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A hand-held Raman spectroscopic device was used as a rapid nondestructive testing device to predict the metmyoglobin (MetMb)
and metmyoglobin reductase activity (MRA) values on the surface layer of fresh beef. Longissimus dorsi muscles were from 10
young bulls (Holstein-Friesian) from two different cattle farms (group A =5 and B=5). The Raman spectra of 100 samples
were correlated with the MetMb and MRA values using partial least squares regression (PLSR). Two groups could be
discriminated, and the separate correlation models were better than the joint correlation model for the fresh beef. The
coefficients of determination are R* =0.81 (group A) and R? =0.87 (group B) for MetMb and R? =0.80 (group A) and R*=
0.85 (group B) for MRA. The results show the usefulness of Raman spectra in predicting the inner traits such as MetMb and
MRA during meat storage. In conclusion, it is feasible to determine the MetMb and MRA values by Raman spectroscopy.
Color is an important indicator of beef freshness and can vary depending on the age, sex, and breed of the cow. They play a
very important role in human nutrition. The color of meat is an important indicator of meat freshness, and many researchers

are already investigating the causes of color changes. The research was conducted in this environment.

1. Introduction

The color is an important indicator of the freshness of beef,
which could be changed due to ages, sex, and breeds of cows
(Delgado et al., 2002; [21]. They play a very significant part
in human diet. The meat color is an important marker of
the meat’s freshness, and many researches have been done
to search for the causes of the color variability. The metmyo-
globin accumulation rate is based on the rate of autoxidation
of the iron (II) of the protein, myoglobin. Oxymyoglobin,
carboxymyoglobin, and metmyoglobin [17] can be used,
and metmyoglobin reductase activity is affected [18]; Mik-
kelsen et al., 1992). Both the nonenzymatic and enzyme
reductions have been well studied [22]. Other researchers
have studied the metmyoglobin reductase activity of beef
with different color stability, and some researchers have
found that the MRA of beef with poor color stability is the

largest [8]. Though many studies have focused on the key
of metmyoglobin reductase in fresh beef meat, the measured
method is too time-consuming to be suitable for fast testing.
A novel testing method for the metmyoglobin and metmyo-
globin reductase activity measurement is rapidly changing
this picture.

Raman spectroscopy is one of the technologies that has
become more and more popular [2, 3], because it is noninva-
sive, requires nearly no sample preparation, and is not influ-
enced by the amount water in the sample. The Raman
signals come from the inelastic scattering of the incident
light from a sample, and the frequency shift of the scattered
light shifts in a manner of feature molecular vibrations [14].
Therefore, the Raman spectrum is a vibrational spectrum
and may be regarded as a “personal ID” of the scattering
material providing quantitative and qualitative information
about the molecular structure and composition. Nowadays,
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the Raman spectroscopy is used as an analytical technique
for the evaluation of food quality and safety. In the past,
researchers have demonstrated the potential of Raman spec-
troscopy to predict certain meat quality characteristics such
as drip loss, pH, and water holding capacity of pork (Peder-
sen, Morel, Andersen, & Balling Engelsen, 2003; Scheier,
Bauer, & Schmidt, 2014; Scheier, Kéhler, & Schmidt, 2014)
shear and cooking losses in beef. [2, 25]. Combining chemo-
metric methods with Raman spectroscopy has enabled huge
progression for both qualitative and quantitative measure-
ments of food components [27]. Thus, Raman spectroscopy
is a nondestructive tool which is potentially suited to predict
some meat quality characteristics fast [7].

This is the scattering spectrum. Raman spectroscopy
Indian scientist K.V. He invented an analytical method
based on the Raman effect to study the scattering spectra
of incident light of different frequencies to obtain informa-
tion about the vibration and rotation of molecules and apply
them to the analysis of molecular structure research. Inelas-
tic scattering caused by excitation interactions such as
molecular vibrations, optical phonons in solids, and laser
light is called Raman scattering. This is an analytical method
used to study the molecular structure by analyzing the scat-
tering spectra of light at different frequencies to obtain infor-
mation about molecular vibrations and rotations.

However, there are no reports on the application of
Raman to predict the MetMb and MRA values of fresh beef.
The paper reports on a research, which uses 100 samples, to
compare whether the measurement of fresh meat by Raman
spectra could be used to predict the MetMb and MRA
values. In the second part of the paper, the determination
of myoglobin reductase activity in the surface layer of fresh
beef, Raman spectroscopy processing methods, and process-
ing techniques were described; in the third part, the applica-
tion of MetMb and MRa values in beef quality identification
was analyzed in the spectral processing results; in the fourth
part, the parameters of beef quality were analyzed.

