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Abstract: Most opioid analgesics used clinically, including morphine and fentanyl, as well as the
recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like
G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes
extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative
splicing events. These OPRM1 splice variants can be categorized into three major types based on
the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM
variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants
are pharmacologically important in mediating the distinct actions of various mu opioids. More
importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are
potent against multiple types of pain, but devoid of many side-effects associated with traditional
opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional
relevance in opioid pharmacology.

Keywords: OPRM1; GPCR; alternative splicing; mu opioid receptor; opioid; morphine; fentanyl;
biased signaling; gene targeting; pain

1. Introduction

The actions of most clinically used opioid analgesics, such as morphine and fentanyl,
are complex. Although they provide potent analgesia, they produce many undesirable
side-effects such as respiratory depression, constipation, pruritus, physical dependence,
and addiction. Misusing these opioids often leads to development of opioid use disorder,
contributing significantly to the worldwide opioid epidemic. These opioid drugs act
primarily on the mu opioid receptor (MOR) that was initially proposed by Martin in
1967 [1], established by pharmacological studies in 1973 [2–4], and verified by molecular
cloning in 1993 [5–7]. Clinically, patients often showed divergent responses to mu opioids
not only in analgesia but also in side-effects, and incomplete cross-tolerance among mu
opioids led to the clinical practice of opioid rotation. These observations suggest the
presence of multiple mu opioid receptors, a concept that was originally proposed by early
pharmacological studies [8–10] and evolved by recent molecular studies of the mu opioid
receptor gene, OPRM1 [11,12].

Only a single-copy OPRM1 gene has been identified, raising the hypothesis that al-
ternative pre-mRNA splicing of the OPRM1 gene generates multiple mu opioid receptors,
contributing to the diversity and complexity of opioid responses seen in humans and
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animals. Driven by this hypothesis, many efforts have been made to isolate alternatively
spliced OPRM1 variants. We now know that the single-copy OPRM1 gene undergoes
extensive alternative splicing, creating an array of splice variants that are far more compli-
cated than those defined by the early pharmacological studies. Conservation of OPRM1
alternative splicing from rodents to humans suggests evolutionary and functional impor-
tance of the OPRM1 gene. These OPRM1 splice variants can be categorized mainly into
three structurally distinct types: (1) full-length 7 transmembrane domain (TM) C-terminal
variants; (2) truncated 6TM variants; and (3) truncated single TM variants, all of which are
conserved from rodents to humans. Accumulated evidence indicates that these OPRM1
splice variants play important roles in mu opioid pharmacology. This review outlines the
progress regarding OPRM1 alternative splicing and its pharmacological functions.

2. Mechanisms and Functions of Alternative Pre-mRNA Splicing

RNA splicing or precursor mRNA (pre-mRNA) splicing discovered in 1977 [13,14]
involves removing introns and connecting exons to produce mature mRNA, a post-
transcriptional event in metazoan organisms essential for many biological and pathological
processes. RNA splicing is mediated through the spliceosome, a large complex including
five small nuclear ribonucleoprotein particles (snRNPs, U1, U2, U4/U6, and U5) and more
than 150 proteins. Alternative splicing is a major source of generating proteomic diver-
sity. It has been estimated that ~95% of human multiple-exon genes undergo alternative
splicing [15–17]. There are several types of alternative splicing, including exon skipping,
alterative 5′ or 3′ splicing, intron retention, mutually exclusive exons, and alternative
promoters and poly(A) sites [15]. Alternative splicing is differentially regulated in various
tissues and cell types, as well as in different developmental stages, providing its diverse
functions in a spatial and temporal manner. The magnitude of these effects varies from
very subtle modifications to a complete loss or gain of function. Alternative splicing also
participates in RNA processing itself, from pre- to post-transcriptional events [18].

Extensive studies of alternative splicing in a number of genes, including the c-src [19–21],
Troponin T [22–24], and FGFR2 [25–27], elucidated mechanisms of alternative splicing.
Our understanding of alternative splicing mechanisms was further extended by the
identification of RNA binding proteins that modulate alternative splicing, such as the
serine/arginine-rich (SR) family proteins [28–31], hnRNPs [32–34], the CELF protein fam-
ily [35–37], and the neuro-oncological ventral antigen (NOVA) family [38–40]. In general,
alternative splicing is a process of coordinating specific cis-acting elements in pre-mRNA
and certain trans-acting factors with the basal spliceosome.

Aberrant alternative splicing has been associated with a number of human diseases [41,42],
such as amyotrophic lateral sclerosis [43,44], paraneoplastic neurological disorders [38,45],
myotonic dystrophy [46], spinal muscular atrophy [47,48], and cancer [27,49–52]. Antisense
technologies have been used to correct aberrant alternative splicing for treating several
human diseases. Spinraza (nusinersen), an antisense oligonucleotide targeting exon 7 of
survival of moter neuron 2 (SMN2) gene, was the first FDA-approved drug to treat spinal
muscular atrophy.

3. Alternative Splicing in GPCRs

There are about 800 different G protein-coupled receptors (GPCRs), representing
the largest group of transmembrane receptors encoded by the human genome. GPCRs
are targets for ~35% of FDA approved drugs [53,54]. Structurally, canonical GPCRs are
characterized by an extracellular N-terminus, followed by seven transmembrane (TM)
α-helices (TM-1 to TM-7) connected by three intracellular and three extracellular loops,
and finally an intracellular C-terminus. GPCRs mediate diverse physiological responses,
such as sense of vision, smell, taste, and nociception, by transducing extracellular stimuli
to intracellular signaling molecules, such as heterotrimeric G proteins and β-arrestins.

Approximately 50% of GPCRs are subject to alternative pre-mRNA splicing [55], pro-
ducing structurally diverse GPCR isoforms or variants. These splice variants can have
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alternative N- or C-termini, variable extracellular or intracellular loops, and truncated trans-
membrane domains, as well as alternative 5′ or 3′ untranslated regions (UTR). For example,
genomic data search of non-olfactory receptor GPCR genes predicts ~12% of human GPCR
genes have one or more alternatively spliced C-terminal variants [56], while over 9 and 7%
of human GPCR genes contain truncated 6TM and single TM variants, respectively [57,58].
Alternative splicing of GPCR genes adds additional layers of complexity to the regulation
and function of GPCR pharmacology. Table 1 lists selected human GPCRs with known
splice variants along with their tissue distribution, and agonist/antagonist. However,
the function of a majority of GPCR splice variants remains unknown.

Table 1. List of selected human GPCRs splice variants along with their agonist, antagonist, and tissue distribution.

GPCR
Receptors

Gene
Symbol

Receptor Name
(Number of Variants) Agonist Antagonist Tissue

Distribution Reference

Adrenergic
Receptors

ADRA1A
α1A-AR

C-term variant (4)
6-TM variant (11)

Dabuzalgron
Amitriptyline
Promethazine
Nortriptyline

Mainly liver, heart,
and brain [59–63]

ADRA1B α1B-AR:
6-TM variant (1) Phenylephrine Conopeptide

p-TIA Brain [64]

Cannabinoid
Receptors

CNR1 CB1
N-term variant (2)

THC
2-AG

ACEA

TM38837
VD60

Mainly brain, DRG,
and kidney [65–67]

CNR2 CB2
N-term variant (2)

THC
2-AG

Nabilone

SR144528
AM-630

Mainly testis and
spleen [68]

Corticotropin-
Releasing
Hormone
Receptor

CRHR1

CRH-R1
IL variant (1)

C-term variant (1)
N-term variant (2)

Stressin I
Ovine CRH Antalarmin Mainly brain [69]

CRHR2 CRH-R2
N-term variant (3)

Urocortin II
Urocortin III K41,498 Mainly brain [69]

Tachykinin
Receptor TACR1 NK-1R

C-term variant (2) GR73632 CP96345 Mainly brain, GI
tract, and lung [70,71]

Opioid Receptors

OPRD1
DOR-1

6TM variant (4)
1TM variant (3)

DPDPE
Enkephalin
Deltorphin

SNC-80

Naltrindole Mainly brain [72]

OPRK1

KOR-1
N-term variant (5)

6TM variant (2)
1TM variant (1)

U50,488H
U69,593

Nalfurafine
Dynorphins

nor-BNI
DIPPA
JDTic

Mainly brain and
prostate [72]

OPRL1

ORL-1/KOR-3
N-term variant (18)

6TM variant (3)
1TM variant (1)

SR-8993
Ro65-6570
N/OFQ

J-113,397
JTC-801

Mainly brain and
blood [72]

OPRM1

MOR-1
C-term variant (12)
N-term variant (1)

6TM variant (4)
1TM variant (4)

DAMGO
Morphine
Fentanyl

Methadone
B-Endorphin

β-FNA
Naloxone

Naltrexone
Cyprodime

CTAP

Mainly brain [11,12,73]

Prostaglandin E
Receptors PTGER3 EP3

C-term variant (6)
SC-46275

ONO-AE-248 DG-041 Mainly kidney,
uterus, and stomach [74]
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Table 1. Cont.

