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SUMMARY

The mechanisms by which early spatiotemporal
expression patterns of transcription factors such as
Pax6 regulate cortical progenitors in a region-spe-
cific manner are poorly understood. Pax6 is ex-
pressed in a gradient across the developing cortex
and is essential for normal corticogenesis. We found
that constitutive or conditional loss of Pax6 in-
creases cortical progenitor proliferation by amounts
that vary regionally with normal Pax6 levels. We
compared the gene expression profiles of equivalent
Pax6-expressing progenitors isolated from Pax6+/+

and Pax6�/� cortices and identified many negatively
regulated cell-cycle genes, including Cyclins and
Cdks. Biochemical assays indicated that Pax6
directly represses Cdk6 expression. Cyclin/Cdk
repression inhibits retinoblastoma protein (pRb)
phosphorylation, thereby limiting the transcription
of genes that directly promote the mechanics of
the cell cycle, and we found that Pax6 inhibits pRb
phosphorylation and represses genes involved in
DNA replication. Our results indicate that Pax6’s
modulation of cortical progenitor cell cycles is
regional and direct.

INTRODUCTION

Understanding how transcription factors that regulate specific

spatiotemporal patterns of gene expression control cellular

development remains a major challenge. Although many tran-

scription factors essential for tissue specification have been

discovered and cellular processes that they influence have

been identified, how they operate is largely unknown. Current

evidence indicates that these transcription factors control large

gene regulatory networks comprisingmany, possibly thousands,

of target genes, some of which encode other transcription fac-
tors (Biggin, 2011). The number of interactions separating a tran-

scription factor from its cellular effects is, therefore, potentially

extremely large, and the cellular processes that it regulates

may be a long way downstream of its primary molecular actions.

It is important to establish how directly any given transcription

factor might influence the cellular processes that it regulates,

to provide a framework for building a more detailed understand-

ing of its mechanisms of action.

Pax6 is one of the best-studied high-level transcription factors

regulating development and implicated in disease. In verte-

brates, most Pax6 expression is restricted to specific popula-

tions of central nervous system (CNS) progenitor cells, including

those of the mammalian cerebral cortex (Manuel and Price,

2005; Georgala et al., 2011b). In humans, mutations of PAX6

result in eye defects and neurological abnormalities linked to

structural alterations of the brain (Sisodiya et al., 2001). PAX6

has also been implicated as a tumor suppressor in human gli-

omas (Appolloni et al., 2012). Mice with Pax6 loss-of-function

mutations show eye and CNS defects (Hill et al., 1991; Stoykova

et al., 1996; Manuel and Price, 2005; Georgala et al., 2011b).

Several studies have implicated Pax6 in the regulation of neural

progenitor proliferation, but the nature and significance of this

regulation are poorly understood and its mechanism is unknown

(Estivill-Torrus et al., 2002, Manuel et al., 2007, Georgala et al.,

2011a; Asami et al., 2011). Through a region-specific action on

cell proliferation, Pax6 may influence many aspects of brain

development, including major features such as regional differ-

ences in the size and shape of brain structures.

Our first aim was to examine the nature and significance of

Pax6’s regulation of cortical progenitor proliferation by exam-

ining mouse models with either complete or conditional loss of

Pax6 function. Previous studies have suggested that gradients

of Pax6 expression present across the cortex at early stages of

corticogenesis are important for its regionalization in terms of

later differentiation (Bishop et al., 2000), but whether these gra-

dients cause regional effects on early proliferation is unclear.

Moreover, the effects on proliferation of changes in these

Pax6-expression gradients with age have not been explored.

Our second aim was to explore the mechanisms by which

Pax6 might regulate cortical progenitor proliferation. To do
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Figure 1. Absence of Pax6 Causes Cell-Cycle Acceleration in Cortical Areas that Normally Express Most Pax6 at E12.5

(A–C) Pax6 protein (red) is normally expressed in a highrostrolateral to lowcaudomedial gradient at E12.5. For analysis of cell-cycle times in Pax6�/� mutants,

measurements were made in three zones (G, central-lateral; H, central-medial; I, caudal), expressing high (H), medium (M), or low (L) levels of Pax6, respectively.

Scale bars represent 100 mm (A and B).

(D) Cell-cycle times at E12.5 were calculated as in Martynoga et al. (2005) from counts of labeled cells obtained by injecting pregnant dams with IdU followed

1.5 hr later by BrdU.

(legend continued on next page)
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this, we used a more focused approach than that employed in

previous screens aimed at identifying Pax6-regulated genes

(Holm et al., 2007; Sansom et al., 2009). To screen for genes

whose expression levels in Pax6-expressing cortical progenitors

depend on whether these cells express Pax6 protein or not, we

isolated Pax6-expressing progenitors using a line of reporter

mice carrying a YAC transgene (DTy54) that expresses GFP

under the control of PAX6’s regulatory elements (Tyas et al.,

2006) irrespective of the status of the endogenous Pax6 locus.

In these mice, GFP is expressed by Pax6-expressing cortical

progenitors but not by the postmitotic neurons they give rise to

(Tyas et al., 2006), allowing us to compare profiles of gene

expression in equivalent populations.

The discoveries we made led us to examine Pax6’s regulation

of the expression of the cyclin-dependent kinase Cdk6. In

mammals, the Cdks and their partners the cyclins are the primary

regulators of transition through the cell cycle (Malumbres and

Barbacid, 2005). D-type cyclins facilitate the progression of pro-

genitors, including cortical progenitors, through G1, a critical

stage that allows responses to signals inducing either commit-

ment to further stages of the cell cycle or withdrawal from the

cell cycle (Zetterberg et al., 1995; Glickstein et al., 2009; Dehay

and Kennedy, 2007; Lange et al., 2009; Pilaz et al., 2009). Once

they are associated with cyclins, activated Cdks phosphorylate

downstream targets needed for progression through the cell

cycle, including retinoblastoma protein (pRb), resulting in the

disassociation of pRb/E2F complexes and promotion of the G1

to S phase transition (Ferguson and Slack, 2001; Harbour et al.,

1999; Di Stefano et al., 2003; Lee et al., 2000; Polager and Gins-

berg, 2008; Goto et al., 2006; Malumbres and Barbacid, 2005).

We foundevidence that thispathway isdirectly regulatedbyPax6.

RESULTS

Pax6 Slows Progenitor Cell-Cycle Times in Regions of
Embryonic Day 12.5 Cortex where its Expression Is
Highest
At the onset of corticogenesis, around embryonic day 12.5

(E12.5), Pax6 is expressed in a gradient across the embryonic

cortex with high levels rostrolaterally and low levels caudome-

dially (Figures 1A–1C; Bishop et al., 2000; Manuel et al., 2007).

