicitation site by the mid-rib (SO) rarely accumulated any
JA (data not shown). Peaks and troughs in the JA kinetic are less distinct in non-elicited sectors on the elicited side of the midrib. (B) Kinetics of JA-Ile
elicitation closely track the JA kinetics after repeated elicitations, but the ratio of JA-Ile to JA from all samples from SB [open triangles,
m = 0.028660.00138 (S.E.)] was significantly lower than those in SE* [closed circles; 0.041460.00199 (S.E.); Student’s t-test, P%0.0001] and ST [x’s;
0.038860.00217 (S.E.); Student’s t-test, P = 0.0001]. (C) Silencing the expression of both NaWRKY3 and NaWRKY6 significantly reduced elicited JA-Ile
to JA ratios in elicited laminal sectors [ir-wrky3/6; open circles; m = 0.0187 (S.E.)60.00258] compared to wild-type plants [closed circles;
0.038160.00100 (S.E.); Student’s t-test, P%0.0001] and ir-wrky6 plants [gray circles; 0.0428560.00729 (S.E.); Student’s t-test; P = 0.003]. Arrows indicate
time of elicitation (1 per h).
doi:10.1371/journal.pone.0004697.g005
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(Fig. 8; Fisher’s PLSD, P,0.05) and marginally significantly

higher TPI activity than ST (Fisher’s PLSD, P = 0.10). However,

repeated elicitations increased TPI activity in SB and ST to the

same levels observed in SE* after the 1st elicitation, resulting in

homogeneously high TPI activity, but only on the elicited half of

the leaf (ANOVA of 24 h TPI activity in SB, SE* and ST after

repeated elicitations; F = 0.48; P = 0.63). TPI activity remained at

un-induced levels in SO, demonstrating that the midrib blocked

the transmission of the TPI-eliciting signal.

Discussion

We characterized the spatial and temporal dynamics of the JA

and JA-metabolite bursts in response to single and repeated OS-

elicitations. We found that the metabolism and integration of the

JA burst depends strongly on both the number of elicitations and

the spatial location of the elicitation within a leaf, as well as

NaWRKY3 and 6, factors which may function in the formation of

plant memories that tailor the JA-mediated defense responses in

the face of repeated challenges. Three aspects of this work, namely

the temporal and spatial heterogeneity of the elicited bursts and

their functional consequences, deserve additional discussion.

Temporal integration of repeated elicitations as evidence
of memory formation

Memory formation of past herbivory can prime plants for a

more effective induced response to subsequent attack [49–52]. In

particular, repeated elicitations from a continuously feeding

herbivore could provide information about the likelihood of

herbivory in the immediate future. Memory formation could occur

when the discrete JA bursts elicited by repeated herbivory modify:

(1) the time to attain maximum JA accumulation; (2) JA amplitude;

or (3) baseline of accumulated JA [53].

Each of several repeated elicitations did indeed result in more

responsive JA accumulations in SE* than predicted from the

additive effects of individual, ‘‘naı̈ve’’ elicitations. The observed

immediate increase in net JA after each elicitation (or the less-

than-predicted decrease after the 2nd elicitation) can be attributed

to faster-than-predicted JA biosynthesis and/or slower-than-

predicted metabolism. The polar JA metabolite 12-OH-JA rapidly

accumulates in the vasculature in A. thaliana [16]. The net 12/11-

OH-JA rates observed here could be explained by a dynamic

between hydroxylation of JA and vascular loading. The immediate

increases of 12/11-OH-JA after the 2nd, 3rd, and 4th elicitations

suggest that this route of JA metabolism is not negatively regulated

by successive elicitations. If 12/11-OH-JA patterns are indicative

of continued or increased JA metabolism after successive

elicitations, then increases in net JA (and less-than-predicted

decreases) must result from immediate, rapid biosynthesis of JA

after each successive elicitation. Post-translational modifications of

proteins (or the lack thereof), including continued activity of

biosynthetic enzymes from the previous elicitations or deactivation

(but not degradation) of such enzymes, are possible mechanisms of

memory formation that could allow plants to increase the speed of

defense deployment after successive elicitations [54,55].