GPCR
Receptors

Gene
Symbol

Receptor Name
(Number of Variants) Agonist Antagonist Tissue

Distribution Reference

Serotonin
Receptors

HTR2A 5-HT2A
6-TM variant (1) TCB-2 Volinanserin Mainly brain [75,76]

HTR2C
5-HT2C

C-term variant (1)
6-TM variant (1)

Loreaserin Agomelatine Mainly brain [77,78]

HTR4
5-HT4

C-term variant (9)
EL variant (1)

Mosapride
Prucalopride

Velusetrag

SDZ 205–557
SB-207266
GR113808

Mainly intestine
and brain [79,80]

HTR6 5-HT6
6-TM variant (1)

WAY-181187
EMD-386088

E-6801

Ro 04-6790
SB271046 Mainly brain [81]

HTR7 5-HT7
C-term variant (3)

AS-19
LP-12

E-55888

SB-269970
SB-258719

JNJ-18038683

Mainly brain, heart,
and GI tract [82–85]

Listed human GPCR splice variants were obtained from the indicated literature. C-Term: Full-length 7 transmembrane domains (TM)
C-terminal splice variants; N-term: 5′ splice variant; 6TM variant: truncated 6TM variant; 1TM variant: single TM variant; IL variant:
intracellular loop variant; EL variant: extracellular loop variant. THC: tetrahydrocannabinol; 2-AG: 2-arachidonylglycerol; ACEA:
arachidonyl-2′-chloroethylamide; DPDPE: [D-Pen2,D-Pen5]Enkephalin; DAMGO: D-Ala2, N-MePhe4, Gly-ol]-enkephalin); N/OFQ:
nociceptin/orphanin FQ; β-FNA: β-Funaltrexamine; TCB-2: (7R)-3-bromo-2, 5-dimethoxy-bicyclo[4.2.0]octa-1,3,5-trien-7-yl]methanamine;
DIPPA: 2-(3,4-Dichlorophenyl)-N-methyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl]acetamide hydrochloride; CTAP:
D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2; DG-041: (2E)-3-[1-[(2,4-Dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl]-N-[(4,5-
dichloro-2-thienyl)sulfonyl]-2-propenamide; AS-19: (2S)-5-(1,3,5-Trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin; LP-12: 4-(1,1′-Biphenyl)-
2-yl-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-piperazinehexanamide hydrochloride; VD60: 3,4,22-3-demethoxycarbonyl-3-hydroxylmethyl-
4-deacetyl-vindoline 3,4-thionocarbonate; GI: gastrointestinal; DRG: dorsal root ganglion.

4. Alternative Splicing of the Mu Opioid Receptor Gene, OPRM1

Most opioid analgesics used clinically, including morphine and fentanyl, as well
as the recreational drug heroin, act primarily through mu opioid receptors. The mu
opioid receptor was first proposed as the M (morphine, µ) receptor, together with the N
(nalorphine, probably corresponding to the kappa1 receptor) receptor, by Martin in 1967,
based on the pharmacological studies of nalorphine [1]. Establishment of opioid receptor
binding assays [2–4] and identification of endogenous opioid peptides [86–90] facilitated
the pharmacological defining of opioid receptor subtypes as mu, delta, and kappa receptors.
Molecular cloning of the delta opioid receptor (DOR-1) [91,92] quickly led to isolation of
the mu opioid receptor (MOR-1) [5–7] and kappa1 opioid (KOR-1) [93,94], as well as KOR-3
or opioid receptor-like receptor (ORL-1) [95–99]. All these opioid receptors belong to the
GPCR Class A rhodopsin family.

4.1. Concept of Multiple Mu Opioid Receptors

The concept of multiple mu opioid receptors was originally suggested based on
clinical observations that different patients displayed divergent responses to mu opioids
not only in analgesia, but also in side-effects and that incomplete cross-tolerance among
mu opioids led to the clinical practice of opioid rotation. Similar observations were seen
in animal models. Different inbred mouse strains showed various sensitivities to mu
opioids. For example, the 129/P3 inbred mouse strain is resistant to produce morphine
tolerance and naloxone-precipitated withdrawal, sharply contrasting with the robust
morphine tolerance and physical dependence seen in C56BL/6J and SWR/J inbred mouse
strains [100,101]. Multiple mu binding sites were first demonstrated with opioid receptor
binding assays using [3H]-labeled opioids in 1981 [9], subsequently validated by computer
modeling approaches [102,103] and visualized by autoradiography [104–106]. Further
pharmacological studies using two antagonists, naloxazone and naloxonazine, defined
two mu subtypes, mu1 and mu2 [10]. A third mu subtype, morphine-6β-glucuronide
(M6G) receptor, was proposed based on differences in analgesia potency, binding affinity
of morphine, morphine analgesia in CXBK mice, and sensitivity toward this.
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3-O-methylnaltrexone, a mu antagonist, had high affinity toward M6G and blocked
analgesia of M6G, but not morphine [10,107–109]. Subsequent antisense oligonucleotide
and Oprm1 knockout studies provided molecular insights into the M6G site (see be-
low) [107,110–112]. The identification of the MOR-1 sequence and its gene, OPRM1, allows
us to explore multiple mu opioid receptors at the molecular level. The concept of multiple
mu opioid receptors has been evolved by isolation and characterization of an array of alter-
natively spliced variants or isoforms from the single-copy OPRM1 gene. The correlation
between mu subtypes such as mu1 and mu2 defined by the early pharmacological studies
and the OPRM1 splice variants remains unknown, although several hypotheses such as
heterodimerization were speculated.

4.2. Evolution of OPRM1 Gene

All four opioid receptor genes, including mu receptor (OPRM1), delta receptor
(OPRD1), kappa receptor (OPRK1), and opioid-receptor like (OPRL1), are found only
in vertebrates. As suggested by phylogenetic studies, the opioid receptor genes were
generated through a two-round genomic duplication (paleoploidization) from a single
ancestral opioid receptor gene (unireceptor) [113–115]. The first-round duplication pro-
duced OPRD1/OPRM1 and OPRL1/OPRK1 genes, which were subsequently segregated
into individual OPRD1, OPRM1, OPRL1, and OPRK1 [116–118]. Like the evolutionary tree
of life, analyzing MOR-1 protein sequences predicted from 27 species define four major
clades as follows: (1) fish, (2) amphibians, (3) birds, and (4) mammals [119]. Sequence
alignments of MOR-1 proteins from different species reveal that the high-homology regions
are located in the transmembrane domains and the three intracellular loops, suggesting the
importance of these conserved structures in mu ligand binding and G protein coupling.

The genomic structure of the OPRM1 gene appears to have evolved along with the
four polygenetic clades [12,120]. In fish (teleosts), the OPRM1 has five exons and each exon
encodes regions with related TM domains: exon 1 (TM1), exon 2 (TM2–TM4), exon 3 (TM5),
exon 4 (TM6), and exon 5 (TM7). In amphibians, the last three exons were merged into
a single third exon encoding TM5–TM7. This structure with three exons encoding 7TMs
has been maintained throughout birds and mammals. Starting in the chicken, exon 4 that
encods 12 amino acids at the intracellular C-terminal tail evolved, which is maintained in
all the mammals. Additional 5′ and/or 3′ exons such as exons 7 and 11 were integrated
in mannals as well, providing a genomic structure for complex alternative splicing of the
OPRM1 gene. The functional importance of exon 7- and exon 11-associated splice variants
in opioid pharmacology is discussed below.

