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The algal community structure is vital for aquatic management. However, the complicated environ-
mental and biological processes make modeling challenging. To cope with this difficulty, we investigated
using random forests (RF) to predict phytoplankton community shifting based on multi-source envi-
ronmental factors (including physicochemical, hydrological, and meteorological variables). The RF
models robustly predicted the algal communities composed by 13 major classes (Bray-Curtis
dissimilarity ¼ 9.2 ± 7.0%, validation NRMSE mostly <10%), with accurate simulations to the total biomass
(validation R2 > 0.74) in Norway's largest lake, Lake Mjosa. The importance analysis showed that the
hydro-meteorological variables (Standardized MSE and Node Purity mostly >0.5) were the most influ-
ential factors in regulating the phytoplankton. Furthermore, an in-depth ecological interpretation un-
covered the interactive stress-response effect on the algal community learned by the RF models. The
interpretation results disclosed that the environmental drivers (i.e., temperature, lake inflow, and nu-
trients) can jointly pose strong influence on the algal community shifts. This study highlighted the power
of machine learning in predicting complex algal community structures and provided insights into the
model interpretability.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phytoplankton, the critical part of primary producers, form the
foundation of the aquatic ecosystem and contribute to an irre-
placeable source of biodiversity [1,2]. However, eutrophication and
global warming have dramatically promoted the over-proliferation
of phytoplankton in both frequency and magnitude [3e7], exacer-
bating harmful ecological impacts and leading to serious re-
strictions to the socioeconomic development [3,8e10].

Phytoplankton biomass changes are accompanied with shifts in
community structure [11e13]. Often, a comprehensive analysis of
the algal community is required for water management regarding
its high susceptivity to environmental stressors [11,14,15]. However,
ecological models are commonly algae-specific due to the diverse
University, #1 Zheda Road,

ier B.V. on behalf of Chinese Soci
access article under the CC BY-NC-
environment-algae processes [16e18]. Typically for the conven-
tional process-driven approaches, their accuracy is highly species-
specific owing to the uncertainty of transport and kinetics param-
eters [18e20].Whereas the empirical statistical models usually lack
adaptability to complicated ecological patterns [21,22]. Without
novel techniques to develop robust ecological models, predicting
shifts for the entire algal community will remain a formidable
challenge [15,20,23].

Unfortunately, under a wide variety of direct and interactive
environmental perturbations [9,24,25], the prediction of algal
communities is becoming increasingly difficult. For instance,
excessive nutrients are widely considered the fundamental factor
boosting phytoplankton growth [4,26]. In addition, the incorpora-
tive effects of meteorology [27] and hydrology [28,29] can also
control the algal variability and structures. Recent studies have
shown that the hydrometeorological factors (notably, inlet-outlet
runoff, rainfall, light, wind, and temperature) can vastly control
epilimnion conditions (e.g., water mixing, warming and stratifica-
tion, and resident time), thereby, jointly regulating the algal
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production with nutrients [5,9,30e32]. This calls for consideration
of multi-source environmental influences on phytoplankton dy-
namics, further complicating ecological modeling.

Given the recent developments in machine learning, state-of-
the-art computational intelligent techniques are now suitable to
overcome the overall difficulty, especially, the random forests (RF)
[33]. The RF, among the wide range of machine learning ap-
proaches, such as neural networks [22,34], support vector re-
gressions [35,36], and genetic programming [37], are well-known
for the robust modeling of intricate ecosystems with ensemble
strategies [38]. Moreover, current interpretable studies have pro-
vided deep insights into its interpretability weakness by dis-
assembling the tree-based structure [39e41]. The emerging RF-
based feature analysis is no longer limited to identifying the
important environmental factors individually. Furthermore, it
proposes a feasible framework to understand the interactive effects
of factors on modeling [38,41,42]. This high accommodation of RF
presents a promise to predict and describe the complicated
response of algal communities to environmental variations. Yet, to
our knowledge, experiences with machine-learning-driven explo-
ration are still very limited for such a complex ecological problem.