However, the most dramatic evidence of a memory effect was

seen in the amounts of JA accumulated in response to 2

elicitations. Unlike any other elicitation, the 2nd elicitation resulted

Figure 6. Spread of the JA burst from elicited to adjacent unelicited laminal sectors within a leaf were highly variable and likely
depended on the connectivity of minor vasculature across sectors. (A) Of the 98 elicited leaves that accumulated JA in the elicited sectors
(SE*) approximately half did not accumulate more than 500 ng/g JA in either of the adjacent, non-elicited sectors located proximal or distal to SE* (SB

and ST), while the others accumulated JA in either SB, ST, or both adjacent sectors. Only 2 of the 112 leaves accumulated detectable quantities of JA
in SO (data not shown), the sector on the opposite side of the midrib from SE*. (B) Crystal violet dye (2%) applied to the elicitation sites allowed the
visualization of apoplastic transport within leaves. Dye either was (1) not taken up, or transported (2) towards the base of the leaf, (3) the tip of the
leaf, or (4) in both directions.
doi:10.1371/journal.pone.0004697.g006
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in the complete absence of a discernable JA burst in both the

whole-leaf and localized elicitations. The absence of a JA burst

could reflect a limitation or repression of JA biosynthesis due

perhaps to the timing of the 2nd elicitation—which occurred

during the peak accumulation of JA from the 1st elicitation.

Additionally, the 2nd elicitation could elicit metabolism of JA that

outpaces biosynthesis, by expressing or activating enzymes

responsible for hydroxylation or conjugation to amino acids. As

noted above, all elicitations induced an increase in 12/11-OH-JA

accumulation, but it was unclear how much of synthesized JA this

metabolite could account for. Like JA, JA-Ile decreased after a 2nd

elicitation, and accumulation of 12/11-OH-JA-Ile and 12-

COOH-JA-Ile was not significantly increased by a 2nd elicitation

(Fig. 4B and 4C). However, the contribution of individual

metabolites to changes in JA accumulation is difficult to determine

due to the potential for further metabolism and vascular loading,

processes that could also be subject to reconfiguration by

repeated elicitations. Because of these complex and simultaneous

Figure 7. OS-elicitation motivates movement of M. sexta larvae away from elicited laminal sectors. 1st instar M. sexta were placed on the
underside of N. attenuata leaf sectors that were (1) un-elicited (control), or elicited (2) 15 min or (3) 2 h prior to placement of caterpillars. Movement
and feeding activity of larvae between and within sectors were recorded. (A) 24 h after elicitation, a larger percentage of larvae had moved to a new
laminal sector (solid bars) if the leaf had been elicited 15 min prior to placement (17 of 29 larvae) than if the leaf was un-elicited (9 of 27 larvae; pair-
wise x2 = 3.60, P = 0.06). However, if leaves were elicited 2 h prior, larval movement did not differ from that on control leaves (10 of 25 larvae moved
to a new laminal sector). (B) Comparison of the total number of feeding sites established by individuals on control leaves (open bars) and leaves
elicited 15 min prior to larval placement (solid bars) revealed that prior OS elicitation motivated larvae to initiate additional feeding sites on elicited
leaves.
doi:10.1371/journal.pone.0004697.g007
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interactions, the exact timing of repeated elicitations could play a

critical role in determining whether JA accumulation increases or

decreases.

Repeated elicitations increased baseline JA levels in SE*, but the

increase was not directly proportional to the number of elicitations

(Fig. 3B). Instead, JA (and JA-Ile) basal levels increased in discrete

steps. JA returned to the same baseline 2 h after 1, 2, and 3

elicitations (,1000 ng/g FM), and then returned to a higher

baseline after 4 and 5 elicitations (,2500 ng/g FM). The JA-Ile

baseline increased substantially after the 2nd and 4th elicitations.

These elevated baseline levels were not permanent: for example,

increased JA and JA-Ile baselines held constant for about an hour

after the burst induced by 4 elicitations, then declined rapidly to

lower levels. However, neither the stepwise elevation nor the

eventual decline was accounted for simply by changes in

hydroxylation; 12/11-OH-JA increased after the 4th elicitation

and then slowly declined, as did 12/11-OH-JA-Ile after the 2nd

and 4th elicitations.