2. Materials and Methods

2.1. Sample Preparation. Longissimus dorsi muscles from 12
young cattle (bulls and cow half, Holstein-Friesian), of
approximately 16 months of age, from two different cattle
farms (group A =6 and B =6, bulls and cow half), Ningxia
University, were slaughtered at a commercial slaughter plant
(Ningxia Laoheqiao Halal Meat Ware Co. Ltd., China). The
mean hot carcass weight was 250.8 + 25.3 kg (ranging from
225.1 to 297.4kg). After slaughter, hemoglobin is depleted
with blood loss. Then, the color of meat was mainly deter-
mined by myoglobin. With the change of myoglobin con-
centration, the color of the meat change was also obvious.
It had a relationship with the spectra [26]. At 24h postmor-
tem, the meat was cut into slices (20 mm thickness) using a
scalpel. And all meat samples were individually vacuum
packed and stored at 4°C in the dark. Each group had 50
muscle samples. In there, twenty-five muscle samples were
tested without any treatment immediately. The rest of the
samples were vacuum packed and stored at 4°C in the dark
until preparation on day 5.
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24 hours after death, the meat was cut into thin slices
with a scalpel. All meat samples were individually vacuum
packed and stored at 4°C in the dark. There were 50 muscle
samples in each group, and the rest of the samples were dis-
carded. There is no need for direct processing and packag-
ing. Condition at 4°C and store in the dark until day 5 of
the preparation date.

2.2. Measurement of Metmyoglobin Concentration on the
Surface Layer of Fresh Beef. Take the fresh beef topping,
mix the fresh beef topping with the fresh beef topping salt
buffer solution, and homogenize it with an ultrafine homog-
enizer and a centrifuge for 20 minutes. The supernatant was
filtered through filter paper, and the absorbance of NM was
measured at different points with a spectrophotometer.
Take the average of the formula to calculate the
concentration.

According to the method of Krzywicki et al., [15],a 5¢g
sample from the surface layer of fresh beef was mixed with
25 mL phosphate buffer (0.04 mol/L, pH = 6.8) and homoge-
nized with an ultrafine homogenizer (FLUKO F6/10, Ger-
many; 10000 rpm, 25s). After standing for 60 min at 4°C in
the dark, the mixture was centrifuged at 4500 x g for
20min at 4°C. The supernatant was filtered through filter
paper, and the absorbance was measured at 525, 545, 565,
and 572 nm separately with a spectrophotometer. Each sam-
ple was measured three times, and the average value was
taken for the further statistical data analysis with the follow-
ing formula:

MetMb (%) = (~2.514R1 + 0.777R2 + 0.800R3 + 1.098) x 100,

| - A572
A525’
) - AS65
A525’
_ A545
3_/@.

(1)

2.3. Measurement of Metmyoglobin Reductase Activity on the
Surface Layer of Fresh Beef. Methemoglobin reductase
extract was obtained from the skin of fresh beef with minor
modifications. Muscle and phosphate-buffered saline were
mixed and centrifuged, and fat was removed from the super-
natant through a filter paper. Excessive oxidized hemoglobin
was added, the solution was dialyzed as a phosphate buffer,
and the methemoglobin reductase activity of the extract
was measured by spectrophotometry, and the final result
was the amount of enzyme activity.

Metmyoglobin reductase extracts were obtained from
the surface layer of fresh beef by the Reddy and Carpenter
method with slight modifications [22]: 12g muscle and
20mL 2.0mM phosphate buffer (pH=7.0) were mixed
and homogenized with an ULTRA-TURRAX (30s, 12,
000 rpm, 4°C). The homogenate was centrifuged (30 min,
35000 x g, 4°C), and the fat was removed from the superna-
tant by a paper filter. Excessive K;Fe(CN), was added to
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FIGURE 1: Portable Raman system for on-line measurements of
meat consisting of a hand-held Raman device.

oxidize the oxyhemoproteins, and the solution was dialyzed
(14000 MW) against 2 mM phosphate buffer (pH =7.0). The
filtrate was centrifuged (20 min, 15000 x g, 4°C), and the vol-
ume of the filtrate was adjusted to 20 mL with 2.0 mM phos-
phate buffer (pH =7.0).