Therefore, in this study, we explored the prediction of phyto-
plankton community structure using the machine-learning RF
method, with the meteorological, hydrological, and physicochem-
ical variables integrated as inputs of this model. The RF models
were developed and validated using the long-term phytoplankton
time series (n ¼ 858, 1994e2021) in Norway's largest lake, Lake
Mjosa. A total of 13 major algal classes and the total cell biovolume
were considered. Furthermore, the interpretability of the RF
models was investigated via analyzing the importance and in-
teractions among environmental variables.

2. Material and methods

2.1. Study area

Lake Mjosa (Norwegian: Mjøsa) is the largest Norwegian lake,
located in the north of Oslo city (southern Norway) (Fig. 1). It has a
surface area of 369 km2, a medium depth of 150 m, a maximum
length of 117 km, the theoretical residence time of 4.89 years, and is
surrounded by one of Norway's most important agricultural dis-
tricts [43]. The lake catchment is mostly a mountainous area,
receiving glaciers meltwater through main tributaries [44]. How-
ever, the lake also receives discharges from urban sewage treat-
ment plants, as well as industrial and agricultural sources, which
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Fig. 1. Locations of aquatic, meteorological, and hydrological monitoring sites in the
Lake Mjosa region.
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cause serious eutrophication and induced widespread surface
cyanobacterial blooms (Oscillatoria bornetii fo. Tenuis) starting in
the early 1970s [45]. This took a national campaign to regulate the
lake by comprehensively reducing phosphorus loads during the
1980s, which substantially decreased lake phosphorus concentra-
tions [46]. Since then, the total phytoplankton biomass has
declined, and cyanobacteria no longer thrive. Nevertheless, diatom
over-proliferation events still often occur and are a nuisance to local
water resources by forming sticky layers [32].

2.2. Description and collection of modeling dataset

2.2.1. Phytoplankton community and water physicochemical data
The aquatic environment in Lake Mjosa is well monitored by

the “AquaMonitor” project (https://aquamonitor.niva.no/
mjosovervak) of the Norwegian Institute for Water Research
(NIVA). To obtain long-term epilimnion records from the lake,
four main sites were selected to continuously collect in situ water
samples (0e10 m depth) at a regular frequency (bi-weekly or
monthly during MayeOctober; the ice-free season) (Fig. 1). Based
on field collections, the phytoplankton samples were analyzed
down to species level (only released at taxonomic class level,
details in Table S1) under an inverted microscope and were
quantified using cell biovolume (mm3 m�3) [43]. The phyto-
plankton composition was measured by the relative biovolume
per taxonomic class. As shown in Table 1, four physicochemical
variables related to the phytoplankton growth, including total
nitrogen (TN), total phosphorus (TP), water transparency (Trans-
parency), and water temperature (WT), which were also taken
and analyzed by chemical or physical methods following a stan-
dardized methodology [43]. Using TN and TP concentrations, the
mass ratio of nitrogen to phosphorus (N:P) was also calculated. In
total, 858 data samples consisting of 13 taxonomical phyto-
plankton classes and five water physicochemical variables were
collected, spanning 28 years of records from May 1994 to October
2021.

2.2.2. Meteorological and hydrological data
Based on the coordinates of the four aquatic monitoring sites,

meteorological data were obtained from the closest weather sta-
tions of the Norwegian Meteorological Institute (MET) through the
Norwegian Center for Climate Services (NCCS; https://seklima.met.
no/observations). Together, four weather stations (Fig. 1) were
selected to obtain meteorological conditions, including daily mean
air temperature (AT), daily total precipitation (Precipitation), daily
sunshine duration (Sun), and daily mean wind speed (Wind)
(Table 1). Four sets of meteorological variables were created using
themonitored data to better describe themeteorological status. For
example, AT on the sample day (abbreviated as AT.0) and average
AT for the days before the sampling day (including 3, 7, 14, 30 days;
AT.3, AT.7, AT.14, AT.30). The same procedure was repeated to create
the variable sets of sunshine duration and wind speed. On the other
hand, precipitation variables were created as the precipitation on
the sample day and the total precipitation for the days before the
sampling day. Therefore, four variable sets, with five each, were
created to measure meteorological conditions (20 in total,
Table S2). Since monitored parameters available at each weather
station were different, the meteorological variables assigned for
each aquatic site were calculated from the average of observations
at all selected weather stations (except precipitation, details in
Table S1).