4.3. OPRM1 Gene Structure

The chromosonal location of the mouse and human OPRM1 gene was initially mapped
to chromosomes 10 (10 cM from the centromere) and 6 (6q24-25), respectively, using
traditional chromosomal mapping approaches [121–124], soon after MOR-1 cDNA was
identified. Genomic sequencing initiated by the Human Genome Project confirmed the
early OPRM1 mapping results, and revealed the precise chromosomal locations of the
OPRM1 gene not only in mice and humans, but also in over 30 species. All the species
contain a single copy of OPRM1 gene. Genomic sequencing also showed that genes adjacent
to OPRM1 are conserved [11,120]. For example, the regulator of G protein signaling
17 (RGS17) gene is located at the upstream of the OPRM1 gene, while the interaction
protein for cytohesin exchanges factors 1 (IPCEF1) gene and subunit 5 of the splicing factor
3b (SF3b5) gene are found downstream of the OPRM1 gene. Interestingly, a 70 bp sequence
of exon 7 or exon O in the OPRM1 gene overlaps with the IPCEF1 gene in the reversed
orientation, raising questions about their interaction and regulation at transcription and
posttranscription levels [11].

The OPRM1 gene was initially identified as a structure with four exons and three
introns using the original MOR-1 cDNA probe [125]. Mapping of additional exons at the 5′

and 3′ of the OPRM1 genes identified in alternatively spliced transcripts further extends
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the OPRM1 genes. Currently, the mouse, rat and human OPRM1 genes have approximate
270, 264, and 210 kb, respectively [11,12].

The OPRM1 gene has two independent promoters, exon 1 (E1) and exon 11 (E11)
promoters, which are conserved from rodents to humans. E1 promoter was identified as
a dual-promoter model that contains a proximal promoter and distal promoter [126–128].
E1 promoter lacks a TATA box but has several cis-acting elements such as GC-rich elements
with multiple transcription start points, suggesting a housekeeping gene mode. E11
promoter, however, has a TATA box using a single transcription start point, favoring an
eukaryote class II promoter mode. Each promoter controls expression of a unique set of
splice variants. Differential expressions of the two promoters in brain regions such as
hippocampus and substantia nigra in a transgenic mouse model suggest region-specific
promoter activity [129].

4.4. Alternatively Spliced OPRM1 Variants

The OPRM1 splice variants can be categorized into three major types based on receptor
structure: (1) full-length 7TM C-terminal variants; (2) truncated 6TM Variants; and (3)
single TM variants [11,12] (Figures 1–3).
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Oprm1 gene structure. Alternatively spliced variants reported in the literature are grouped as 7TM,
6TM, and 1TM with predicted protein structure shown to the right and exon color coded to match
the splicing schematic. From Pasternak and Pan 2013 [12].
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Figure 3. Schematic of the rat Oprm1 gene structure and alternative splicing. The top panel is the
Oprm1 gene structure. Alternatively spliced variants reported in the literature are grouped as 7TM,
6TM, and 1TM with predicted protein structure shown to the right and exon color coded to match
the splicing schematic. From Pasternak and Pan 2013 [12].

4.4.1. Full-Length 7TM C-Terminal Splice Variants

Full-length C-terminal variants are generated through OPRM1 3′ splicing, which
mainly refers to splicing from exon 3 to its downstream exons. All of the full-length 7TM
C-terminal variants share the same exons 1/2/3 that encode the majority of the receptor,
including the N-terminus, 7TM domains, three intracellular and three extracellular loops,
and part of intracellular C-terminus, except for a distinct C-terminal tail encoded by an
alternative exon(s) produced from the 3′ splicing.

The first two full-length 7TM C-terminal variants, hMOR-1A [130] and rMOR-1B [131],
were identified in human and rat, respectively. Subsequent 3′RACE using anchor primers
from exon 3 isolated many alternative 3′ exons and further PCR cloning generated full-
length C-terminal variant sequences. To date, 22 full-length 7TM C-terminal variants in
mice, 13 in rats, and 12 in humans have been isolated (Figures 1–3) [132–140]. The predicted
amino sequences from each of the 7TM C-terminal variants are unique and the lengths
of the C-terminal tail sequences vary from the shortest with one amino acid in hMOR-
1B4 [136] and rMOR-1D [137] to the longest with 88 amino acids in mMOR-1U [138]
(Table 2). Moreover, several potential phosphorylation sites, such as protein kinase C, GRKs,
cAMP- and cGMP-dependent protein kinase, and Casein kinase II, were identified in these
C-terminal tails. The functional importance of these 7TM C-terminal variants in opioid
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pharmacology has been demonstrated using in vitro cell models showing differences in mu
agonist-induced G protein coupling, phosphorylation, internalization and post-endocytic
sorting and by differential region- and cell-specific expression, as well as suggested by
findings using C-terminal truncation mouse models (see below).

Table 2. Amino acid sequences of encoded by alternative exons downstream of exon 3 in 7TM C-terminal variants.

Species Variant Exons Amino Acid Sequence Downstream of Exon3

Mouse mMOR-1 4 LENLEAETAPLP
mMOR-1A 3b VCAF
mMOR-1B1 5a KIDLF
mMOR-1B2 5ab KLLMWRAMPTFKRHLAIMLSLDN
mMOR-1B3 5abc TSLTLQ
mMOR-1B4 5abcd AHQKPQECLKCRCLSLTILVICLHFQHQQFFIMIKKNVS
mMOR-1B5 5abcde CV

mMOR-1C 7/8/9
PTLAVSVAQIFTGYPS PTHVE KPCKSCMDRGMRNLLPDD

GPRQESGE
GQLGR

mMOR-1D 8/9 RNEEPSS
mMOR-1E/Eii/Eiiii/Eiv 6/7/8/9 KKKLDSQRGCVQHPV

mMOR-1F 10/6/7/8/9 APCACVPGANRGQTKASDLLDLELETVGSHQADAETNPGPY
EGSKCAEPLAISLVPLY

mMOR-1H/-1i/-1J 4 LENLEAETAPLP
mMOR-1O 7ab PTLAVSVAQIFTGYPS PTHVE KPCKSCMDR

mMOR-1P 15 IMKFEAIYPKLSFKSWALKYFTFIREKKRNTKAGALPPLPTCHA
GSPSQAHRGVAAWLLPLRHMGPSYPS

mMOR-1V/-1Vii 18/6/7/8/9 KQEKTKTKSAWEIWEQKEHTLLLGETHLTIQHLS

mMOR-1U 7/19/8/9 PTLAVSVAQIFTGYPS PTHVE KPCKSCMDSVDCYNRKQQTGSL
RKNKKKKKRRKNKQNILEAGISRGMRNLLPDDGPRQESGEGQLGR

mMOR-1W(D2) 18/6/7/8/9 LAFGCCNEHHDQR
mMOR-1T(D2) 4 LENLEAETAPLP

Human hMOR-1 4 LENLEAETAPLP
hMOR-1A 3b VRSL
hMOR-1B1 5a KIDLFQKSSLLNCE
hMOR-1B2 5ab RERRQKSDW
hMOR-1B3 5abc GPPAKFVADQLAG
hMOR-1B4 5abcd S
hMOR-1B5 5abcde VELNLDCHCENAKPWPLSYNAG
hMOR-1O O PPLAVSMAQIFTRYS PPTHRE KTCNDYMKR

hMOR-1X X CLPIPSLSCWALEHGCLVVYPGPLQGPLVRYDLPAILHSSCLRGNTA
PSPSGGAFLLS

hMOR-1Y Y/5abc IRDPISNLPRVSVF
hMOR-1i 4 LENLEAETAPLP

Rat rMOR-1 4 LENLEAETAPLP
rMOR-1A 3b VCAF
rMOR-1B1 5a KIDLF
rMOR-1B2 5ab EPQSVET

rMOR-1C1 5abc PALAVSVAQIFTGYPS PTHGE KPCKSYRDRPRPCGRTWSLKSRAE
SNVENHFHCGAALIYNNVNFI

rMOR-1C2 5abcd PALAVSVAQIFTGYPS PTHGE KPCKSYRDRPRPCGRTWSLKSRAE
SNVENHFHCGAALIYNNELKIGPVSWLQMPAHVLVRPW

rMOR-1D 5abcde T
rMOR-1H1/H2/i1/i2/i3 4 LENLEAETAPLP

rMOR-1P 15 GAEL

The amino acid sequences resulting from 3′ splicing are presented. S, T, and Y are predicted phosphorylation sites, labeled with red and
italic letters, and highlighted with yellow. Underlined and yellow-highlighted sequences are predicted phosphorylation codes, PxPxxE/D
or PxxPxxE/D, for β-arrestin binding based on crystal G protein coupled receptors (GPCR) structures [141]. Adapted from Pasternak and
Pan 2013 [12].
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Several C-terminal tail sequences are highly conserved from rodents to humans.
For example, exon 3b in MOR-1A, an intron retention variant, encodes identical four amino
acids (VCAF) in mouse MOR-1A (mMOR-1A) [142] and human MOR-1A (hMOR-1A) [130].
Exon 5a encodes the same five amino acids (KIDLF) in mMOR-1B1 and rMOR-1B1, which
matches exactly to the first five amino acids encoded by human exon 5a in hMOR-1B1.
However, hMOR-1B1 has an additional nine amino acids beyond the conserved five amino
acids. Human exon O in hMOR-1O is a homolog of mouse exons 7a7b in mMOR-1O.
Both exons predict an intracellular C-terminal tail with 30 amino acids share 63% of
identity [137].