We used iododeoxyuridine (IdU) and bromodeoxyuridine

(BrdU) double labeling as summarized in Figure 1D to calculate

the cell-cycle and S phase times (Tc and Ts, respectively; Marty-

noga et al., 2005; Figures 1E and 1F) in regions of E12.5 Pax6+/+

and Pax6�/� cortex expressing high, medium, or low levels of

Pax6 (Figures 1C and 1G–1I). In Pax6+/+ embryos, the mean Tc

was longest in areas expressing high or medium levels of Pax6
(E and F) Examples of cells from Pax6+/+ and Pax6�/� embryos labeled with IdU a

are more labeled cells in total and more single-IdU-labeled cells in mutants.

(G–I) Means (±SEM) for lengths of S phase (Ts) and the overall cell cycle (Tc) in e

embryos per genotype, *p < 0.03, Student’s t test. n = 3 (H and I), *p < 0.05.

(J and K) Loss of Pax6 protein from E12.5 cortex (white arrows) induced by tam

retention of Pax6 in the ventral pallium (black arrows), where Emx1 is not expres

(L–O) Mean Ts and Tc (±SEM; calculated as in D–F) in iKOs (as in J and K) in four

genotype, *p < 0.0001, Sidak’s multiple-comparisons test).

See also Figure S1.
(Figures 1G–1I). In Pax6�/� embryos, the mean Tc was signifi-

cantly shorter by �25% in these two areas. Neither the mean

Tc in the area of lowest Pax6 expression nor the mean Ts in

any area was affected in Pax6�/� embryos.

We also tested the effect of an acute (conditional) loss of Pax6,

since the rapid onset of a defect would strengthen the possibility

that Pax6 influences the cell cycle directly. We analyzed mice

carrying a tamoxifen-induced, cortex-specific deletion of Pax6.

Their genotypes were as follows: (1) Pax6loxP/loxP; Emx1-

CreERT2; R26R-YFP (inducible knockout [iKO] embryos); and

(2) Pax6loxP/+; Emx1-CreERT2; R26R-YFP embryos (controls;

deletion of only one copy of Pax6 has no detectable effect on

cortical progenitor proliferation; Figure S1 available online).

Tamoxifen administered at E9.5 resulted in loss of Pax6 from

the cortex (sparing the ventral pallium, which does not express

Emx1) by E12.5 (Figures 1J and 1K). The results obtained from

iKOs were similar to those from Pax6�/� embryos, with signifi-

cant effects of both genotype and cortical region on mean Tc

(two-way ANOVA). In rostral and central-lateral areas (i.e.,

[Pax6]high in controls), the mean Tc was longer than in central-

medial and caudal areas in controls (p < 0.0001, Sidak’s

multiple-comparisons test) and was significantly reduced in

iKOs (Figures 1L–1O). These results show an association

between the spatial distribution of Pax6 across the cortex and

both progenitor Tc in wild-types (WTs) and the effect of Pax6

absence on Tc in mutants at E12.5.

Deletion of Pax6 Has More Widespread Effects on
Proliferation at Later Embryonic Ages, when Its
Expression Is More Uniform
The expression of Pax6 across the cortex becomes increasingly

uniform with embryonic age, with similar levels being attained in

all areas by E15.5 (Figures 2A–2C), suggesting that the regional

effects of Pax6 loss on progenitor proliferation might be different

at these ages. In a first set of experiments, iKOs were generated

by tamoxifen administration at either E10.5 or E13.5 (Figures 2D–

2Q). Activation of YFP from the R26R-YFP allele occurred within

48 hr (Figure S2A). Quantitative RT-PCR (qRT-PCR) on cortical

messenger RNA (mRNA) showed that Pax6 levels in iKOs had

fallen to 36.5% (±7.9 SEM; n = 3 independent experiments) of

control values within 48 hr of E10.5 tamoxifen administration,

and to 9.8% (±7.0; n = 3) and 1.6% (±0.6; n = 3) by 72 hr and

96 hr, respectively. Immunohistochemistry showed no obvious

loss of Pax6 protein from the cortex 48 hr after tamoxifen admin-

istration (Figures S2B and S2F), presumably due to residual

protein perdurance. Within 72 hr of tamoxifen administration,

however, Pax6 protein was removed from most cells in Emx1’s

cortical expression domain (Figures S2C, S2G, S2E, and S2I).
lone (green; white arrows) or with both BrdU (red) and IdU. In area G in (C) there

ach of the three areas marked in (C) in Pax6+/+ and Pax6�/� embryos. (G) n = 4

oxifen given at E9.5 to Pax6loxP/loxP; Emx1-CreERT2 (iKO) embryos. Note the

sed (scale bar, 100 mm).

regions of the cortex with progressively lower Pax6 levels (n = 3 embryos per
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We compared the numbers of YFP-positive cells in S phase in

rostral, central, and caudal areas of the cortex (high, medium,

and low Pax6-expressing, respectively; Figures 2D–2E00, 2J,

2K, 2N, and 2O) in iKO and control embryos. Most cortical cells

were YFP labeled in these embryos (Figures 2D’ and 2E’), and

the proportions that were not ranged from 5% to 15% in both

iKO and control cortices. Cells in S phase were identified by a

1 hr pulse of BrdU. The average numbers of YFP-positive cells

that were in S phase at different times after tamoxifen adminis-

tration at E10.5 (iKOE10.5tamox) or E13.5 (iKOE13.5tamox) are shown

in Figures 2J, 2K, 2N, and 2O. In E13.5 iKOE10.5tamox embryos,

i.e., shortly after loss of almost all Pax6 protein, increases in

the numbers of cells in S phase occurred specifically in the

rostral cortex (Figure 2J), indicating rapid onset of overprolifera-

tion confined to this region. Two days later, however, in E15.5

iKOE10.5tamox embryos, significant increases in the number of

cells in S phase were found in all parts of the cortex (Figure 2K).

Similarly, between E15.5 and E16.5 in iKOE13.5tamox embryos,

significant increases in the number of cells in S phase occurred

in all cortical areas (Figures 2N and 2O).

In a second set of experiments, we estimated (as in Figures

1D–1F) values for mean Tc and Ts in iKOE9.5tamox embryos at

E14.5 (Figures 2R–2U; Figures S2D and S2H). The mean Tc

varied significantly with genotype and cortical area (two-way

ANOVA). It was reduced significantly in all cortical areas in

iKOs (Figures 2R–2U). In controls, themean Tc was slightly lower

in the caudal cortex than in the rostral and central-lateral cortex

(p < 0.0003 and < 0.015, respectively; Sidak’s multiple-compar-

isons test). The mean Ts did not show differences with genotype

or cortical area. These results indicate that loss of Pax6 causes

shortening of the cell cycle across all cortical areas by E14.5.