Hydrological data of the Lake Mjosa watershed were collected
from the NorwegianWater Resources and Energy Directorate (NVE)
delivered by the “Sildre” system (https://sildre.nve.no/map). To
acquire the daily discharge conditions of Lake Mjosa, a total of five

https://aquamonitor.niva.no/mjosovervak
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https://seklima.met.no/observations
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Table 1
Overview of the modeling variables.

Monitoring dataset Variable set Abbr. Unit Range Mean ± S.D.

Phytoplankton community structure Biomass (total biovolume) - mm3 m�3 7.2e2439.8 365.6 ± 334.3
Composition (relative biovolume per class) - - 0e100% -

Physicochemical factor Total nitrogen TN mg L�1 145.0e644.7 419.8 ± 88.1
Total phosphorus TP mg L�1 1.8e24.0 5.5 ± 1.8
TN:TP ratio by mass N:P - 13.2e253.6 83.6 ± 34.2
Water transparency Transparency m 0.9e18.0 8.0 ± 2.2
Water temperature WT �C 3.2e20.8 12.0 ± 3.6

Hydrological factor Inflow discharge (log) Inflow m3 s�1 4.4e7.8 5.9 ± 0.6
Outflow discharge (log) Outflow m3 s�1 1.0e7.3 6.0 ± 0.7
Discharge difference (log) Q.Diff m3 s�1 �1.1e3.8 �0.1 ± 0.5

Meteorological factor Total precipitation Precipitation mm 0.0e349.3 72.6 ± 38.0
Air temperature AT �C �4.9e23.8 11.7 ± 5.0
Sunshine duration Sun hour 0.0e15.4 4.4 ± 3.4
Wind speed Wind m s�1 0.0e5.2 1.8 ± 0.8

Spatial factor Latitude - � 60.6e61.0 -
Longitude - � 10.6e11.1 -

M. Liu, Y. Huang, J. Hu et al. Environmental Science and Ecotechnology 14 (2023) 100233
main inlet rivers that can occupy over 90% of lake inflows [43,44]
were selected to sum the daily inflow discharge (Inflow). While the
lake daily outflow discharge (Outflow) was acquired from its outlet
Vorma [43] (Fig. 1, hydrological station details in Table S1). The
outlet of Lake Mjosa was regulated for hydro-electric production
during the entire sampling period (water withdrawn in winter
months) [44]. Therefore, to indicate the hydraulic fluctuations in
the lake, the daily discharge exchange difference (Q.Diff) was also
calculated using inflow subtracted by the outflow discharges
(Table 1). Same as the above meteorological AT variables, three sets
of hydrological variables were subsequently created (15 in total,
Table S2). The flow discharge data were all on a logarithmic scale to
reduce the variance of raw data for facilitating modeling.

2.3. Random forests

2.3.1. Model development
Random forests (RF) are a combination of tree predictors, with

each built independently using a random set of bootstrap samples
from the overall data [33]. To conduct prediction, the RF model
aggregates the results of each tree and then votes on the final
output, with majority votes for classification and average outcomes
for regression. For applications, two important hyperparameters:
the number of trees in the forest and the number of variables
considered to split the nodes, should be optimized to minimize the
generalization error [47].