These results demonstrate that the JA burst does not simply

accumulate in response to repeated elicitations as the sum of single

elicitation responses and that evidence for all three expectations

for the signatures of memory formation was found. The number of

metabolic outlets for JA makes it difficult to determine a

mechanism for the accumulation patterns reported here; however,

the accumulation patterns of several different jasmonates in

response to repeated elicitations suggests that memory formation

can reconfigure the JA signaling network at multiple nodes.

Because of the regulatory function of the jasmonates, the specific

patterns of JA accumulation due to this memory formation has the

potential to further tailor the plant defense response to continuous

herbivory.

The choice of elicitation frequency used in this experiment (1

per h) was motivated by the specific characteristics of N.

attenuata’s JA burst so that subsequent elicitations would occur

when the JA burst in response to a single elicitation had attained

maximum values. The elicitation frequency from the feeding

behavior of M. sexta larvae will change as larvae develop through

their 5 instars [56]. The integration of the elicitations will likely

change with the changing kinetics of feeding bouts. If the

patterns of JA and JA-Ile accumulation described here differ with

changes in the frequency of elicitation, it is possible that the

elicited defense response could be tailored not only to the species

of herbivore, but the developmental stage of a specific herbivore.

M. sexta larvae cause the most damage to N. attenuata plants

during the 5th instar, when they consume .98% of their total

leaf tissue intake; by comparison, early-instar caterpillars are

relatively benign, causing only minor amounts of damage.

Furthermore, larvae between the second and third instars have

usually attained sufficient mass to move among plants [38]. If the

induced defenses of plants are sufficiently powerful to motivate

larvae to switch plants, and plants are able to recognize the

particular feeding frequency of 3rd instar larvae, they might be

able to turn their herbivore pests into offensive weapons that

reduce the competitive ability of their neighboring conspecifics

[27,38].

Vascular architecture constrains and organizes the
spread of the JA burst and its maturation into a JA-Ile
burst

Given that vascular connectivity is known to influence the

elicitation and distribution of systemic defenses [18] and that JA

biosynthetic enzymes are specifically localized in the vascular

bundles in tomato leaves [57], we were surprised to find that N.

attenuata’s vasculature constrained, rather than propagated, the JA

bursts from a point source elicitation within an elicited leaf. This

constraint was not seen in a previous study that examined whether

M. sexta larvae could consume the JA burst that its feeding activity

generated, simply because in that study the OS elicitation

treatment was applied to the edge of an incision that ran parallel

to the midrib and thereby elicited all laminar sectors on the treated

side of the midrib [39]. Realizing that secondary veins constrain

the spread of the JA burst into the adjacent sectors, we now must

change the conclusions reached by Schittko et al. and recognize

that it is indeed possible for a voracious larvae to consume the JA

burst that its feeding generates within a sector, and to easily move

to an un-elicited adjacent sector on the opposite side of the midrib.

The statistical analysis of JA bursts in adjacent sectors on the

same side of the midrib revealed a pattern of between-sector

spread, which is likely explained by transmission of a damage

signal through minor vascular elements that connect these

adjacent sectors. Avoiding damage to these minor vascular

elements could be an effective strategy for an herbivore to employ

in order to limit the extent of JA accumulation and prevent it from

outpacing its own feeding.

The high variability and inconsistent directionality of JA

accumulation in SB and ST suggest that, although the secondary

vasculature is not an absolute barrier to the spread of JA

accumulation within a leaf, the spread of the purported signal

responsible for initiating JA biosynthesis in sectors distal to the

elicitation site requires a path to travel through the differentiated

vascular tissue. Vascular apoplastic uptake of dye applied to

needlepoint wounds showed that the connectivity of the wound

site to minor vasculature—specifically, the physical rupturing of a

minor vein—determines the subsequent directionality of applied

fluids; this connectivity of minor vasculature may be a mechanism

determining directionality of JA accumulation. Additionally, M.

sexta OS are known to contain fatty acid-amino acid conjugates

(FACs) that elicit specific responses to herbivory in N. attenuata,

even when diluted 1:1000 [39]. Apoplastic transport of FACs

could further complement the directionality of JA accumulation.