Metmyoglobin reductase activity of the extract was mea-
sured spectrophotometrically: the standard assay mixture
included 0.1 mL water, 0.10mL 50 mM phosphate buffer
(pH=7.0), 0.10mL 50mM EDTA (pH=6.4), 0.lmL
3.0mM K,Fe(CN),, 0.2mL 0.75 mM MbFe (III) in 2.0 mM
phosphate buffer (pH=7.0), 0.3mL extract, and 0.1 mL
2.0mM NADH. Addition of NADH initiated the reaction.
Metmyoglobin reductase activity was calculated as nano-
mole metmyoglobin reduced per min per g of beef meat dur-
ing the initial linear phase of the assay, using a difference in
molar absorptivity of 12 x 10°/mol-cm at 580nm. The
effects of storage (4°C) time of the beef meat prior to extrac-
tion as well as the effect of storage time of enzyme extracts
were also investigated. Metmyoglobin reductase activities
are expressed as the means.

2.4. Raman Spectroscopy. An Inspector 300 Raman micro-
scope (SciAps, USA) with a 785 nm laser source, a motorized
microscope stage sample holder, and a CCD detector
(SciAps, USA) were used. The instrument was used at
10mW laser power with 8s acquisition. Each sample was
placed on the translation stage and scanned. The spectra
were obtained in the range of 400-1700 cm ™" at a resolution
of 6cm™" (Figure 1) after calibration using the spectra of
polystyrene. Each sample was manipulated with the built-
in “automatic baseline correct” function of the software. Five
replicate analyses were performed on each sample.

2.5. Spectral Processing. In the Raman shift (400-1700 cm™"),
chemical bonds cause vibrational and rotational transitions,
resulting in absorption bands in spectral curves [6]. There
are many combination bands that overlap the absorption
bands, which make the spectrum highly convoluted and dif-

TaABLE 1: Mean + s.d., minimum and maximum for the measured
traits: carcass weight (kg), MetMb (%), and MAR (nmol/min-g)
according to the group (50 samples per group).

Group Minimum Maximum Mean +s.d.

A 13.52 31.08 22.30+4.78
MetMb (%)

B 16.95 38.16  27.56%5.61

A 10.48 29.08 19.78 £3.72
MRA (nmol/min-g)

B 9.73 31.26 20.49 £4.99

ficult to be interpreted. In addition, other factors, such as the
natural light, may also make the spectrum more complex.
Therefore, chemometric methods of spectral processing are
used to interpret the spectrum. The spectral processing
includes spectral pretreatment, modeling, and model
evaluation.

In the Raman shift (400-1700cm™'), the compounds
induce vibrational and rotational changes, and then, absorp-
tion bands appear on the spectral curve, while several com-
bined bands dominate on the d-band. Absorption makes a
spectral complex and is difficult to interpret, so spectra can
be interpreted using stoichiometric methods of spectral
processing.

Raman spectral data across the full wavenumber range
were treated by multivariate analysis to find out key infor-
mation related to the reference MetMb and MRA values.
There are a lot of multivariate algorithms for building quan-
titative models, such as PCA, MLR, and PLS [4]. In this
study, PLS and PCR were used to establish predictive models
[12]. Prediction of MetMb and MRA values in the models
was attained by a group of latent variables, which were sta-
tistically uncorrelated and got the most information in X
(Raman spectral data) and Y (reference values of MetMb
and MRA values).

Chemical properties of samples and influences in instru-
ment response may cause light scattering effects, and these
elements may influence the real responses and the robust-
ness of later multivariate calibration models [24]. In order
to decrease or even remove these undesirable elements, pre-
treatment of the spectral data is necessary, such as multipli-
cative scatter correction, smoothing, and standard normal
variate [20]. In this study, there are four spectral pretreat-
ment methods (Savitzky-Golay smoothing, derivatives,
MSC, and Nor). The optimal pretreatment method was cho-
sen by comparing the best performance.

Multivariate data analysis was carried out to predict
MetMb and MRA values of samples using their correspond-
ing spectral information. The same Raman spectral dataset
can be used together with MetMb and MRA values to build
a predictive partial PLS model. Thus, the measured spectra
can be used to predicted MetMb and MRA values for the
new sample directly. PLSs were carried out to perform linear
models of prediction between spectral data and the values of
one of the quality parameters obtained from the traditional
measurement.
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TaBLE 2: PLS models for predicting MetMb and MRA values on the surface layer of fresh beef with raw and pretreated spectral data.