To appropriately fit the RF model in the present study, our
modeling procedure included two phases: calibration and valida-
tion. In the calibration phase, approximately 80% of the overall data
were used as the constructing data to optimize themodel. Although
inherent out-of-bag validation provides the tolerance of RF against
overfitting [38], the constructing data were used to conduct the 10-
fold cross-validation to avoid over-fitting problems [48]. During
cross-validation, constructing data were randomly split into ten
subsets, with one subset for testing and the remaining nine subsets
for training, looping ten times till every subset was tested. After
completing the cross-validation, results were averaged, and the
parameters that performed best on the testing set were recorded. In
the validation phase, model prediction performances were finally
evaluated. Here, RF models were re-trained using the entire con-
structing data based on recorded parameters to make in-sample
(i.e., the 80% calibrating set) and out-of-sample (i.e., the remain-
ing 20% unused validating set) predictions.

RF models were applied with the sklearn library in Python 3.8
software [49], using a grid-search scheme to tune the two hyper-
parameters during cross-validation (details in Table S3). The
3

correlation coefficient (R2), root-mean-square-error (RMSE), and
normalized-root-mean-square-error (NRMSE) were used to measure
the deviation of predictions from the observations for each algal
class. Moreover, the Bray-Curtis dissimilarity index was applied to
measure the deviation of predicted community composition from
the observed (all calculations in Text S1).

2.3.2. Variable importance and interaction analysis
By-products of RF from the internal estimates that monitor the

error, strength, and correlation are also useful for model interpre-
tation [33]. To evaluate the relative importance of each variable,
twomeasures provided by RF were both applied: the mean-square-
error decrease in accuracy (MSE decrease) and the mean decrease
in node purity (node purity decrease). Specifically, the MSE
decrease of each variable was computed from the RF prediction
error on out-of-bag data via permuting variables, and the node
purity decrease was calculated based on changes in node impurity
from splitting on the variables (measured by the residual sum of
squares). Additionally, to identify the interactive variables, the
conditional mean minimal depth of pairwise variables was calcu-
lated and used to measure the interaction strength [41]. Moreover,
double-variable partial dependence analysis was applied to quan-
tify the interactions, which enabled graphically checking the
interactive effects of important variables on model responses (i.e.,
phytoplankton variations) [38,40,50]. Detailed information about
these measures can be found in the Supporting Information (Text
S2).

To conduct this RF-based analysis, the MSE decrease and node
purity decrease were computed through the R package random-
Forest [51], the conditional mean minimal depth was calculated
using the R package randomForestExplainer [52], and the partial
dependence plots were applied via the R package pdp [53]. Since
data-driven analysis can only be guaranteed within the range of
training data [19,53] and predictions on new data were no longer
required during this procedure, this RF feature analysis was per-
formed based on the overall dataset to maximally reveal the in-
formation of the studied data and avoid uncertain extrapolations.

2.3.3. Feature processing and pre-filtration
To facilitate the training of RF models, the input variables (i.e.,

model features) were normalized by:

x0i ¼
xi � x
xsd

(1)

where, x0i is the normalized value of observed xi; x and xsd are the
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mean and standard deviation of the observed variable, respectively.
In addition, missing values of model features were replaced with
the mean values of corresponding variables.

Nevertheless, the correlation analysis revealed the multi-
collinearity within the seven sets of meteorological and hydrolog-
ical variables (Table S2 and Fig. S1). These redundant variables
hampered the RF model from functionally detecting the important
and interactive variables. Thereby, to filter the redundant infor-
mation within hydro-meteorological variable sets, only the most
important one in each set was reserved for the RF-based feature
analysis (details are in Fig. S2). The pre-filtrated hydrometeoro-
logical variables were reported in Table S4.

3. Results

3.1. Variation of algal community in the past three decades

The sharp shifts within the algal composition, and the lack of
strong linear correlation to environmental variables, highlighted
the heterogeneous and complicated property of the community
data and thus challenged its prediction (Fig. 2 and Fig. S1). In detail,
based on the collected 858 water samples at four aquatic stations
from 1994 to 2021, the phytoplankton in Lake Mjosa mainly
belonged to 13 taxonomic classes (Fig. 2). The Bacillariophyceae
class (commonly known as diatom) accounted for approximately
40% of the phytoplankton biomass and contributed over 50% of the
occurrences (478 of 858 counts), followed by the Cryptophyceae,
Chrysophyceae, and Cyanophyceae classes (Fig. 2a). The phyto-
plankton biomass was highly dynamic and mostly ranged between
100 and 1000 mm3 m�3 (Fig. 2b). In addition, the majority of the
algal classes were found in low correlations with the 42 environ-
mental variables recorded in the same historic period (low Pear-
son's coefficients, majority of |r| < 0.3). Moreover, several classes,
such as Cyanophyceae (commonly known as cyanobacteria) and
Raphidiophyceae, showed weak linear relationships with the
environmental variables (|r| < 0.1) due to the zero-inflated data
caused by their limited detections (Fig. S1).