4.4.2. Truncated 6TM Variants

Searching alternative 5′ exons of the mouse Oprm1 gene using a modified 5′RACE
approach led to identification of four new exons including exons 11, 12, 13, and 14 [143].
Both exons 11 and 12 were mapped to ~30 kb and 28 kb upstream of exon 1, respectively,
while exons 13 and 14 were located between exons 1 and 2. Alternative splicing from
exon 11 to its downstream exons generates nine exon 11-associated variants, five of which,
mMOR-1G, mMOR-1K, mMOR-1L, mMOR-1M, and mMOR-1N, are truncated 6TM vari-
ants, in addition to three full-length 7TM variants, mMOR-1H, mMOR-1i, and mMOR-1J,
and one single TM variant mMOR-1T (Figure 2). Splicing from exon 11 to exon 2 by
skipping exon 1 generates three 6TM variants mMOR-1G, mMOR-1M, and mMOR-1N,
which lack the first TM encoded by exon 1 [143]. Since the mouse exon 11 encodes 27 amino
acids that do not predict a transmembrane domain, translation from exon 11 AUG in frame
with exon 2 yields a receptor with 6TM (TM2–TM7) from exons 2 and 3. Splicing from exon
11 to exons 13 and 14 also by skipping exon 1 generates two 6TM variants, mMOR-1K and
mMOR-1L. Although translation from exon 11 AUG predicts a short peptide beyond the
27 amino acids from exon 11, both mMOR-1K and mMOR-1L can produce a 6TM receptor
by using an alternative AUG in exon 2.

Identification of the mouse exon 11-associated variants quickly led to isolation of the
mouse homologs of exon 11-associated variants in rats and humans (Figures 1 and 3) [144,145].
Based on the genomic databases, rat and human exon 11 are found at ~21 and ~28 kb
upstream of their exon 1, respectively, a genomic location similar to that of the mouse exon
11 (~30 kb). PCR cloning using primers anchoring the respective exon 11 homologs and
downstream exons identified four exon 11-associated variants in humans and seven in
rats [144,145]. Like mMOR-1G, splicing from exon 11 to exon 2 generates two 6TM variants,
rMOR-1G1, and rMOR-1G2 or hMOR-1G1 and hMOR-1G2, in both rats and humans.
However, both rat and human exon 11 have an alternative 5′ splice site, which splits
exon 11 as exons 11a and 11b. Splicing from exon 11a to exon 2 produces rMOR-1G2 or
hMOR-1G2. The rat and human exon 11a predict 7 and 16 amino acids, respectively, which
are in frame with exon 2. Thus, both rMOR-1G2 and hMOR-1G2 encode a 6TM receptor
translated from the exon 11a AUG without the first TM. On the other hand, splicing from
exon 11b to exon 2 yields rMOR-1G1 and hMOR-1G1. Similar to mMOR-1K and mMOR-1L,
both rMOR-1G1 and hMOR-1G1 predict a 6TM receptor when the AUG in exon 2 is used,
and produce a short peptide sequence if exon 11a AUG is used. Splicing from exon 11
to exon 1 produces an additional five variants in rats and two variants in humans, all of
which encode a 7TM receptor when translated from exon 1 AUG. The functional relevance
of the 6TM variants has been implicated in mediating the actions of a new type of opioid
analgesics that are potent against a spectrum of pain models without many side-effects
associated with traditional opiates [12] (see below).

An additional human 6TM variant hMOR-1K was isolated based on the finding of
a mouse exon 13 homolog in the human OPRM1 gene [146]. Unlike mMOR-1K that is
associated with exon 11, hMOR-1K did not have exon 11 and its expression appeared to
be controlled by its own promoter located at upstream of the human exon 13. Another
human 6TM variant was identified as mu3 receptor with an exon composition of 2/3/new
exon [147]. Both hMOR-1K and mu3 variants predict a 6TM receptor when translated using
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the exon 2 AUG, a scenario similar to rMOR-1G1, hMOR-1G1, mMOR-1K, and mMOR-1L
(Figure 1).

4.4.3. Single TM Variants

All of the single TM variants contain exon 1 that encodes the entire N-terminus and
the first TM. Alternative splicing from exon 1 to downstream exons by exon skipping or
insertion causes a reading-frame shift to terminate translation early, predicting a truncated
receptor with a single TM. Currently, there are five single TM variants in mice, two in
rats, and four in humans (Figures 1–3). The first two single TM variants, hMOR-1S and
hMOR-1Z, were isolated from the human OPRM1 gene [11,85,148]. Splicing from exon 1 to
exon 4 by skipping exons 2 and 3 produces hMOR-1S, while hMOR-1Z has exons 1/3/4
by skipping exon 2. Both MOR-1S and MOR-1Z were subsequently identified in mice and
rats with the same splicing mechanisms [85]. An additional two human single TM variants
were isolated as SV1 and SV2 in which an exon A or B was inserted between exons 1 and 2,
respectively [149]. Early translation termination in exon A or B results in a truncated single
TM receptor.

The mouse Oprm1 gene has another three single TM variants, mMOR-1Q, mMOR-1R,
and mMOR-1T [85]. Both mMOR-1Q and mMOR-1R have exon 2 skipping, but contain
a different exon composition downstream of exon 3. In mMOR-1T, there is an exon
16 insertion between exons 1 and 2, predicting a single TM variant. Although the single
TM variants cannot bind any opioids, their roles were shown in modulating the expression
and function of the full-length 7-TM mu opioid receptor (MOR-1) (see below) [85].

5. Expression and Function of the OPRM1 Variants
5.1. Expression of the OPRM1 Variant mRNAs and Proteins
5.1.1. Region-Specific and Strain-Specific Expression of the OPRM1 Variant mRNAs

Northern blot analysis was initially employed to determine mRNA expression of
OPRM1 variants in the brain using individual exon probes or combined exon probes. Mul-
tiple bands with different sizes and intensities were observed [6,123,132,134–137,143,150],
suggesting OPRM1 alternative splicing. However, it is difficult to examine mRNA expres-
sion of individual splice variants using exon probes in Northern blot analyses because
some exons are shared among several splice variants. Semi-quantitative RT-PCR assays
were designed to investigate the expressions of the OPRM1 variant mRNAs in a number of
dissected brain regions, including the cortex, thalamus, striatum, hypothalamus, hippocam-
pus, brain stem, cerebellum, and spinal cord [132,133,143,144]. For example, high level of
mMOR-1C mRNA but low levels of mMOR1D and mMOR-1E mRNAs were expressed
in the mouse thalamus [132]. In human brain, hMOR-1G2 was highly expressed in the
prefrontal cortex, piriform cortex, nucleus accumbens, and pons, but not in the temporal
cortex and spinal cord [144].