Pretreatment Number of latant number Calibration Crossvalidation Prediction
RZc RMSE, R2CV RMSE,, R2p RMSEp
Raw 6 0.827 1.169 0.804 0.985 0.885 1.387
MetMb SGS 5 0.856 0.815 0.832 0.693 0.916 0.983
MSC 6 0.837 0911 0.815 0.741 0.908 1.157
Nor 5 0.846 0.894 0.797 0.733 0911 0.9981
Raw 4 0.762 1.416 0.801 0.857 0.806 1.514
MAR SGS 5 0.801 1.325 0.853 1.215 0.845 1.502
MSC 6 0.818 0.993 0.862 0.819 0.853 1.361
Nor 6 0.836 0.869 0.887 0.786 0.871 0.908
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FIGURE 2: Averaged Raman spectra on the surface layer of fresh beef for A samples and B samples grouped according to their storage time,
0d (gray curves) and 5d (black curves).

TaBLE 3: Raman modes useful in interpretation of the protein structure adapted from the works of Li-Chan [19] and Beattie et al. [3].

Wavenumber

Origin (cm™) Assignment Structural information obtained
Phenylalanine 1006 Breathing ring Conformation insensitive; useful as an internal intensity standard
Histidine 1409 N-Diimidazole Probe of ionization state, metalloprotein structure, and proton transfer
in deuterated solution
Tryptophan 760, 880, 1360 Indole ring Sharp intense band indicates buried .res1dues; sensitive to environment
polarity

Aspartl.c ac1'd, 1400-1430 C=0 stretch of COO- Tonized carboxyl groups
glutamic acid
Amide III 1230-1240 N-H in-plane bend, C-N Antiparallel g-sheet

stretch
Amide I 1650-1660  Amide C=O stretch, N- o-Helix

H wag
Aliphatic amino . . . .

1450, 1465 C-H bending Microenvironment, polarity

acids
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F1GURE 3: PLS correlation model of Raman data for MetMb on the
surface layer of fresh beef and coefficient of determination.

The accuracy of the PLS model was identified based on
the coefficient of determination in calibration (R*.), coef-
ficient of determination in crossvalidation (R%cy), root
mean square error of calibration (RMSE), and root mean
square error by crossvalidation (RMSEy). Usually, a use-
ful model should have high values of R* and low values of
4.

2.6. Statistical Analysis. The spectral data and computation
analyses were operated and completed with the aid of che-
mometric software MATLABR2011a (The MathWorks
Inc., Natick, MA, USA) and Unscrambler X 10.3 (CAMO,
Trondheim, Norway).

3. Results and Discussion

3.1. MetMb and MRA Values. The MetMb and MRA values
on the surface layer of beef samples determined by a spectro-
photometer are listed in Table 1 (groups A and B). Three
replicate analyses were performed on each beef sample .
There are 100 beef samples in total. Earlier studies have
shown that the fresh meat color should keep bright and sta-
ble during storage to maximize consumer acceptance [22].

3.2. Spectral Processing. The stoichiometric method of spec-
tral processing is used to interpret the spectra. Spectral pro-
cessing includes preliminary spectral processing, simulation,
and model analysis. Raman spectral data across the entire
wavenumber range was processed using multivariate analy-
sis to find key information related to MetMb and MRA ref-
erence values.

The Raman spectra were normalized by dividing the
intensity using integration time and laser power to compare
the two groups A and B. Firstly, the PCA method was used
to identify the remaining spectra of fat in the data which
had not been removed during data collection. Raman spectra
with scores associated to the fat pattern over a threshold
value were removed before the next step. The threshold

was determined repeatedly by decreasing the value and then
making a new PCA model with the rest of the data until the
Raman fat pattern was removed from the first 4 loading of
the PCA model. By this way, 47 of 1038 Raman spectra of
group A and 34 of 1015 spectra of group B were removed.
To the next step analysis, the beef Raman spectra were nor-
malized to the baseline intensity at 1517 cm™" to make the
PCA and PLS models better. For each sample, the rest of
the 12-15 different spectra were averaged and preprocessed
using four spectral pretreatment methods (Savitzky-Golay
smoothing, derivatives, MSC, and Nor) and mean centering.