3.2. Prediction of the algal community structure

The RF approach showed good performance in predicting
phytoplankton community structure from the environmental var-
iables (Figs. 3 and 4). No overfitting or underfitting was observed
during the 10-fold cross-validation training processes (Fig. 3a and
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Table S5). The RF model accurately captured the dynamic patterns
of the phytoplankton community, as indicated by the low cross-
validation NRMSE (mostly <5%). In addition, using the pre-
filtrated environmental variables (Table S4), the RF model also
provided comparable accuracy with NRMSE of less than 10%
(Fig. 3a). When making predictions for the final evaluations, satis-
factory performance can be found both in in-sample calibrating
data (high R2, majority above 0.90) and out-of-sample validating
data (R2 ranged from 0.75 to 0.41) for total biomass and the indi-
vidual composition of four dominant phytoplankton classes
(Fig. 3bef, Fig. S3, and Table S6). For other algal classes with low
occurrences, although the excessive zeros largely biased the R2

statistics, the extremely low RMSE and NRMSE (mostly below 0.05
and 10%) can still support the high prediction accuracy (Table S6).

Low dissimilarity errors were also found in predicting the
phytoplankton composition (Fig. 4). The overall calibrating errors
with outliers excepted were less than 17%, and the median error
was only 6%. The validating prediction errors were slightly higher
but still below 25%, with a median error of 17%. Moreover, it was
worth noting that the low errors were often accompanied by the
dominance occurrences of four dominant classes in the phyto-
plankton composition (Fig. 4b and c).

Therefore, the present RF method overcame the modeling
challenges posed by the weak correlation between the phyto-
plankton community and environmental variables and can be used
as a reliable approach to predict phytoplankton structure and
identify the driving factors.

3.3. Identification and interpretation of the environmental drivers

On top of the robust prediction, the RF approach was also sug-
gested because of its high interpretability. As an illustration, Fig. 5
presented the results of variable importance and interaction anal-
ysis by the RF model for the total phytoplankton biomass. For the
prediction of phytoplankton biomass, it was evident that temper-
ature was the major driver, followed by the hydrological and
nutrient conditions, while the spatial factor showed limited influ-
ence (Fig. 5a). Moreover, strong interactions between the water
physicochemical and meteorological variables were discovered,
such as temperatureenutrient and temperatureewind (Fig. 5bef).
This observation was especially prevalent when the water tem-
perature exceeded 15 �C. Analogically, the variable analyses for the
other four dominant phytoplankton classes unrevealed a similar
phenomenon (Figs. S4eS7).

The importance of the environmental variables on phyto-
plankton structure was also summarized in Fig. 6a. Notably, the
hydrological and meteorological factors far outperformed the nu-
trients in shaping the individual composition, especially in the four
dominant classes. As for the low occurrent phytoplankton classes,
the meteorological variables such as sunshine duration and air
temperature can also be the primary driver. In addition, the water
temperature was shown to be the most important driver in regu-
lating the total biomass. In general, water temperature and inflow
discharge can be the two top drivers affecting phytoplankton
community structure shifts.