Using real-time quantitative PCR (qPCR), a more accurate method measuring mRNA
levels, the expression profiles of thirty Oprm1 splice variant mRNAs in ten different brain
regions of four inbred mouse strains, C56BL/6J, 129P3/J, SJL/J, and SWR/J [151], and CD-1
mice [152] were examined. The results showed marked differences of the variant mRNA
expression among the brain regions or among the mouse strains, suggesting region-specific
or strain-specific alternative splicing of the OPRM1 gene. For example, 7TM C-terminal
variant mMOR-1A was expressed highly in the hypothalamus and thalamus but lowly
in the striatum and prefrontal cortex in SJL/J mice. In the same PAG region, mMOR-1G,
a 6TM variant, was expressed much higher in C57Bl/6J mouse strain than in the other
three mouse strains.

Among the three types of Oprm1 variants, the overall expressions of all 7TM variants
were dominant throughout the brain regions and mouse strains, while the overall expres-
sions of all 6TM and 1TM variants were lower than those of all 7TM variants (Table 3) [153].
However, all 6TM and 1TM variants were expressed at relatively high levels in certain
regions or mouse strains. For example, in the PAG region of C57BL/6J mice, the expression
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level of all 6TM variants was 20.4% of all 7TM variants, which was the highest among the
brain regions and among the mouse strains. The expression level of all 1TM variants in
the prefrontal cortex of SJL/J mice was higher than those in the other three mouse strains.
These results further demonstrated region-specific and strain-specific alternative splicing
of the Oprm1 gene.

Table 3. mRNA expression levels of all 7TM, 6TM, and 1TM splice variants in brain regions of four inbred mouse strains.

Strain
Brain

Region

All 7TM Variants (mE1-2) All 6TM Variants All 1TM Variants

Expression
(E-∆C(t))

% of all 7TM
Variants

Expression
(E-∆C(t))

% of All 7TM
Variants

Expression
(E-∆C(t))

% of All 7TM
Variants

129P3

Pfc 0.012789 100 0.000284 3.0 0.000406 4.2

Str 0.027871 100 0.001179 2.2 0.002181 4.0

Tha 0.026575 100 0.001264 2.4 0.001814 3.4

Hyp 0.036192 100 0.001170 2.6 0.002670 6.0

Hip 0.021809 100 0.000873 3.2 0.001654 6.1

PAG 0.020924 100 0.001090 2.4 0.001510 3.3

BS 0.016948 100 0.001291 4.1 0.001646 5.2

Cb 0.002093 100 0.000057 5.0 0.000175 15.5

Spc 0.009637 100 0.001971 11.9 0.001239 7.4

WB 0.008726 100 0.000647 13.5 0.001634 34.1

C57Bl/6J

Pfc 0.003384 100 0.000215 7.6 0.000206 7.3

Str 0.008820 100 0.000327 3.2 0.000603 5.9

Tha 0.029864 100 0.003211 8.0 0.002239 5.5

Hyp 0.011862 100 0.000978 4.6 0.001090 5.1

Hip 0.011638 100 0.000491 3.7 0.000720 5.4

PAG 0.029910 100 0.013060 20.9 0.003317 5.3

BS 0.012993 100 0.000670 3.9 0.001145 6.7

Cb 0.003403 100 0.000078 6.2 0.000187 14.8

Spc 0.009516 100 0.001087 7.5 0.001087 7.5

WB 0.008982 100 0.000477 9.0 0.000416 7.8

SJL/J

Pfc 0.006287 100 0.000141 4.9 0.000375 13.0

Str 0.011500 100 0.000568 6.7 0.000518 6.1

Tha 0.022085 100 0.000645 2.4 0.001472 5.4

Hyp 0.032938 100 0.002588 6.2 0.002166 5.2

Hip 0.016593 100 0.000701 5.6 0.001084 8.7

PAG 0.017955 100 0.000748 3.0 0.000869 3.5

BS 0.029092 100 0.001523 4.4 0.001917 5.5

Cb 0.003475 100 0.000244 17.7 0.000253 18.3

Spc 0.030211 100 0.002908 5.9 0.002011 4.1

WB 0.010318 100 0.000371 2.7 0.001296 9.3
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Table 3. Cont.

Strain
Brain

Region

All 7TM Variants (mE1-2) All 6TM Variants All 1TM Variants

Expression
(E-∆C(t))

% of all 7TM
Variants

Expression
(E-∆C(t))

% of All 7TM
Variants

Expression
(E-∆C(t))

% of All 7TM
Variants

SWR/J

Pfc 0.042361 100 0.000371 4.1 0.000681 7.5

Str 0.012889 100 0.000384 2.2 0.001083 6.3

Tha 0.010931 100 0.000280 1.5 0.000962 5.0

Hyp 0.030392 100 0.001608 2.2 0.003108 4.2

Hip 0.010829 100 0.000232 2.2 0.000661 6.3

PAG 0.026677 100 0.000858 1.5 0.001792 3.2

BS 0.020672 100 0.001450 4.0 0.001437 4.0

Cb 0.014594 100 0.000598 9.8 0.000583 9.6

Spc 0.031986 100 0.002458 2.8 0.003501 4.0

WB 0.018681 100 0.000599 2.4 0.001033 4.2

The expression level (E-∆C(t)) was calculated from Table S2 of Xu et al., 2014 [151]. The level of all 7TM variants was determined by
qPCRs using mE1-2 primers. The level of all 6TM variants was calculated by adding the E-∆C(t) values of individual five 6TM variants
together, including mMOR-1G, mMOR-1K, mMOR-1L, mMOR-1M, and mMOR-1N. The level of all 1TM variants was calculated by
adding the E-∆C(t) values of individual five 1TM variants together, including mMOR-1Q, mMOR-1R, mMOR-1S, mMOR-1T, and mMOR-1Z.
Percentage (%) of all 7TM variants was calculated by the formula: E-∆C(t) value of 6TM or 1TM variants/ E-∆C(t) value of mE1-2 × 100, so
all 7TM variants are always as 100%. Pfc, prefrontal cortex; Str, striatum; Tha, thalamus; Hyp, hypothalamus; Hip, hippocampus; PAG,
periaqueductal gray; BS, brain stem; Cb, cerebelum; Spc, spinal cord; WB, whole brain.

Altered expression of the OPRM1 splice variants were seen in multiple brain regions
in a morphine tolerance mouse model [152], the human brain of HIV-infected individ-
uals [153,154], and the medial prefrontal cortex of human heroin abusers and heroin
self-administering rats [155]. Sex difference in expression of the Oprm1 variant mRNAs
among the mouse brain regions was also observed [156].

5.1.2. Region-Specific and Cell-Specific Expression of the OPRM1 Variant Proteins

The distribution of OPRM1 variant proteins was investigated using several antisera
generated against individual exon coding sequences [157–160]. These studies revealed
dramatic differences in the regional distribution of the exon-containing OPRM1 variant
proteins. For example, the distribution of exons 7/8-like immunoreactivity (LI) detected
with an antisera against a peptide from mouse exons 7/8 clearly differed from that of
exon 4-LI using an antisera against a peptide from exon 4 in several regions, such as
the medial eminence, thalamic nuclei, and nucleus ambiguous [158]. The two antisera
also labeled different cell populations, as demonstrated in the laminae layer I–II of the
spinal cord [158]. An antisera raised against an exon 8 peptide labeled uniquely in the
dentate gurus, the mossy fibers of the hippocampal formation and the nucleus of the
solitary tract [157], while an antisera raised against exon 3/5a hybridized predominantly
in the olfactory bulb [161]. The localization of variant proteins was also examined at
the ultrastructural level [162]. For example, in the superficial laminae of the spinal cord,
the exon 7/8-LI was predominantly distributed in presynaptic cells and co-localized with
calcitonin gene-related peptide (CGPR), whose antibody labels unmyelinated primary
afferents, in contrast to the exon 4-LI, which displayed an equal distribution between
presynaptic and postsynaptic membranes and did not co-localize with CGPR [162].

It should be noted that several variant proteins encoded by the same exon(s) commonly
share identical epitope(s), thus it is challenging to distinguish each individual variant at
the protein level using exon-specific antisera by immunohistochemistry. For example,
antisera against a peptide from mouse exon 4 would detect at least five exon 4-containing
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variants in mice including mMOR-1, mMOR-1H, mMOR-1I, mMOR-1J, and mMOR-1G.
Similarly, exon 8-LI would correspond to mMOR-1D and mMOR-1N, whereas exon 7/8-LI
would represent two variants, mMOR-1C and mMOR-1M. These studies also revealed the
discrepancies between mRNA and protein levels for some of the variants. For example,
in the mouse brain, the protein level of mMOR-1 detected by the exon 4-specific antisera
was found to be comparable to that of mMOR-1C and mMOR-1M as determined by the
exon 7/8-specific antisera [158], while the expression level of mMOR-1 mRNA was much
higher than that of both mMOR-1C and mMOR-1M mRNA [132,143]. Although different
antisera may differ in sensitivity, these studies reiterated the poor correlation between
mRNA and protein levels in the brain and highlighted the importance of examining the
expression of variants at both the mRNA and proteins expression levels.