It is particularly interesting that different sectors conjugate the

JA burst into JA-Ile differentially. This differential response

suggests that, in addition to the spatial heterogeneity resulting

from vascular constraints, different regulatory pressures are

mediating the plant defense response in different parts of the leaf.

We found that simultaneously silencing NaWRKY3 and

NaWRKY6 expression limits JA-Ile conjugation after elicitation

in a similar manner as the basal leaf sector distally adjacent to an

elicited leaf sector in wild type leaves. It is unclear if the differential

spatial response is dependent on the type of tissue, or if moving the

elicitation site would change the spatial differences in conjugation

Figure 8. Early JA-Ile accumulations and later TPI activity in leaf sectors elicited once and five times reveals the proportionally of
the responses. Increases in TPI activity (right column) in response to a single elicitation (open circles on dotted lines) are proportional to early
increases in JA-Ile accumulation (left column): TPI activity differs among laminal sectors, with SE* having significantly higher TPI activity than SO and
SB (Fisher’s PLSD, P,0.05) and marginally significantly higher TPI activity than ST (Fisher’s PLSD, P = 0.10). However, TPI activities after 5 successive
elicitations (1 per h; solid squares on solid lines) do not differ significantly among SB, SE*, and ST (ANOVA, F = 0.48, P = 0.63), although all values are
higher than those elicited by a single elicitation in the respective laminal sectors. In SO, only 1 of the 68 analyzed sectors contained detectable JA-Ile
and TPI activity did not differ from un-induced levels. Values represent JA-Ile or TPI activity mean6S.E. (n = 4 and 5, respectively).
doi:10.1371/journal.pone.0004697.g008
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efficiency. However, if JA-Ile is indeed the active elicitor of JA-

induced defense responses, then this difference should have

profound functional consequences for how different sectors defend

themselves.

Functional significance of the JA bursts and their spatial
heterogeneity

Here, we report the first evidence that M. sexta larvae are

repelled by rapidly elicited responses that correlate with the

occurrence of JA bursts: larvae moved and established new feeding

sites in un-elicited laminal sectors. This behavior was not as

prevalent in M. sexta that fed on leaves elicited 2 h prior to the

experiment, suggesting that the caterpillars could be responding to

a cue specifically associated with the early plant defense response;

this timeframe coincides with peak accumulation of JA and JA-Ile.

The differences in movement among treatments were detectable

after 24 h, at which time M. sexta-induced TPI activity in N.

attenuata is detectable, but has not yet reached its peak [58].

Previously, a direct role for JA in mediating plant-herbivore

interactions, independent of other JA-dependent defenses was

identified: Helicoverpa zea larvae activated cytochrome P450 genes

associated with detoxification of allelochemicals when fed an

artificial diet containing large amounts of MeJA [59]. The

robustness of the JA burst in a native population of N. attenuata

reported here underscores the fact that M. sexta will consistently

encounter JA bursts when feeding on these plants, and suggests

that the JA burst itself could function defensively. Substantial

additional work will be required to determine if the larvae are

responding specifically to the JA burst or some other rapidly

elicited response that co-occur with the JA bursts.

Adler and Karban posit that variability in the plant defense

response can be more effective than optimally induced or constitutive

defenses under certain conditions (the Moving Target Model of

defense) [32]. The Moving Target Model proposes that induced

plant defense phenotypes cannot be set on a single axis from least

costly, least effective to most costly, most effective. Rather,

acknowledging the multiple components contributing to a change

in plant phenotype and the range of effects a given defense might

have on a particular herbivore, the model suggests that the induced

plant defense response may appear random from the herbivore’s

perspective. This perceived randomness may have a defensive

function in itself, and the model predicts that resistance to herbivory is

correlated with the amount of phenotypic variability of defense

rather than an axis of defense states and corresponding costs. The

heterogeneity of JA accumulation within elicited leaves that we

report here is an example of an ‘‘unpredictable’’ plant defense

response to herbivory; each elicited leaf has a different patchwork

pattern of JA accumulation based on certain constraints (such as

vascular connectivity and conjugation efficiency). Understanding

these constraints could lead to prediction of the pattern of JA

accumulation, but the response may appear unpredictable to a

feeding herbivore. Because M. sexta move away from recently elicited

tissue, the effectiveness of such heterogeneity in this case would be

determined by how well the herbivore chooses from the remaining,

‘‘randomly’’ induced or un-induced tissue.