The combined effects of the major drivers (i.e., WT and Inflow)
and nutrients (TN and TP) were also shown in Fig. 6bek. Interest-
ingly, due to the leading competitive edge of the Bacillariophyceae
class, the proportions of the remaining phytoplankton classes were
complementary to its variation (Fig. 6bek). The warm water tem-
perature and low inflow discharge favored the increase in phyto-
plankton biomass and Bacillariophyceae composition. However, no
significant nutrient limitations were observed for the phyto-
plankton communities. For instance, the localized phosphorus
limitations were only observed for Cyanophyceae and
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Bacillariophyceae classes when the TN concentration reached
certain levels (>500 and 200e400 mg L�1, respectively; Fig. 6gek).
Despite that, nutrient influences on the phytoplankton composition
were minimal relative to the major divers. Noticeably, the water
temperature was highly positively correlated with previous air
temperature conditions (correlation r ¼ 0.5e0.7, Fig. S1A). This
observation suggested that the hydro-meteorological factors in
Lake Mjosa could strongly regulate its surface water characteristics
and pose a joint impact on phytoplankton production. Moreover,
the impacts of antecedent hydro-meteorological conditions
(particularly the previous 30-day period status) were stronger than
the current (Fig. S2 and Table S4).
4. Discussion

4.1. Machine learning for predicting phytoplankton community
structure

As our RF models suggested, this machine learning (ML)
approach accurately predicted the algal variability under intensive
environmental perturbations (validation R2 > 0.740), even for those
communities that were weakly correlated with any explanatory
variables (e.g., the cyanobacteria class (correlation |r| < 0.05, Fig. S1;
prediction R2 > 0.701, Fig. 3c and Table S6). Given the complexity of
ecosystems [17], developing an accurate algal predictive model
from high-dimensional and interactive environmental variables
remains difficult [19]. Traditional statistical models often fail to
5

capture such sophisticated ecological patterns due to the upfront
assumption and linear form basis [21,22]. Comparatively, with the
self-learning and self-organizing properties, ML has gradually been
proven to be useful for modeling complex algal dynamics
[19,40,54,55]. The RF technique is such a representative ML algo-
rithm that fully characterizes the available variable interactions and
reduces the biases by sharing and integrating the ability of internal
decision trees [33]. Current studies have widely pointed out that
this characteristic makes RF display superior capability in predict-
ing erratic algal fluctuations under massive environmental in-
fluences [15,19,47]. This coincides with our findings and again
suggests that ML-based techniques could be reliable tools for
applying predictive models of algae.

Remarkably, the RF models presented powerful accommodation
for a total of 13 different algal classes (mostly NRMSE <10%), with
robust prediction to the shifts in phytoplankton structure among
four monitoring sites (Bray-Curtis dissimilarity ¼ 9.2 ± 7.0%). His-
torically, predicting algal composition shifts was a big challenge
due to the heterogeneous environment-algae processes [20,56,57],
especially for those process models with site-specific and species-
specific parameters [18,20]. This highlights another major feature
of the ML method, that is, it requires few prior ecological knowl-
edge and is purely modeled upon data information, which is a good
supplementary to the process-drivenmodels [19]. As the prediction
rule is exclusively extracted from data, such flexibility provides
unexpected generality for the contemporary ML-based aquatic
models, which usually involve a large-scale ecological dataset with
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substantial algal communities [20,57]. Notably, recent studies have
shown that integrating prior knowledge could enhance algal pre-
diction via facilizing variable selections in data-driven models
[58,59]. In this sense, data information and domain knowledge can
complement each other for future ML-based phytoplankton
composition modeling. Therefore, this study has shown a prom-
ising direction for digging the ecological values of ML (e.g.,
modeling the algal community shifting) due to its high accuracy
and general practicality.
4.2. Deep exploration for the ecological interpretation of machine
learning