PCA, principal component analysis, is an unsupervised
machine learning algorithm. It is a method of studying mul-
tidimensional data structures. It is mainly used to reduce the
dimensionality of data. Downsizing can be used to find fea-
tures that are easier to understand. It speeds up the process-
ing of valuable information from samples and can also be
used for visualization (up to 2D) and noise reduction. And
the PCA algorithm simplifies the data and does not depend
on parameters.

The performance of PLS models based on three spectral
pretreatment methods (MSC, Nor, and Savitzky-Golay
smoothing) is shown in Table 2. As shown in Table 2, com-
pared with the model of the original spectral data, the detec-
tion effect of the model of the processed spectral data is
improved more or less, which indicates that the pretreat-
ment methods can eliminate the noise in the spectral data
effectively. For the different detection parameters, the pre-
treatment methods are also different.

Compared with the results of raw spectra (R2p of 0.885,
RMSE,, of 1.387), both of the MSC, Nor, and Savitzky-
Golay smoothing methods provided some improvement in
model robustness because of higher R2p and lower RMSE,,.
In the models, the Nor-PLSR model showed the highest
values: R*, of 0.916 and RMSE,, of 0.983. So, SGS was cho-

sen as the optimal pretreatment method to build the model
of the MetMb values. Similarly, the Nor was chosen for the
MAR values.

Spectra show typical Raman signals of muscle tissue. The
difference between the Raman spectra of the two sites is a
35% higher broadband spectral background for group B.
This may be related to the gender of group B, but the sample
or environmental factors cannot be omitted.

The samples were put into two storage groups randomly
to find out whether the Raman spectra could distinguish two
groups. Figure 2 shows the averaged raw spectra from all
beef samples from groups A (lower curves) and B (upper
curves) with storage 0d (gray curves) and 5d (black curves).
For comparison, the Raman spectra were divided by integra-
tion time and laser power. The number of samples per group
is as follows: 25 storage 0d and 25 storage 5d samples for
group A and 25 storage 0d and 25 storage 5d samples for
group B. The spectra exhibited the typical Raman signals
of muscle tissue [23]. The difference between the Raman
spectra of both sites is a 35% higher broadband spectral
background of group B. That could be due to the sex of
group B, but the sample or environment elements cannot
be ignored. For example, the oxygen content of the
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FIGURE 4: PLS correlation models of Raman data for MetMb on the surface layer of fresh beef and coefficient of determination((a) A

samples; (b)B samples).

40
R' =071

35

MRA prediction (n mol/min.g)

20 25 30 35 40
MRA reference (%)

FIGURE 5: PLS correlation model of Raman data for MRA on the
surface layer of fresh beef and coefficient of determination.

vacuum-packaged beef can lead to a variation of the fluores-
cence level because of the fluorescence quenching effect [16].
So, to reduce the minimum bias, discharge the air as much
as possible prior to the Raman measurement. An off-set of
the spectral background is also shown between the different
storage groups (0d and 5d) (Figure 2).

Raw spectra of beef samples were background corrected,
showing changes and intensities of protein vibrations
(Table 3) at around 930, 1006, 1019, 1230, 1360, and
1655cm™". The Raman spectra can show the typical Raman
signals of muscle [23]. Hydroxyproline, a typical component
of connective tissue, may show a signal at 877 cm-1, so the
corresponding moderately strong band in connective tissue
is not found in the amide III region and is removed [5, 11,
13]. The Raman spectra of the samples seemed to be similar;
however, there were spectral data differences due to intensity
differences in the same band intensity. The band positioned

at 1265cm™! belongs to §(C-H) bending at the cis double
bond in R-HC=CH-R [9]. The bands at 800-900 and
1000-1100cm ™" are due to the vibration of skeletal C-C
bonds in —(CH2)n— molecules [1]. The band at 1213 cm™
is due to antisymmetric phosphoryl stretching correspond-
ing to the vibrations of fatty acid and phospholipid chains
[10]. Lu (2014) determined the relative amounts of hemo-
globin by Raman spectral and found that the spectral differ-
ences between the three hemoglobin derivatives were
exhibited in several relevant peaks in 1210-1230cm’,
1375-1379 cm ™', and 1550-1650 cm™". Compared to oxyhe-
moglobin, a number of changes were apparent in the range
of 1550-1650cm ™" in the Raman spectra of carboxyhemo-
globin. Compared to oxyhemoglobin, in the spectra of car-
boxyhemoglobin, the band at 1559cm™ appears to be
more intense, while the 1589cm™" and 1645cm™' bands
were less intense. In the spectra of methemoglobin, a num-
ber of changes were exhibited in the range of 1210-
1230cm ™, 1375-1379 cm™', and 1550-1650 cm ™", by com-
paring with oxyhemoglobin (Lu et al. 2013). Along with
the spectral differences, the peaks show signals of structural
traits that can help in the Raman detection of MetMb and
MRA. The result show that Raman spectroscopy could be
a useful method instead of the time-consuming and destruc-
tive mechanical method in the measurement of MetMb and
MRA in fresh beef.