Given that Tcs are shortened after loss of Pax6, either in spe-

cific cortical regions or across the entire cortex, depending on

age, we predicted that these changes should correlate with an

increased incidence of cells in M phase (identified by their

expression of phosphorylated histone 3 [PH3]). This proved to

be true (Figures 2F–2I, 2L, 2M, 2P, and 2Q; Figure S3). Interest-

ingly, the positions of these additional M phase cells were

abnormal. The increases were invariably nonapical, i.e., they

occurred through the depth of the ventricular zone rather than

at the ventricular surface, where most mitoses normally occur

(Figures 2F–2I; Figure S3). This phenomenon was previously

described in Pax6�/� embryos (Estivill-Torrus et al., 2002; Quinn

et al., 2007; Asami et al., 2011). It may be due to a breakdown in
Figure 2. Loss of Pax6 Causes Increasingly Widespread Rapid-Onset

(A–C) Expression of Pax6 protein in parasagittal sections from E13.5–E15.5 WT

(D–E00) BrdU and YFP immunohistochemistry on brain sections from E15.5 iKO

BrdU-labeled cells were present in iKO cortex. (D0 and E0) Almost all cortical ce

counted in radially arranged 100-mm-wide boxes, as illustrated.

(F–I) PH3 immunohistochemistry on sections from E15.5 and E16.5 iKO and c

numbers of PH3-positive cells were observed in iKOs. PH3-positive cells were c

(J–Q) Average numbers (±SEM) of BrdU-YFP double-labeled cells or nonapical PH

caudal cortical areas in E13.5, E15.5, or E16.5 iKO or control embryos injected w

rostrally, *p < 0.001 centrally, *p < 0.02 caudally. (L) *p < 0.04. (M) *p < 0.001 rostr

centrally, *p < 0.006 caudally. (Q) *p < 0.003 rostrally, *p < 0.03 centrally. In all c

(R–U) Measurements of mean Ts and Tc (±SEM) in four cortical areas in control an

genotype; *p < 0.0001, Sidak’s multiple-comparisons test).

See also Figures S2 and S3.
coordination between interkinetic migration and mitosis as a

result of cell-cycle shortening rather than representing an

expanded mutant equivalent of the intermediate progenitor pop-

ulation, since the numbers of cells expressing the classical

marker of intermediate progenitors, Tbr2, are greatly reduced

in Pax6�/� cortices (Quinn et al., 2007). We found that in E13.5

iKOE10.5tamox embryos, the numbers ofMphase cells were signif-

icantly increased only in the rostral cortex (Figure 2L), but 2 days

later, in E15.5 iKOE10.5tamox embryos, they were significantly

increased in all parts of the cortex (Figure 2M). In iKOE13.5tamox

embryos, significant increases in the numbers of M phase cells

occurred between E15.5 and E16.5 in both the central and rostral

cortex, but not in the caudal cortex (Figures 2P and 2Q).

The results of these experiments indicate that during cortico-

genesis, Pax6 exerts a repressive action on the proliferation of

progenitors, and the dynamics of the Pax6 expression gradient

and rates of progenitor proliferation are correlated. At E12.5,

when the Pax6 gradient is steepest, areas of highest expression

correlate with regions where Tc is longest. Loss of Pax6 causes

shortening of Tc only in these areas. In normal embryos at older

ages, the Pax6 gradient becomes progressively more uniform

across the cortex, as does Tc, and loss of Pax6 causes short-

ening of Tc in all areas.

Pax6 Regulates the Expression of Cell-Cycle Genes in
Cortical Progenitors
To investigate the molecular mechanisms by which Pax6 regu-

lates cortical progenitor cell proliferation, we first identified

cell-cycle genes with altered expression levels in progenitor cells

in Pax6�/� mutants. To do this, we generated litters of mice con-

taining Pax6�/� and Pax6+/+ E12.5 embryos that also carried the

DTy54 transgene. This GFP reporter can be used to distinguish

cells in which the endogenous Pax6 locus is transcriptionally

active irrespective of whether it contains a WT or mutant allele

(Tyas et al., 2006), allowing comparison of gene expression in

equivalent Pax6-expressing progenitors from Pax6+/+ versus

Pax6�/� cortices. The expression of GFP (Figures S4A–S4D)

provided a guide for the dissection of regions of cortex with

the highest Pax6 gene expression.

Cells from these regions were dissociated and Pax6-express-

ing cells were obtained by fluorescence-activated cell sorting

(FACS; Figures S4E–S4H). The gate was set to include only those

cells with GFP fluorescence greater than that of all cells in

samples from non-DTy54-carrying controls, so as to enrich for
Proliferative Defects after E13.5

embryos (all oriented the same way; scale bars, 100 mm).

and control embryos after tamoxifen administration on E10.5. (D and E) More

lls were YFP positive. (D00 and E00) Merged images: BrdU-positive cells were

ontrol embryos after tamoxifen administration on E10.5 or E13.5. Increased

ounted in 200-mm-wide boxes, as illustrated. Scale bars = 100 mm.

3-labeled cells in counting boxes (see D’’, E’’, and F–I) from rostral, central, and

ith tamoxifen on E10.5 or E13.5. (J) *p < 0.003, Student’s t test. (K) *p < 0.002

ally, *p < 0.002 centrally, *p < 0.001 caudally. (O) *p < 0.002 rostrally, *p < 0.004

ases, n = 3 embryos per genotype.

d iKO E14.5 embryos after tamoxifen administration at E9.5 (n = 3 embryos per

Neuron 78, 269–284, April 24, 2013 ª2013 Elsevier Inc. 273
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Figure 3. Loss of Pax6 Results in Numerous Changes in Expression of Cell-Cycle Genes

(A) The top ten overrepresented biological processes identified by GO analysis of all genes with a significant (p < 0.05) increase or decrease in expression.

Transcriptional domain coverage is the number of transcripts in each significantly overrepresented theme expressed as a percentage of all transcripts annotated

by at least one significantly overrepresented theme.

(legend continued on next page)
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Pax6-expressing progenitors by including only those cells with

the highest GFP levels. We obtained similar proportions of

Pax6+/+;DTy54+ and Pax6�/�;DTy54+ cells with fluorescence

levels within the gate.