5.2. The Function of Full-Length 7TM C-Terminal Variants
5.2.1. Opioid Receptor Binding Affinity

To determine the binding profiles of full-length 7TM C-terminal variants, opioid
receptor binding assays using [3H] DAMGO, a full mu agonist, were performed with
membranes from CHO cell lines that stably express each individual full-length C-terminal
variant [132–137,142]. The results from saturation studies indicated that all the 7TM C-
terminal variants had high affinity toward [3H] DAMGO, which was anticipated since
they all share the same binding pocket. Competition studies showed mu selectivity with a
number of mu opioids such as morphine, M6G, and naloxone for all the 7TM C-terminal
variants. However, several endogenous opioid peptides revealed different binding affinities
among the 7TM C-terminal variants. For example, both β-endorphin and dynorphin A
were over four times more potent in mMOR-1D than in mMOR-1 [132]. These results
raise intriguing questions of how different C-terminal tails impact on the binding pocket,
specifically toward the endogenous opioid peptides.

5.2.2. Mu Agonist-Induced G Protein Coupling, Internalization, Phosphorylation,
and Post-Endocytic Sorting

The intracellular C-termini of GPCRs play an important role in the signaling transduc-
tion system, especially the G-protein activation. Mu agonist-induced G protein activation
in the OPRM1 7TM C-terminal variants were extensively studied using membranes from
CHO cells stably expressing the individual variant in [35S] GTPγS binding assay, a com-
monly used method to assess the overall agonist-induced receptor-G-protein coupling.
The results revealed marked differences in mu agonist-induced G-protein activation in both
potency, measured by the EC50 values, and efficacy, determined by the maximal stimulation,
among the 7TM C-terminal variants in mice, rats, and humans [135–137,163]. Several mu
agonists displayed varied efficacies among various 7TM C-terminal variants. For example,
morphine and M6G were more efficacious in hMOR-1A than hMOR-1B1, hMOR-1B3,
and hMOR-1B5, while β-endorphin was a full agonist for hMOR-1B5 and a partial agonist
for hMOR-1A [136]. There was lack of correlation between the binding affinity (Ki) and
potency (EC50). β-endorphin bound to both rMOR-1 and rMOR-1C1 with similar affinity.
However, β-endorphin was over 20 times more potent in rMOR-1 than in rMOR-1C1 in
[35S] GTPγS binding. Also, there was little correlation between potency (EC50) and efficacy.
Together, these results demonstrated that different intracellular C-terminal tails in the 7TM
full-length variants have significant influence on mu agonist-induced G protein activation.

Mu agonist-induced MOR-1 phosphorylation involves receptor desensitization and
internalization, contributing to the development of mu opioid tolerance and physical de-
pendence [164–167]. Several mu agonist-induced phosphorylation sites in the intracellular
C-terminus encoded by exon 3 in MOR-1, such as 354TSST357 and 375STANT379 motifs, were
identified [168–170]. Involvement of these phosphorylation sites in mu opioid actions such
as analgesia, tolerance, respiratory depression, and constipation was demonstrated using
several phosphorylation-deficient mouse models [171]. However, these phosphorylation
sites are shared by all the 7TM C-terminal variants. The potential phosphorylation sites for
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several kinases such as GRKs, protein kinase C, casein kinase, and tyrosine kinase predicted
from alternatively spliced C-terminal tails raise questions regarding their responses to mu
agonists (Table 2). Koch et al. showed that morphine-induced receptor phosphorylation in
mMOR-1D and mMOR-1E was robust, sharply contrasting with the nonresponsiveness in
mMOR-1 and mMOR-1C [172], suggesting additional morphine-induced phosphorylation
sites in the C-terminal tails encoded by the respective C-terminal tails or modulation of
overall receptor phosphorylation by the C-terminal tails. The differential phosphorylation
profiles among these variants were correlated with morphine-induced internalization and
resensitization [172]. Additionally, threonine 394 in the exon 4-encoded C-terminal tail
of rMOR-1 was phosphorylated in response to DAMGO [173]. Interestingly, a mutant
mouse with the single point mutation T394A showed loss of etorphine-induced MOR-1
internalization in the spinal dorsal horn neurons and diminished tolerance by morphine
and etorphine, as well as increased vulnerability to heroin self-administration [174]. Fur-
thermore, morphine induced robust internalization of exon 7-associated mMOR-1C, but not
exon 4-associated mMOR-1, in the mouse lateral septum [175].

After being internalized by mu agonists, mMOR-1 is either migrated to the lysosome
for degradation or recycled back to the plasma membrane. Exon 4-encoded C-terminal
sequences contain a motif termed the MOR1-derived recycling sequence (MRS) that al-
lows efficient post-endocytic sorting of mMOR-1 to the plasma membrane [176]. Absence
of the exon 4-encoded MRS in mMOR-1B, mMOR-1D, and mMOR-1E led to rapid lyso-
somal degradation due to inefficient receptor recycling following DAMGO-induced in-
ternalization, indicating the importance of the C-terminal sequences in determining the
post-endocytic sorting direction of GPCRs [177].

5.2.3. Mu Agonist-Induced Biased Signaling at 7TM C-Terminal Variants

Biased signaling of GPCRs is defined based on observations that different agonists
can produce divergent signaling transduction pathways through a single receptor. Bi-
ased signaling through G protein and β-arrestin 2 has been extensively studied in the
original MOR-1 [168,178–182]. Identification of multiple OPRM1 7TM C-terminal vari-
ants opened questions about their roles in mu agonist-induced biased signaling. The
effect of different 7TM full-length C-terminal variants on mu agonist-induced signaling
bias between G protein coupling and β-arrestin 2 recruitment was studied using [35S]
GTPγS binding and PathHunter β-arrestin 2 recruitment assay in the same CHO cells
stably expressing individual 7TM C-terminal variants [183]. The results showed marked
differences in mu agonist-induced G protein activation and β-arrestin 2 recruitment among
the 7TM variants. For example, exon 7-associated 7TM variants, particularly mMOR-1O,
displayed greater β-arrestin 2 bias for most mu agonists than exon 4-associated 7TM
variant mMOR-1, suggesting that exon 7-associated variants favor mu agonist-induced
β-arrestin 2 binding. This hypothesis was supported by the identification of a consensus
phosphorylation code, PxPxxE/D or PxxPxxE/D, in exon 7-encoded sequences for high
affinity arrestin binding proposed by homology modeling with the crystal structures of
several GPCRs (Table 2) [141]. When this predicted phosphorylation code was mutated
in mMOR-1O, DAMGO-induced β-arrestin 2 recruitment was greatly attenuated (our
unpublished data) [183]. These results also suggested a mechanism of the in vivo function
of exon 7-associated variants in several morphine actions observed in an exon 7 C-terminal
truncation mouse model (mE7M-B6), which showed similar phenotypes in a β-arrestin
2 knockout (KO) mouse (see below) [83]. The finding that a single mu agonist can produce
differential signaling through multiple 7TM C-terminal variants from in vitro cell line
studies offers new insights into our understanding of biased signaling in vivo where all
the 7TM C-terminal variants are co-expressed.
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5.2.4. In Vivo Function of 7TM C-Terminal Variants
Morphine-Induced Itch (Pruritus)

Opioid-induced itch (pruritus) is one of the most prevalent acute side effects of the
spinal or epidural use of opioids in patients [184–186], which has limited the clinical
use of opioids. However, the molecular mechanisms underlying opioid-induced itch re-
mained largely unknown. Liu et al. reported that an Oprm1 7TM C-terminal splice variant
mMOR-1D was the major player in spinal morphine-induced scratching in mice [187].
Downregulating the spinal mMOR-1D with siRNAs reduced morphine-induced scratching
without affecting morphine analgesia. They further demonstrated that morphine-induced
scratching was mediated through heterodimerization of mMOR-1D and gastrin-releasing
peptide receptor (GRPR) in the spinal cord. Disrupting mMOR-1D/GRPR heterodimeriza-
tion attenuated morphine-induced scratching, but not morphine-induced analgesia [187].
The same group further found that similar to mMOR-1D, one human 7TM C-terminal
variant hMOR-1Y can physically associate with GRPR to function as an itch receptor [188].
These studies further established the pharmacological relevance of OPRM1 7TM C-terminal
variants and also provided a potential therapeutic strategy to specifically alleviate itch
without attenuation of opioid analgesia.