More importantly, this work presented a reproducible workflow
for the in-depth ecological interpretation of ML approaches. As an
emerging tool, the explanation of ML-learned relationships can be
crucial since it validates modeling reliability and informs future
studies [60]. But this has always been a difficulty due to the inflated
parameters and complex structure of ML models [61]. Fortunately,
with the advancement in ML interpretability, the importance
measure for individual input variables has become less of a chal-
lenge. For instance, Gebler et al. [62] used sensitivity analysis in the
neural network to evaluate the impact of river ecological variables.
Panidhapu et al. [63] identified the important environmental var-
iables for predicting microbes based on the strength of influence in
the Bayesian network. Specifically, simple monitoring for internal
errors (i.e., MSE decrease and node purity decrease) prevents the RF
from suffering such shortcomings (Fig. 6a). In fact, this feature has
already made RF a widely used method for variable selection
[38,40,42].
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This work is also one of the earliest ML-driven studies in
uncovering the joint variable effects driving the phytoplankton
community shifts. We showed the calculation of conditional depth
largely benefited from the detection of interactive variables in RF
models (Fig. 5 and Figs. S4eS7). The partial dependence further
facilitated the quantification of important interactions in affecting
algal structure shifts, such as the temperatureedischarge and TN-
TP (Fig. 6). In practical terms, such variable interaction analysis is
vital to support water management, e.g., delineating nutrient
guidelines [64], and discovering nonlinear environmental effects
on algal blooms [65]. However, in previous research, the inter-
pretability exploration of most ML studies often stops at revealing
importance and ignores variable interactions [41,66,67]. Nowadays,
given the high-speed development in RF computational proced-
ures, increasing ML-driven environment subfields have begun to
focus on variable interaction analysis [41,50,68]. Despite that, to our
knowledge, there are still very limited interpretation explorations
for ML-based algal prediction tasks [15,40]. Hence, we strongly
advocate for using the RF model due to its robustness and stable
analysis procedures [38]. Moreover, the interaction analysis can be
constructed for any ML method via partial dependence plots [69].
With this range of abilities, ML could offer a promising alternative
to traditional statistical methods for analyzing high-stakes
ecological management in the future [38].
4.3. Important driving factors affecting shifts in algal community
structure

The present results suggested that antecedent hydro-
meteorological factors (mostly 30-day period) were the most
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important factors in affecting algal biomass and composition shifts
since they mainly controlled the behaviors of diatoms (as
mentioned in section 3.3). The high surface water temperature and
mild inflows promoted both the algal proliferation and diatoms
dominance and can jointly cause approximately ten times wider
biomass changes than other variables (Fig. 6). Noticeably, the
relatively high biomass in Lake Mjosa (>300 mm3 m�3) appeared
only when water temperature raised and exceeded 15 �C (Fig. 5c),
which typically can only be reached in warm summer months and
when stable vertical thermal stratification occurs [43,46]. The
analogical results have been shown in many previous studies. For
example, Cha et al. [70] revealed a stronger cyanobacterial sensi-
tivity to the lowoutflow and highwater temperature (6-day before)
than the nutrients in a South Korean reservoir. In addition, algal
growth was found to mostly prefer a stable antecedent water
fluctuation (10-day period) in the largest tributary of the Yangtze
River, China [40]. Interestingly, the steady and stratified epilimnion
environment could favor the floating of cyanobacteria, where they
have better access to light and shade non-buoyant classes [9,71],
especially the diatoms with heavier and larger cells [70]. However,
the huge absence of cyanobacterial colonies due to the extremely
low phosphorus content was largely eliminated in Lake Mjosa. In
contrast, the widespread diatoms, along with cryptophytes and
chrysophytes, took full advantage of favorable conditions and thus
dominated phytoplankton. Similar composition shifts have been
reported in many lakes. For example, Lake Oswego in the USA [72],
7

and 35 lakes in North America and Europe [11]. This indicates that
the hydro-meteorological characteristics are also important moni-
toring components throughout the water management period, as
they could largely alter phytoplankton community structure.