Here, TPI activity 24 h after elicitation appeared to be subject

to similar spatial constraints affecting JA accumulation after a

single elicitation (Fig. 8). However, repeated elicitations within the

same laminal sector overcame the spatial constraints so that mean

TPI activity was similar in all sectors on the same side of the mid-

rib; this result contrasts with JA/JA-Ile accumulation patterns. TPI

activity in N. attenuata is known to be strongly influenced by the

NaJAR4-mediated conjugation of Ile to JA [25,30], and the

decoupling of JA-Ile accumulation and TPI activity after repeated

elicitations was unexpected. Clearly, some amount of JA/JA-Ile

accumulation is necessary for later TPI activity: the non-induction

of TPI activity in SO (separated from the elicitation site by the

midrib) reflects the near-complete absence of any accumulation of

jasmonates, even after repeated elicitations. JA-Ile could be a

particularly potent signal for JA-responsive gene expression, and

TPI activity levels may be responsive to trace amounts of the

molecule. JA-Ile-dependant JAZ degradation was unaffected in the

A. thaliana jar1-1 mutant accumulating 25% of wild-type JA-Ile

levels [28]; this JA-Ile ‘‘leaking’’ effect was echoed by an

independent study [60]. In that case, what might be more

important for induction of TPI activity is the duration of a

minimum JA-Ile dose achieved in both local and distal sectors by

repeated elicitations, rather than the amount. One notices, for

example, that JA-Ile levels in SE* remains above 20 ng/g FM for

almost 5 h after a single elicitation; TPI activity levels in that

sector are more similar to those after 5 elicitations. For this

hypothesis to account for the spatial differences in TPI activity

after a single elicitation we see here, and the lack of difference after

5 elicitations, the effective potency of JA-Ile would have to be near

20 ng/g FM (or ,300 ng/g FM for JA). As suggested by Chung et

al., an alternative explanation is the existence of a supplementary

bioactive molecule, perhaps JA or another member of the

jasmonate family [28].

The jasmonate signaling network mediating the induced defense

response interacts with other phytohormones at several nodes to

tune the defense response [61], and whether JA-Ile functions at the

suggested potency level in vivo or not, induction of TPI activity

within a leaf could be subject to other modifications or crosstalk

that contribute to the patterns reported here. For instance, TPI

expression in tomato is regulated by abscisic acid and ethylene in

addition to JA [62,63]. Furthermore, TPI activity is several steps

removed from the transcription of TPI mRNA and is therefore

subject post-transcriptional and post-translational modification.

To date, no studies have investigated how such processes might

vary in sites spatially distal to an elicitation site within an elicited

leaf. Given the resolution of heterogeneity that we report in JA

accumulation, this could be a fruitful line of research to follow.

Finally, TPI activity is a robust marker of the herbivore-

induced, JA-dependent defense response, particularly in the

context of Lepidopteran feeding [64], but cellular accumulation

of JA is associated with many changes in the composition of

herbivore-attacked tissue. These changes are not limited to

induction of so-called secondary metabolites; herbivore and

pathogen attack result in a reconfiguration of primary metabolism

as well [65]. Other JA-related responses may follow more closely

the spatial heterogeneity and temporal build-up of jasmonates

reported here, even after repeated elicitations. Parsing out the

temporal dynamics and spatial heterogeneity of the induced

defense response within a leaf will shed light on induced plant

defenses that occur during critical windows of Lepidopteran

herbivory, but elicitation methods must be targeted to the

appropriate spatial and temporal scale.
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