Morphine Tolerance, Dependence, and Reward

To explore the in vivo functions of alternatively spliced C-terminal tails, three C-
terminal truncation mouse models were established in two inbred mouse strains, C57BL/6J
(B6) and 129/SvEv (129), using a stop codon targeting strategy that truncates a designated
exon at the translational level with limited effects on overall Oprm1 transcription and
alternative splicing (Figure 4) [83]. In the first model (mE3M), the C-terminal tails of all
the variants are truncated at the end of E3 by a stop codon introduced at the end of E3.
In the second (mE4M) and third models (mE7M), the E4- or E7-encoded C-terminal tails
are truncated by inserting a stop codon at the beginning of E4 or E7, respectively [83].
Studies using these mice show divergent roles of the C-termini in various morphine-
induced behaviors. For example, the E7-encoded C-terminal truncation in mE7M-B6 mice
decreases morphine tolerance and reward without altering physical dependence, whereas
the E4-encoded C-terminal truncation in mE4M-B6 mice accelerates morphine tolerance
and reduces morphine dependence without affecting morphine reward (Figure 4) [83].
Moreover, in mE7M-B6 mutant mice, morphine-induced receptor desensitization in the
hypothalamus and brain stem was lost, suggesting an E7-mediated mechanism underlying
morphine tolerance [83].

The similarities found in several morphine-related behaviors and receptor desen-
sitization between mE7M-B6 mutant and β-arrestin 2 KO mice suggest a physical and
functional association of E7-encoded C-terminal tails with β-arrestin 2 [83,189–192]. This
supposition was supported by our in vitro cell studies showing greater β-arrestin 2 bias
for several mu opioids in the E7-associated variant mMOR-1O than in the E4-associated
variant mMOR-1 [83,183]. However, several mu opioid–induced actions, including mor-
phine analgesia, locomotion, and reward [193,194], and fentanyl and methadone tolerance
(unpublished observation), observed in mE7M-B6 mice were unlike those detected in
β-arrestin 2 KO mice, suggesting a β-arrestin 2-independent mechanism. Together, these re-
sults further highlight the functional relevance of the 7TM C-terminal variants, particularly
exon 7-associated 7TM variants, in mu opioid pharmacology.
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Figure 4. Oprm1 C-terminal truncation mouse models adapted from Xu et al., 2017 [83]. (A).
Schematic of the strategy generating C-terminal truncation mouse models. Three targeted mouse
models, mE3M, mE4M, and mE7M, were generated by inserting a stop codon at an appropriate site
within indicated exons shown by colored boxes. Inserted and original stop codons are indicated
by yellow and pink bars, respectively. In mE3M, a stop codon was inserted at the end of exon 3 to
eliminate every C-terminal tails of all 7TM and 6TM variants, as well as 1TM mMOR-1S. In mE4M
and mE7M, a stop codon was created at the beginning of exon 4 or exon 7 to eliminate individual
C-terminal tails encoded by exon 4 or exon 7 of indicated variants, respectively. (B). Morphine
tolerance in the mutant mice on C57BL/6J (B6) background was induced by twice daily injections
with morphine (10 mg/kg, s.c.) for 5 days. Morphine analgesia was determined 30 min after s.c.
injection using a radiant-heat tail-flick assay. Results are shown as the percentage of maximum
possible effect (% MPE). WT, wildtype mice; Mut, homozygous mice. ***: compared to WT, p < 0.001,
2-way ANOVA with Bonferroni’s post hoc test. (C). Morphine physical dependence was assessed
on day 5 of chronic morphine treatment with naloxone (s.c.,1.0 mg/kg) injection 3 h after the last
morphine treatment to precipitate withdrawal. The number of jumps within 15 min was used for
the measurement of withdrawal. *: p < 0.05; #: p < 0.0001, compared with WT, 1-way ANOVA
with Bonferroni’s post hoc test. (D). Morphine reward was assessed using a 6-day conditioned place
preference protocol. **: p < 0.01, compared with WT, 1-way ANOVA with Bonferroni’s post hoc test.
Figure (A–D) were adapted from Figure S2, Figures 1 and 2 of Xu et al. 2017 [83], respectively.
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5.3. The Function of Truncated 6TM Variants
5.3.1. Involvement of 6TM Variants in Heroin and M6G Analgesia

Although the truncated 6TM variants did not bind any available radiolabeled opioids
when expressed in cell lines, their functional relevance was mainly revealed using gene
targeting mouse models (Table 4). The pharmacological function of 6TM variants was
first shown to involve the analgesic actions of heroin and M6G, but not morphine and
methadone, by using two Oprm1 KO mouse models. In an exon 1 knockout (E1 KO)
mouse, morphine and methadone analgesia was completely lost [111]. However, heroin
and M6G analgesia still was active despite a slightly reduced potency. Since knocking out
E1 abolished all 7TM C-terminal variants and did not disrupt 6TM variants, these results
suggested that 6TM variants involve heroin and M6G analgesia, while 7TM variants were
responsible for morphine and methadone analgesia. This suggestion was further supported
by the opposite phenotypes seen in E11 KO mice in which heroin and M6G analgesia
were greatly decreased, while morphine and methadone analgesia were normal [112].
Furthermore, the analgesic actions of all mu opioids including morphine, M6G, and
heroin were lost in a exon 2 deficient mouse in which both 7TM and 6TM variants were
disrupted [111], consistent with the results from E1 KO and E11 KO.

Table 4. Oprm1 KO mouse models.

KO Mouse Model
Variant

7TM 6TM 1TM

E1 KO Lost Retained Lost
E11 KO Retained Lost Retained

E1/E11 KO Lost Lost Lost
Triple KO

(E1+DOR-1+KOR-1) Lost Retained Lost

5.3.2. Essential Role of 6TM Variants in a Novel Type of Opioid Analgesic Drugs

The truncated 6TM variants were further discovered to mediate the actions of a novel
opioid analgesic drug, 3′-iodobenzoylnaltrexamide (IBNtxA), which was derived from
naltrexone [195,196]. Although the N-cyclopropyl group on the morphinan template leads
to an antagonist pharmacophore, an example being naltrexone, incorporating an aryl amido
group at the 6-position of the morphinan template leads to agonism at 6TM sites in the case
of IBNtxA [195]. Similarly, such an incorporation in MP1104 confers its characterization
as a kappa agonist at KOR-1 site [197], while MP1207 and MP1208 with the incorporation
become mixed mu/kappa agonists [182]. Therefore, the 6-position arylamido group on
the morphinan template puts the receptor in an agonist conformation. IBNtxA analgesia
was lost in E11 KO mice, suggesting the role of exon 11-associated 6TM variants in IBNtxA
analgesia. On the other hand, IBNtxA analgesia was fully active in a triple KO mouse in
which only Oprm1 6TM variants remained, while all other opioid receptors including MOR
7TM variants, kappa opioid receptor (KOR-1), and delta opioid receptor (DOR-1) were
knocked out, indicating that IBNtxA analgesia was independent of 7TM MOR variants,
DOR-1, and KOR-1 [195]. Furthermore, intrathecal administration of lentivirus express-
ing individual 6TM variants, including mMOR-1G, mMOR-1M, mMOR-1N, mMOR-1K,
and mMOR-1L, restored IBNtxA analgesia in a complete Oprm1 E1/E11 KO mouse in
which all 7TM, 6TM, and single TM variants were disrupted [84,198]. Together, these
results demonstrate that 6TM variants are essential for IBNtxA analgesia. Additionally,
the opioid receptor binding studies with [125I]BNtxA revealed a unique binding site in the
triple KO mouse that was lost in both E11-KO and E2 KO mice [195,196,199,200]. Intrigu-
ingly, kappa-like drugs, such as ketocyclazocine and kappa3-like drug NalBzoH, competed
for this site with high affinity, while many traditional mu, delta, and kappa opioids had
very poor affinity for the site.