We carried out three independent experiments, each of which

used samples of mRNA from a different pool of Pax6+/+ and

Pax6�/� littermates obtained on different occasions and with

RNA integrity (RIN) scores R 9.3/10 for Agilent microarray com-

parisons. In a preliminary statistical analysis of the normalized

data, we assigned a p value to the change in expression of

each gene using an empirical Bayes moderated t test (Efron

and Tibshirani, 2002). These p values were adjusted to correct

for multiple t tests (Benjamini andHochberg, 1995).We identified

411 genes whose expression was significantly (i.e., adjusted p

value < 0.05) upregulated and 532 genes whose expression

was significantly downregulated. Full data sets are provided

on the Gene Expression Omnibus website (http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE38703). Further quality

control assessments are included in Figures S5A–S5D.

We usedGeneOntology (GO) databases to identify the biolog-

ical processes most frequently associated with the sets of

up- and downregulated transcripts. The ten most significantly

overrepresented processes for each set are given in Figure 3A.

Notably, in the context of the present work, the terms ‘‘cell

cycle,’’ ‘‘cell division,’’ ‘‘mitosis,’’ and ‘‘DNA replication’’ appear

in the list of processes associated with the upregulated tran-

scripts but not among the list of processes associated with the

downregulated transcripts. This agrees with our overall hypoth-

esis that Pax6 is normally a net repressor of the transcription of

genes associated with cell proliferation. The regulated genes

that are most closely associated with the cell cycle are listed in

Figure 3B along with their most-relevant known functions.

We selected a subset of cell-cycle and other genes regulated

by Pax6 in our microarrays and compared their lateral cortical

expression levels between E12.5 Pax6+/+ and Pax6�/� embryos

by qRT-PCR (Figure 3C). All showed significant differences. We

used qRT-PCR to compare the expression of Cdk6, Ccnd1

(Cyclin D1), Cdca7, and Smad2 in control and iKO (Pax6loxP/loxP;

Emx1-CreERT2) cortex 72 hr after tamoxifen administration at

E13.5, and, as in the Pax6�/� cortex, we found significant in-

creases in the levels of all four in the iKO cortex (Figure 3D).

Data on the patterns of expression of these four genes shown

by in situ hybridization are included in Figures S5E–S5L.

In the light of our discoveries from these experiments (as

described in the following sections), we carried out an additional

experiment to test whether the levels of expression ofCdk6were

affected by controlled overexpression of Pax6, as occurs in the

PAX77 line (Manuel et al., 2007). Pax6 protein levels in these

mice are elevated �2-fold, although the pattern of expression
(B) Cell-cycle genes whose expression levels were significantly changed in the ab
dTomita et al., 2011; eRyu et al., 2007; fGoto et al., 2006; gSatyanarayana and K

Schwacha, 2009; kMeulmeester and Ten Dijke, 2011; lLosada and Hirano, 2005;

The p values were obtained after adjustment (Benjamini and Hochberg, 1995).

(C and D) qRT-PCR comparing the effects of Pax6 absence (C) or conditional loss

in our microarray analysis. All differences are significant (means ± SEM; Student

(E) qRT-PCR comparing the mean levels of Pax6 and Cdk6 (±SEM; n = 4 embryos

PAX77 (Pax6 overexpressing) embryos. Pax6 rostrally: *p < 0.001, caudally *p <

See also Figures S4, S5, and Table S1.
remains normal (Manuel et al., 2007). The levels of Pax6 and

Cdk6, as measured by qRT-PCR, in samples of rostral and

caudal cortex varied significantly with both area and genotype

(two-way ANOVAs; Figure 3E). In WTs, Pax6 and Cdk6 were

correlated inversely: Pax6 levels were significantly higher and

Cdk6 levels were significantly lower in rostral than in caudal cor-

tex (p < 0.0001 and p < 0.0009, respectively; Figure 3E, black

lines). In PAX77 embryos, Pax6 levels were elevated both

rostrally and caudally and there was a significant reduction of

Cdk6 levels caudally. Whereas elevated Pax6 levels repressed

Cdk6 expression caudally, repression was not detected rostrally.

It is possible that rostral increases might have little effect on

Cdk6 expression if Pax6-mediated repression of Cdk6 in WTs

is already relatively close to maximum in this region.

Predicted Pax6-Binding Sites around the Cdk6 Gene
As a next step toward defining a biochemical pathway through

which Pax6 might regulate cortical progenitor cell cycles, we

used bioinformatics to identify potential Pax6 binding sites in

genomic regions surrounding some of the cell-cycle genes regu-

lated by Pax6. Using a 21 bp consensus binding motif that is

known from previous work to be recognized by the Pax6 paired

domain (P6CON; Epstein et al., 1994a, 1994b), we identified a

particularly large number of putative Pax6 binding sites within

10 kb on either side of the Cdk6 coding sequence and focused

further work on testing for direct regulation of this gene by Pax6.

We used two position weight matrix (PWM) databases,

TRANSFAC and JASPAR, and identified 14 putative Pax6 bind-

ing sites within the 10 kb genomic regions immediately upstream

and downstream of the Cdk6 coding region. These candidate

sites were filtered by conservation analysis across five verte-

brate species (mouse, rat, dog, chimpanzee, and human) using

the Mulan program. Five putative binding sites (BS1–BS5;

Figure S6A) with at least 85% similarity to P6CON and >90%

identity across the five vertebrate species were defined for

experimental testing. The murine Cdk6 promoter has not been

characterized, but the human CDK6 promoter has (Cram et al.,

2001). By aligning its sequence against the mouse genome

(NCBI Build 37, UCSC mm9) we identified a 2.3 kb region flank-

ing the 50 end of the murine Cdk6 gene with �80% homology to

the human CDK6 promoter sequence. This region, which prob-

ably contains the murine Cdk6 promoter, also contains one of

the five putative Pax6 binding sites (BS1; Figure 5C).

Evidence for Pax6 Binding Sites around the Cdk6 Gene
from Electrophoretic Mobility Shift Assays
We tested whether BS1–BS5 (Figure 4A) could specifically bind

Pax6, using Pax6 protein generated by in vitro translation (Fig-

ure 4B). Electrophoretic mobility shift assays (EMSAs) are shown
sence of Pax6 (aEinarson et al., 2004; bSherr, 1995; cKnockleby and Lee, 2010;

aldis, 2009; hTashiro et al., 2007; iMiyake and Parsons, 2012; jBochman and
mBommer et al., 2005; nStengel and Zheng, 2011; oBudanov and Karin, 2008).