Contrary to our expectations, phytoplankton growth was not
sensitive to the single variation of nutrients (biomass changed only
from 250 to 280 mm3 m�3). No significant phosphorus limitations
existed in the TN-TP dependence analysis, despite the whole lake
TP condition (1.8e24.0 mg L�1) was below the thresholds proposed
bymost empirical studies (e.g., 200 mg L�1 in Lake Taihu, China [73],
100 mg L�1 in 137 Iowa lakes, USA [74], 30 mg L�1 in 221 lakes from
14 countries [75]). In contrast, the high levels of phosphorus and
nitrogen interact with other hydro-meteorological factors,
including temperature and discharges, more readily to promote
algal growth (Fig. 5 and Figs. S4eS7). Recently, many studies have
claimed this collaboration may be performed through the short-
term nutrient enrichments induced by the intense hydro-
meteorological activities [27,76e78]. Some specific algae (e.g.,
Microcystis) could also rapidly utilize incremental nutrients under
such favorable condition and cause folds of increase in the overall
biomass [73,79]. Nevertheless, the internal nutrient replenishment
and recycling in deep lakes are still complicated and require further
investigation [76,80]. Despite that, management of nutrient inputs
to the watershed is the key to mitigating lake eutrophication and
can be a radical approach to control the proliferation of phyto-
plankton community [4,9,25].



a

e fb

W
T 

(°
C

)

Inflow log (m3 s−1)

20

15

10

5

TP
 (µ

g 
L−1

)

20

15

10

5

5 6 7 8

TN (µg L−1)
200 300 400 500 600

TN (µg L−1)
200 300 400 500 600

TN (µg L−1)
200 300 400 500 600

TN (µg L−1)
200 300 400 500 600

TN (µg L−1)
200 300 400 500 600

Inflow log (m3 s−1)
5 6 7 8

Inflow log (m3 s−1)
4.5 5.5 6.5 7.5

Inflow log (m3 s−1)
5 6 7 8

Inflow log (m3 s−1)
4.5 5.5 6.5 7.5

dc

j kg ih

2.5
2.4
2.3
2.2
2.1

2.45
2.44
2.43
2.42
2.41
2.40

0.018
0.017
0.016
0.015
0.014
0.013

0.030
0.025
0.020
0.015

0.5
0.4

0.42
0.40
0.38

0.30
0.27
0.24
0.21

0.28
0.27
0.26
0.25

0.24
0.22
0.20
0.18
0.16
0.14

0.20
0.19

Total biovolume Cyanophyceae Bacillariophyceae Cryptophyceae Chrysophyceae

Cyanophyceae Bacillariophyceae Cryptophyceae Chrysophyceae

Xanthophyceae

Importance
1.0
0.8
0.6
0.4
0.2
0.0

Raphidiophyceae
Euglenophyceae

Dictyochophyceae
Choanozoa

Haptophyceae
Chlorophyceae

Dinophyceae
Chrysophyceae
Cryptophyceae

Bacillariophyceae
Cyanophyceae
Total biovolume

TN TP N:P Transparency

Physiochemical Hydrological Meteorological Spatial

WT Inflow Outflow Q.Diff Precipitation Sun AT Wind Latitude Longitude

Total biovolume

Fig. 6. Importance measure of each variable type for total phytoplankton biomass (log10 biovolume) and individual class composition (relative biovolume per class). a, Variable
importance plotted by the average index of standardized MSE decrease and standardized node purity decrease. bek, Bivariate partial dependence plots of total biomass and four
dominant classes, based on the water temperature and inflow discharge (bef) and nutrients (gek).

M. Liu, Y. Huang, J. Hu et al. Environmental Science and Ecotechnology 14 (2023) 100233
5. Conclusion

This study investigated the use of machine-learning random
forests (RF) method to predict and interpret phytoplankton struc-
ture shifts from water physicochemical, meteorological, and hy-
drological variables. The RF models presented robust and accurate
predictions on both phytoplankton biomass and community
composition. The deep RF-based explanation showed that the
hydro-meteorological factors outperformed nutrients in affecting
phytoplankton community structure. Especially, the temperature,
lake inflow, and nutrients jointly posed strong regulations to the
algal community shifts in this nutrient-poor system.

As such, this work provided a reproducible machine learning
workflow to handle the challenging phytoplankton structure pre-
dictions and reveal the underlying complicated ecological re-
lationships. In the future, this workflow could be expanded to the
species level from the current class level and include anthropogenic
stress as environmental variables, which were limited by the
dataset as shown in this study.
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