IBNtxA represents a novel class of opioid analgesics that are potent against multiple
types of pain including thermal, inflammatory, and neuropathic pain, but do not produce
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many sides effects of traditional opioids, such as respiratory depression, physical depen-
dence, and reward [195,201]. Therefore, the 6TM variants represent promising therapeutic
targets for development of the novel analgesics with more favorable side-effect profiles.

5.3.3. Function of 6TM Variants in Delta/Kappa Opioids and Non-Opioids

Using E11 KO and E1/E11 KO mice in combination with lentivirus rescue and anti-
sense studies, Marrone et al. revealed the involvement of truncated 6TM variants in the
analgesic actions of delta and kappa opioids, as well as α2-adrenergic drug [202]. The anal-
gesia of DPDPE, a delta agonist, U50,488H, a kappa agonist and clonidine, a α2-adrenergic
agonist, was lost in the E11 KO mice, consistent with the results from the antisense studies
using an antisense oligo targeting E11 [202]. Re-expression of mMOR-1G, a 6TM vari-
ant, through lentivirus in E11 KO mice rescued the analgesia of DPDPE, U50,488H and
clonidine [202], further confirming that the analgesia of delta, kappa and α2-adrenergic
agonists is dependent on the 6TM variants. However, 6TM variants did not involve delta
agonist-induced seizure, kappa agonist-induced aversion, and α2 agonist-induced hy-
polocomotion since these activities were still active in E11 KO mice [202]. Additionally,
DPDPE analgesia was also dependent on Oprm1 7TM variants based on the observation
that lentivirus-expressing mMOR-1G can only restore DPDPE analgeia in E11 KO mice,
but not in the E1/E11 KO mice that lacked both 7TM and 6TM variants [202]. The 6TM
variants demonstrated the ability to heterodimerize with β2-adrenergic receptors, pro-
viding a molecular mechanism of the analgesic synergy between the 6TM variants and
β2-adrenergic drugs [203]. These studies expended the known functions of the 6TM
variants beyond mu opioid receptors.

5.3.4. A Chaperon-Like Function of 6TM Variants in Enhancing Expression of the 7TM
MOR-1 at Protein Level

The function of the 6TM variants was also demonstrated in enhancing expression
of the 7TM MOR-1 at the protein level through a chaperon-like function [204], a similar
scenario seen in the single TM variants [85] (see below). When co-expressed with mMOR-1
in a Tet-Off inducible CHO cell line, mMOR-1G dose-dependently promoted the expression
of the protein but not the mRNA of mMOR-1, as determined by opioid receptor binding
and [35S]GTPγS binding. Using co-immunopreciptation and subcellular fractionation
analysis, the study showed that the increased mMOR-1 receptor protein was mainly found
in the plasma membrane, which was mediated through heterodimerization of mMOR-1G
with mMOR-1 in the endoplasmic reticulum, suggesting a chaperone-like function [204].

5.3.5. Role of 6TM Variants in Morphine Hyperalgesia

Several studies indicated that the 6TM variants were involved in morphine hyperalge-
sia. In the E11-KO mouse without any 6TM variants, morphine analgesia was fully retained,
but morphine-induced hyperalgesia was diminished [112,205]. However, the triple KO
mouse, which retained only the truncated 6TM variants and disrupted KOR1, DOR-1,
and all the E1-associated 7TM MOR variants, lost morphine analgesia but retained mor-
phine hyperalgesia [206]. Downregulating the 6TM variant mMOR-1K with intrathecal
administration of a siRNA in CXB7/ByJ mice diminished morphine-induced hyperal-
gesia [207], suggesting involvement of mMOR-1K in morphine hyperalgesia. Together,
these findings suggest that morphine analgesia is independent of truncated 6TM variants,
whereas morphine hyperalgesia is dependent on truncated 6TM variants. In addition, trun-
cation of 6TM variants in E11-KO mice led to reduction of morphine-induced hyperloco-
motion and tolerance with no effect on morphine reward and respiratory depression [205].

5.4. The Function of Single TM Variants

It is intriguing that all the single TM variants contain the first TM encoded by exon 1,
which could complement the 6TM variants that lack the exon 1. Although our unpublished
data showed that the single TM variants can physically associate with the 6TM variants
when co-transfected into CHO cells, the functional relevance of this physical association
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remains unknown. Similar to the 6TM variants, the functions of the single TM variants were
indicated to increase expression of 7TM MOR-1 at the protein level through a chaperone-
like mechanism [85]. Using a Tet-Off CHO system, Xu et al. showed that the single TM
variants can dimerize with the 7TM MOR-1 in the endoplasmic reticulum to facilitate the
proper folding of MOR-1 and reduce MOR-1 degradation through endoplamic reticulum-
associated degradation (ERAD), leading to increased expression of MOR-1 protein. In vivo
antisense studies further suggested the role of the single TM variants in morphine analgesia
through modulation of 7TM MOR-1 expression [85].

Interestingly, the first TM domain of MOR-1 was also implicated in heterodimerization
with DOR-1 to disrupt MOR-1/DOR-1 dimer using an engineered protein, MORTM1-TAT
(transactivator of transcription), resulting in enhanced morphine analgesia and reduced
morphine tolerance [208]. This study raises questions on whether endogenously expressed
single TM variants containing the first TM have a similar function.

6. Molecular Mechanisms Underlying OPRM1 Alternative Splicing

Identification of multiple OPRM1 splice variants raises questions regarding the molec-
ular mechanisms underlying OPRM1 alternative splicing. For example, what are cis-acting
elements and trans-acting factors that control the OPRM1 alternative splicing? Xu et al.
initially identified an intronic single nucleotide polymorphism (SNP)(rs9479757) located
near the 3′ of OPRM1 exon 2 that associated with heroin addiction severity in a cohort of
Chinese male heroin addicts [209]. Further characterizing this SNP using electrophoretic
mobility shift assay (EMSA), minigene constructs, and RNA affinity purification coupled
with proteomics led to the identification of a SNP-containing cis-acting element as an
intronic splicing enhancer (ISE) that can interact with a splicing factor hnRNPH to regulate
the exon 2 exclusion (skipping) or inclusion, and modulate expression of the full-length
7TM MOR-1 and 1TM variants hMOR-1S and hMOR-1Z [209]. The G allele of rs9479757
enhanced the binding of hnRNPH to this ISE, facilitating exon 2 inclusion to increase
the expression of the 7TM hMOR-1 and reduce the expression of the 1TM hMOR-1S and
hMOR-1Z, while the A allele had opposite effects. These results not only revealed the
molecular mechanisms underlying OPRM1 exon 2 exclusion/inclusion, but also demon-
strated the function of rs9479757 in regulating OPRM1 alternative splicing and contributing
to heroin addiction severity. OPRM1 alternative splicing is complex. Further deciphering
the molecular mechanisms of OPRM1 alternative splicing will advance our understanding
of OPRM1 gene regulation and function.

7. Conclusions

The early concept of multiple mu opioid receptors suggested by the pharmacolog-
ical studies over 40 years ago has now been revolutionized by identifying an array of
OPRM1 alternatively spliced variants. These splice variants are generated through vari-
ous splicing mechanisms such as alternative 3′ or 5′ splicing, intron retention, alternative
promoters, or combinations of two or three mechanisms in a region-specific, cell-specific,
or strain-specific fashion and conserved from rodents to humans. Based on the predicted
transmembrane domains, these splice variants can be categorized mainly into three types:
(1) full-length 7TM C-terminal variants, (2) truncated 6TM variants; and (3) truncated single
TM variants. The functional relevance of these variants demonstrated by both in vitro cell
lines and in vivo gene targeting animal models provides new insights into our understand-
ing of complex mu opioid actions. More importantly, these OPRM1 splice variants are
potential therapeutic targets for developing novel analgesic drugs with more favorable
side-effect profiles. Many GPCRs have predicted splice variants like those of the OPRM1
gene. However, the functions of these variants remain largely unknown. Revealing the
distinct functions of various OPRM1 splice variants opens questions of whether alternative
splicing may extend the pharmacological repertoire of GPCRs in general.
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