The analysis of A and B groups of the PLS model is
showed in Figure 3. In the PLS model, the correlation is
moderate with a coefficient of determination of R* =0.79, a
root mean square error of calibration (RMSE;) of 1.493,
and a root mean square error of validation (RMSEy) of
1.203. Further analysis was showed for A and B groups.

PLS regression analysis correlating the Raman spectra
with the MetMb values for the subsets of samples shows a
coeficient of determination of R>=0.81 (A) and R*> =0.87
(B). The result of the analysis is showed in Figure 4. The
RMSEg are computed to be 1.276 (A) and 1.218 (B). It
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FIGURE 6: PLS correlation models of Raman data for MRA on the surface layer of fresh beef and coefficient of determination((a) A samples;

(b) B samples).

can evaluate the validity of the PLS model. The values were
not satisfactory because of the MetMb values being distrib-
uted unevenly, ie., rather few samples with low MetMb
values were measured. The more evenly distributed of
MetMb data making the coefficient of determination was
better than the A subset.

The Raman spectra was correlated with the MRA refer-
ence measurements. The joint treatment of A and B subsets
brought about a less good enough model (Figure 5). The
coefficient of determination of R* = 0.71, RMSE. = 1.626%,
and RMSEy = 1.395 yield reasonable values for the model,
respectively.

The distribution of MetMb values is not the same, i.e.,
few models with low MetMb values are measured, so these
values are not satisfactory. The MetMb data distribution of
the coeflicient of determination is better than that of subset
A. The Raman spectrum is related to the ARM reference
measurement, and the coefficients for each setting provide
reasonable values for the model.

The separate treatment of the A and B groups improves
the results (Figure 6). R? = 0.80 for A samples and R* = 0.85
for B samples. RMSE =1.193 and RMSE-, =0.947 for A
samples and RMSE =1.063 and RMSE., =0.802 for B
samples. Therefore, for the MetMb measurements, the cor-
relation of the B group was slightly better than that of the
A group. To be used in meat production accurately and
widely, the samples must be more diverse and also have
strong predictions of the characteristics of measurement
after a period of storage. These problems will be studied in
the future research.

4. Conclusion

PLS regression uses the principle of principal component
analysis to combine multiple X and multiple Y components
(X is the principal component of U, Y is the principal com-
ponent of V) and then uses the principle of canonical corre-

lation to determine the relationship between X to analyze
the Y relationship between X and V, combined with the
principle of multiple linear regression, analyze the relation-
ship between X and V, and explore the relationship between
Xand Y.

The Raman spectra of samples of two different cattle
farms A and B could be correlated with the values of MetMb
and MRA on the surface layer of fresh beef using PLS regres-
sion analysis. Groups and B group could be significantly dis-
tinguished by the different Raman spectra. And the
distinction is based on spectral broadband differences. But
the reasons of the broadband differences was not unclear.
In the Raman spectra of beef samples in different storage
time and sources, it can recognize signals that come from
a-helical protein structures, the aromatic amino acid side
chain of tryptophan and phenylalanine. The correlation
models of separate correlation of Raman spectra subsets A
and B were better than the joint correlation for the all data.
The result show that Raman spectroscopy could be a useful
method instead of the time-consuming and destructive
mechanical method for the prediction of quality traits such
as MetMb and MRA values in fresh beef meat. The future
study should research the prediction ability of Raman spec-
tra for the quality traits of fresh beef when the spectra are
collected on meat during the full storage time. Considering
the application of new technologies in the future, intelligent
computing combined with the PLSR algorithm is used for
parameter optimization and application. Further, the beef
quality of different varieties was classified and the key factors
of beef quality were discussed and analyzed in depth under
the influence of various factors.

Data Availability

The experimental data used to support the findings of this
study are available from the corresponding author upon
request.
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