(D) on the cortical expression of a set of genes found to have altered expression

’s t test, *p < 0.05, n > 3 embryos per genotype in all cases).

of each genotype) in the rostral and caudal thirds of E12.5 cortex fromWT and

0.0001; Cdk6: *p < 0.0016 (Sidak’s multiple-comparisons test).
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Figure 4. EMSAs Show that Pax6 Can Bind to Predicted Binding Sites (BS1–BS5) at the Cdk6 Locus

(A) Map of the five binding sites (BS1–BS5) at the Cdk6 locus (sequences in Figure S6A).

(B) Western blot analysis of Pax6 protein expressed by the TNT In Vitro Transcription/Translation System. Lanes were loaded with 2 ml (lane 1) and 4 ml (lane 3) of

in vitro-translated Pax6 protein, 20 mg (lane 2) and 40 mg (lane 4) of Pax6+/+ telencephalic protein, or 40 mg of Pax6�/� telencephalic protein (lane 5).

(legend continued on next page)
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in Figures 4C–4G. Themigration of radioactively labeled oligonu-

cleotides containing each predicted Pax6 binding site (BS1–

BS5) was retarded by binding to Pax6 protein (shift) and retarded

further upon addition of an anti-Pax6 antibody (supershift).

Radiolabeled oligonucleotides containing mutations that abolish

the Pax6 consensus binding site in BS1–BS5 (Figure S6A)

showed reduced or no retardation (compare lanes 1 and 2).

When excess unlabeled WT oligonucleotides were added as

competitors, they weakened or abolished the shifted bands in

all cases. In contrast, unlabeled mutant oligonucleotides (Fig-

ure S6A) were unable to compete effectively with the labeled

WT oligonucleotides. These assays demonstrate that Pax6

protein can bind specifically to sequences representing the pre-

dicted Pax6 binding sites BS1–BS5.

Pax6 Binds to Sites around Cdk6 In Vivo
We extracted chromatin from E12.5 cortex to test for binding of

Pax6 to the predicted Pax6 binding sites BS1–BS5 in vivo by

quantitative chromatin immunoprecipitation (qChIP; Figures 5A

and 5B). Primer pairs were selected to measure, by qPCR, the

relative levels of short fragments spanning each predicted bind-

ing site (Figure S6B). Primers for sequences from the genomic

regions of Gab1 and Syt8 that were previously shown to be

Pax6 bound and Pax6 nonbound, respectively, were used to

generate positive and negative control data (Sansom et al.,

2009). Following the qPCR, values for Pax6/immunoglobulin G

(IgG) normalized enrichment were expressed relative to the

average value for Syt8 (Figure 5B). DNA sequences that included

four of the five Cdk6 Pax6 predicted binding sites (BS1, BS2,

BS4, and BS5) were significantly enriched by amounts similar

to or greater than that of the Gab1 positive control (Figure 5B).

There was no evidence for enrichment of the BS3 sequence.

Taken together, the EMSA and ChIP results indicate that Pax6

has the potential to bind all five Cdk6 sites (BS1–BS5), but binds

to only four of them in E12.5 cortex in vivo.

Pax6 Directly Represses Cdk6 Expression
We next examined the functionality of each of the Pax6 binding

sites (BS1–BS5) using luciferase assays in cells that do not ex-

press endogenous PAX6 (HEK293 cells). We generated a set

of eight luciferase reporter constructs to test each site individu-

ally (Figure 5C). We first cloned a 2.3 kb upstream fragment

encompassing the putative Cdk6 promoter and containing only

BS1 into the promoterless luciferase reporter plasmid pGL4.10

to generate the plasmid pBS1-luc. This produced a substantial

increase in relative luciferase activity compared with cells trans-

fected with pGL4 vector alone (Figure 5Di). Cotransfection of

increasing amounts of the Pax6 expression construct pCMV-

Pax6 (Figure 5D) led to a dose-dependent reduction in relative

luciferase activity (Figure 5Di). To test whether this reduction
(C–G) EMSAs. Arrowheads indicate free probe (Probe) at the bottom of each ge

complexes (Shift), and probe-protein-antibody complexes (Supershift). In all cas

clearly detected (lane 1) and was greatly reduced or abolished by mutation of the

with anti-Pax6 antibody, resulting in supershifted complexes (lane 3). Visible shifts

addition of excess nonradiolabeled WT probes to compete with radiolabeled pr

much less effectively (lanes 4–7).

See also Figure S6A.
was due to Pax6 binding to BS1, we mutated BS1 exactly as

done for the EMSAs (Figure S6A) to generate pBS1mut-luc (Fig-

ure 5C). Themutation abolished Pax6-dependent suppression of

luciferase activity (Figure 5Di), indicating that binding of Pax6 to

site BS1 can repress transcription from the Cdk6 promoter.

We then evaluated each of the four remaining Pax6 binding

sites (BS2–BS5) individually. Short DNA fragments spanning

each of the binding sites were cloned into plasmid pBS1mut-

luc (which drives reporter expression and is not itself repressed

by Pax6). PCR fragments including BS2 or BS3 were placed

immediately upstream of the 2.3 kb promoter in pBS1mut-luc,

whereas fragments including BS4 or BS5 were placed down-

stream of the luciferase coding sequence, mimicking their

normal position relative to the Cdk6 transcription start site (Fig-

ure S6A). Constructs that contained sites BS2 or BS4 both

showed a clear dose-dependent decrease in luciferase activity

in response to Pax6, which was abolished when either BS2 or

BS4 was mutated (Figures 5Dii and 5Div), indicating that binding

of Pax6 to either of these sites can repress transcription. In

contrast, constructs containing BS3 or BS5 showed no decrease

in luciferase activity in response to Pax6 (Figures 5Diii and 5Dv),

suggesting that neither BS3 (which did not bind Pax6 in vivo;

Figure 5B) nor BS5 mediates repression by Pax6, at least in

the present context. Together, these results indicate that at least

three Pax6 binding sites around Cdk6 (BS1, BS2, and BS4, all

three of which bind Pax6 in vivo; Figure 5B) can mediate Pax6-

dependent suppression of transcription.

Pax6 Regulates the Phosphorylation of pRb
Previous work has shown that Cdks promote progression

through the cell cycle (Malumbres and Barbacid, 2005). Of

particular relevance to the present work, a previous in vitro study

showed that a dominant-negative Cdk6 construct inhibited

E12.5 cortical progenitor proliferation (Ferguson et al., 2000).

We observed a similar effect in vivo following cortical electropo-

ration of the same construct (Figures S7A–S7E). We also

observed reduced apical progenitor cell division in E12.5

Cdk6�/� embryos (Malumbres et al., 2004) compared with con-

trols (Figures S7F–S7H), consistent with a normal role for Cdk6 in

regulating cortical progenitor proliferation in vivo. Cyclin/Cdk

complexes induce hyperphosphorylation of pRb. This hyper-

phosphorylation antagonizes the ability of pRb to bind and

sequester transcription factors of the E2F family, and free E2F

proteins promote transition through the cell cycle (Polager and

Ginsberg, 2008). We predicted, therefore, that increased phos-

phorylation of pRbmight provide a link between the upregulation

of Cdk6 and the increased proliferation of cortical progenitors

that occurs in the absence of Pax6.

We first tested the effects on pRb phosphorylation of trans-

fecting Pax6 nonexpressing cells (HEK293) with increasing
l (probe is WT in lanes 1 and 3–7, and mutant (Mut) in lane 2), probe-protein

es, a specific gel shift by binding of Pax6 to potential Pax6 binding sites was

Pax6 binding sites (lane 2). Binding specificity was confirmed by preincubation

were diminished or abolished (in a dose-dependent manner in most cases) by

obes, whereas excess amounts of nonradiolabeled mutant probes competed
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Figure 5. Evidence that Sites around the

Cdk6 Gene Bind Pax6 In Vivo and Repress

Gene Expression In Vitro

(A) Sonication of cortical chromatin gave mainly

100–600 bp genomic fragments for ChIP with

antibodies against either Pax6 (experiment) or IgG

(control).

(B) Results of qChIP on DNA from E12.5 dorsal

telencephalon using anti-Pax6 and anti-IgG anti-

bodies followed by qPCR to test for enrichment of

each putative Pax6 binding site. For each binding

site, the amount of qPCR product obtained with

anti-Pax6 antibody was first expressed relative to

that obtained with anti-IgG antibody. The resulting

ratio was expressed relative to the average ratio

obtained with primers for a sequence from the

Syt8 gene that does not bind Pax6 (which was set

to 1.0; Sansom et al., 2009). A Gab1 sequence

known to bind Pax6 (Sansom et al., 2009) was

used as a positive control. Means ± SEM (n = 3);

*p < 0.05 and **p < 0.01 (Student’s t test).

(C) Constructs made to test BS1–BS3 located 50

to exon 1, and BS4 and BS5 located 30 to exon 7.

The position of each binding site is indicated in the

schematic drawing, and the size and position of

the fragments that were used to generate the

constructs are indicated directly beneath. Black

vertical bars in the plasmid schematics denoteWT

binding sites andmutant sites are indicated by red

crosses.

(D) Results obtained using these constructs to

measure firefly luciferase activity (relative to a

Renilla luciferase control) in HEK293 cells made to

express a range of levels of Pax6 using a CMV-

Pax6 construct added at 0, 20, 50, or 100 ng

per transfection (the western blot shows Pax6

expression resulting from increasing doses, with

actin levels monitored as a loading control). Data

labeled pGL4 are from the promoterless vector

used tomake the constructs with no added inserts

as negative controls. All eight constructs induced

significant luciferase activity in the absence of

Pax6. Data are from three independent experi-

ments. Means ± SEM (n = 3); *p < 0.05 and **p <

0.01 (Sidak’s multiple-comparisons test).

See also Figure S6B and Tables S2 and S3.
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amounts of the Pax6 expression construct pCMV-Pax6. Western

blots showed an inverse relationship between Pax6 and Cdk6/

cyclin D2 (Ccnd2) protein levels (Figure 6A), consistent with our

finding that Pax6 represses the expression of both genes (Fig-

ure 3B). Loss of cyclin/Cdk was associated with loss of the

hyperphosphorylated form of pRb (ppRb; Figure 6A). Because

cyclin/Cdk complexes are known to phosphorylate pRb at spe-

cific residues, including Ser-780 and Ser-807/811 (Kitagawa

et al., 1996; Zarkowska and Mittnacht, 1997; Ely et al., 2005),

we used antibodies that recognize pRb that is phosphorylated
278 Neuron 78, 269–284, April 24, 2013 ª2013 Elsevier Inc.
specifically at these positions (pS780

and pS807/811). The levels of both

phosphorylated forms declined with

increasing Pax6 levels (Figure 6A). We

then used western blots to compare the
levels of these proteins and phosphorylated forms of pRb in

E12.5 WT and Pax6�/� cortex (Figure 6B; see quantifications

of three repeats in Figure 6C). In all cases, the levels were signif-

icantly increased in mutants.

We also examined the distribution of pRb phosphorylated at

Ser-780 in the E12.5 cortex of WT and Pax6�/� embryos by

immunohistochemistry (Figures 6D–6K). Most pS780-positive

cells were located along the ventricular edge, where progenitor

cells undergo M phase and enter the G1 phase of the cell cycle.

In WT embryos, staining for pS780 appeared more intense in the
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caudal cortex, where Pax6 levels are relatively low (Figures 6D

and 6E). In Pax6�/� cortex, the intensity of pS780 staining

appeared to be increased particularly in the rostral cortex (Fig-

ure 6F). The proportions of cells that were pS780-positive were

counted in regions of cortex that normally express different rela-

tive levels of Pax6 (Figures 6D–6K). InWT cortex, the proportions

of pS780-positive cells were lowest in the rostrolateral (i.e.,

[Pax6]high) cortex (Figure 6K). In Pax6�/� cortex, there were sig-

nificant increases in the proportions of pS780-positive cells in

regions that would normally express the highest levels of Pax6

(i.e., rostral and lateral, labeled H1–H3 and M2 in Figure 6K),

but not in regions that would normally express lower levels of

Pax6. These changes resulted in an abolition of normal regional

differences in the proportions of pS780-positive cells, providing

further evidence that high levels of Pax6 normally suppress

cyclin/Cdk-mediated pRb phosphorylation in cortical progeni-

tors in vivo.

DISCUSSION

Our findings allow us to propose a model of one relatively direct

route through which Pax6 can influence cortical progenitor Tcs

(Figure 7). In summary, our results indicate that by repressing

Cdk6 (through binding to sites close to the Cdk6 coding

sequence) and Cyclin D1/2 (either directly or indirectly), Pax6

can limit the levels of cyclin/Cdk complexes and hence the phos-

phorylation of pRb, one of the primary substrates of Cdks in G1

phase progression (Ferguson and Slack, 2001). Limiting the

phosphorylation of pRb suppresses the release from pRb/E2F

complexes of E2F transcription factors, which promote G1/S

transition and hence proliferation (Harbour et al., 1999). E2F’s

direct targets include Cdc6, Mcm6, and Cdca7 (Di Stefano

et al., 2003; Lee et al., 2000; Polager and Ginsberg, 2008; Goto

et al., 2006), and, in agreement with our model, we identified

all three as being upregulated in Pax6�/� cortical progenitors.

Cdc6 and Mcm6 are involved in the onset of S phase by regu-

lating DNA replication, and one of their main functions is to

unwind DNA for replication (Bochman and Schwacha, 2009;

Knockleby and Lee, 2010). The functions of Cdca7 are currently

unclear. Also included in our model is a feedback loop involving

cyclin D1 (Ccnd1), which is known to be directly and positively

regulated by E2Fs (Di Stefano et al., 2003; Lee et al., 2000;

Polager and Ginsberg, 2008). By limiting E2F-mediated cyclin

D1 expression, Pax6 can limit the influence of this positive feed-

back. If Pax6 is deleted, this positive feedback loop will be

enhanced, providing a drive for cell-cycle progression.

These new findings provide an important framework for future

work. The results of previous studies left the issue of whether

Pax6 directly regulates the transcription of cell-cycle genes in

the cortex highly uncertain. Both previous work and the present

screen have shown that Pax6 can regulate, in some cases

directly, the transcription of many other transcription factor

genes, such as Ngn2 and Ascl1, that themselves regulate cell

proliferation (Scardigli et al., 2003; Holm et al., 2007; Tuoc and

Stoykova, 2008; Sansom et al., 2009; Castro and Guillemot,

2011; Castro et al., 2011). There was, therefore, a strong possi-

bility that Pax6 might act on the cell cycle only indirectly by con-

trolling the expression of other transcription factors (Sansom
et al., 2009). Here we show evidence for a direct mechanism,

but most likely Pax6’s control of the cell cycle in cortical progen-

itors is mediated by both direct and indirect mechanisms. It

seems extremely unlikely that Pax6’s direct actions on the cell

cycle are mediated exclusively through repression of Cdk6. We

view our model as a start toward building an ultimately much

more complex understanding of a doubtlessly large network of

interactions between numerous directly and indirectly regulated

molecular pathways that mediate Pax6’s actions on cortical pro-

genitor cell cycles.

The challenges involved in identifying functionally important

transcription factor binding sites that regulate a specific target

gene are well known (e.g., see a recent review by Biggin,

2011). Our experiments using EMSAs showed that five predicted

sites aroundCdk6 can bind Pax6, ChIP showed that four of them

bind Pax6 in cortical progenitors in vivo, and luciferase assays

showed that three of these four sites (one of which is within the

likely Cdk6 promoter region) respond to Pax6 by repressing

gene expression. The failure to detect Pax6 binding to BS3 by

ChIP suggests low or no occupancy of this relatively distant

site by Pax6 in cortical progenitors in vivo, in line with previous

work indicating that many potential transcription factor binding

sites are unoccupied in vivo (Carr and Biggin, 1999; Biggin,

2011). The finding that BS3 and BS5 did not mediate suppres-

sion might indicate that these sites do not mediate Pax6 regula-

tion of Cdk6 even if they bind Pax6, but could be explained in

other ways. For example, the function of some sites might

depend on simultaneous binding at a particular combination of

sites. Overall, therefore, we draw a strong conclusion from our

evidence for binding and functional repression of BS1, BS2,

and BS4 irrespective of the currently unclear nature of the inter-

action between Pax6 and BS3 and BS5.

Our in vivo results indicate that at the onset of corticogenesis,

the repressive effect of Pax6 on progenitor cell proliferation and

the phosphorylation of pRb is localized to regions of cortex

where Pax6 expression is normally highest, since loss of Pax6

either constitutively or conditionally had the greatest effects in

those areas. As corticogenesis proceeds, Pax6 expression

becomes more uniform across the cortex and the effects of

Pax6 loss become more widespread, indicating a relationship

between the levels of expression and the proliferative effect.

Further evidence for a relationship between cortical Pax6 levels

and progenitor proliferation comes from previous studies in

which Pax6 overexpression was shown to decrease progenitor

proliferation rates (Manuel et al., 2007; Georgala et al., 2011a).

This effect, as might be anticipated, is the opposite of what we

observed to result from the loss of Pax6. In agreement with our

model, we have shown here that Pax6 overexpression can

repress Cdk6 levels.

The early regional effects of Pax6 on proliferation are impor-

tant in the context of understanding how the cerebral cortex

becomes divided into regions with specific cytoarchitectures

and functions. The early embryonic cortex is patterned by con-

centration gradients of several high-level transcription factors,

including Pax6, but the mechanism by which the Pax6 gradient

might contribute to the specification of cortical areas remains

unclear (Bishop et al., 2000; Manuel et al., 2007). By affecting

cell-cycle parameters in a region-specific manner, Pax6 can
Neuron 78, 269–284, April 24, 2013 ª2013 Elsevier Inc. 279
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Figure 6. Pax6 Suppresses Hyperphosphorylation of pRb

(A) Western blots showing that transient transfection of HEK293 cells with increasing amounts of Pax6 expression plasmid pCMV-Pax6 resulted in increasing

levels of Pax6 and decreasing levels of Cdk6, cyclin D2, the hyperphosphorylated form of pRb (ppRB), pRb phosphorylated at serine 780 (pS780), and pRb

phosphorylated at serine 807/811 (pS807/811). Similar results were obtained in three independent experiments.

(B) Western blots on protein extracted from E12.5 cortices showing increased levels of Cdk6, cyclin D2, ppRb, pS780, and pS807/811 in the absence of Pax6.

(C) Densitometry on bands representing Cdk6, cyclin D2, pRb, pS780, and pS807/811 from western blots such as those in (B). For each protein extract, values

were normalized to the b-actin level in that sample. Means ± SEM; *p < 0.05, Student’s t test; n = 3 independent experiments in each case.

(D–F) Immunohistochemistry showing expression of pS780 and Pax6 in parasagittal sections of E12.5 Pax6+/+ and Pax6�/� cortex. Vertical lines mark the

rostrocaudal levels of the quantifications in (G), (H), and (K); counts were in 150 mm 3 30 mm areas oriented along the ventricular surface. Scale bar, 100 mm.

(legend continued on next page)
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Figure 7. A Pathway by which Pax6 Regulates Cortical Progenitor

Cell Cycles

In this model, Pax6 directly represses Cdk6 expression and, either directly or

indirectly, the expression of other cyclins (Ccnds)/Cdks. This limits the

hyperphosphorylation of pRb, which is catalyzed by cyclin/Cdk complexes.

This limits the release of E2F transcription factors, which bind to pRb. This

limits the expression of genes such as Cdc6 andMcm6, which promote G1 to

S phase transition, and Ccnd1 (Cyclin D1), thereby dampening a positive

feedback loop that would promote proliferation.
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regulate regional differences in two critical aspects of cortical

neuronal generation, namely, the numbers of neurons that are

produced and their fates, both of which are likely to influence

cytoarchitecture and function. There is now good evidence
(G–K) Quantification of the percentages of pS780+ cells in three cortical areas exp

in two rostral-to-caudal rows of sampling areas (one rowmedial to the other, laid o

between the relative levels of Pax6 in each position [<] are summarized in (H).

(I and J) Rostrolateral sections of cortex from E12.5 Pax6+/+ and Pax6�/� embry

(K) Means ± SEM; *p < 0.05, Student’s t test; n = 9 embryos of each genotype.

See also Figure S7.
that cortical cell fates depend at least in part on the length of

the cell cycle, in particular its G1 phase, which is a period of

increased sensitivity to differentiation signals (Dehay and Ken-

nedy, 2007; Pilaz et al., 2009). It is likely, therefore, that Pax6

can contribute to regional differences across the early devel-

oping cortex because of its graded expression levels combined

with its ability to influence directly and in a concentration-depen-

dent manner the levels and hence the functions of cell-cycle pro-

teins such as Cdks and cyclins.

EXPERIMENTAL PROCEDURES

Mice

Mice were bred in accordance with the guidelines of the UK Animals (Scientific

Procedures) Act 1986. For constitutive inactivation of Pax6, we used the

Pax6Sey allele (designated as Pax6� here; Hill et al., 1991). For controlled

overexpression of Pax6, we used the PAX77 transgenic line (Manuel et al.,

2007). For conditional inactivation of Pax6, we used Pax6loxP (Simpson et al.,

2009), BAC transgenic strain Emx1-CreERT2 (Kessaris et al., 2006), and

R26R-YFP (Srinivas et al., 2001) alleles. Cre expression was induced with

10 mg (at E10.5) or 12.5 mg (at E13.5) tamoxifen (orally, 50 mg ml�1; Sigma).

To separate Pax6-expressing cells for gene profiling, we used the DTy54

transgene (Tyas et al., 2006). Electroporations were carried out as described

previously (Saito, 2006) using either a control GFP-expressing construct or a

dominant-negative Cdk6 (DN-Cdk6) and GFP-expressing construct described

previously (Ferguson et al., 2000).

Immunohistochemistry

IdU and BrdU were used to label proliferating cortical cells as described in

Martynoga et al. (2005). The primary antibodies used were mouse anti-

BrdU/IdU (1:50–1:100; BD Biosciences), rat anti-BrdU (ab6326, 1:50; Abcam),

mouse anti-phosphorylated histone H3 (ab1791, 1:200; Abcam), mouse anti-

Pax6 (1:200; DSHB), rabbit anti-GFP/YFP (ab290, 1:500; Abcam), and anti-

pRb pS780 (1:200; Cell Signaling). Nuclei were counterstained with TOPRO-3

(1:1,000; Molecular Probes).

RNA Analyses

Telencephalic cells were dissociated with papain (20 U ml�1; Biochemical

Dissociation Kit; Worthington) and GFP-expressing cells were sorted by

FACS. RNA was extracted from dissociated cells or from telencephalic

tissue using QIAshredder Spin Columns and QIAGEN RNeasy Kits; any

traces of genomic DNA were removed by on-column DNase digestion. For

microarray experiments, the quality of each sample was assessed using

the Agilent Bioanalyzer to obtain an RIN of 1–10 (10 = highest-quality

intact RNA). The Agilent Low RNA Input Linear Amplification Kit was then

used to produce complementary RNA (cRNA) labeled with either Cyanine 3

(Cy3) or Cyanine 5 (Cy5) fluorescent labels. Labeled cRNA samples were

hybridized to Agilent Dual-dye Whole Mouse Genome Arrays (G4122A). After

hybridization, arrays were scanned in an Agilent Scanner for Cy3 and Cy5,

and images were analyzed using Agilent’s Feature Extraction Software

(version 7.1). Normalization and statistical analysis of the microarray data

were performed using R-based software (http://www.R-project.org). For

qRT-PCR, reverse transcription and real-time amplification were carried

out using standard protocols with the primers listed in Table S1. All mRNA

levels were expressed relative to those for glyceraldehyde 3-phosphate

dehydrogenase (GAPDH). In situ hybridizations were carried out using stan-

dard protocols.
ressing relatively high (H1–H3), medium (M1 andM2), and low (L) levels of Pax6

ut as illustrated on a dorsal view of the right hemisphere in (G). The relationships

os immunoreacted for pS780. Scale bars, 25 mm.
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Bioinformatics

GOanalysis was carried out withWebGestalt (WEB-basedGEne SeT AnaLysis

Toolkit; http://bioinfo.vanderbilt.edu/webgestalt/) and FunNet Transcriptional

Networks Analysis (http://www.funnet.info), using the GO (http://www.

geneontology.org) and Kyoto Encyclopedia of Genes and Genomes (KEGG;

http://www.genome.jp/kegg) databases. To predict Pax6-binding sites, we

used TRANSFAC (professional 2009.1) and JASPAR (http://jaspar.cgb.ki.

se) combined with conservation analysis using the Mulan (http://mulan.

dcode.org) program. To reduce false positives, the threshold scores of

the core motif match and the matrix match were set to 0.8 in the

TRANSFAC program. The scanning cutoff was chosen such that the

probability of getting a false-positive prediction in sequences of 500 bp

length was <5% (fixed type I error). The probability of a given DNA sequence

functioning as a cis-regulatory element was set to 80.0% for the JASPAR

database.

EMSAs

Pax6 proteins were obtained from full-length Pax6 cDNA using the TNT Quick

Coupled Transcription/Translation System (Promega). Double-stranded oligo-

nucleotide probes containing WT or mutant Pax6 binding sites (Figure S6A)

were radiolabeled. Pax6 polyclonal rabbit antibody (Covance) was used for

supershifts. Competition assays used a 50- to 100-fold molar excess of

competitor probes in each binding reaction.

qChIP

Chromatin was extracted from 20 E12.5 mouse cortices. DNA-protein com-

plexes were precipitated with anti-Pax6 antibody (Covance) or with anti-igG

antibody (Abcam). ChIP was performed as described by Sansom et al.

(2009). Primer pairs were selected to measure, by qPCR, the relative levels

of fragments, each of which included one of the predicted binding sites

(Figure S6B).

Luciferase Assays

Fragments around Cdk6 were isolated from a BAC clone (RP23-53B17)

or genomic DNA using the primers listed in Table S2 and cloned into

the pGL4.10 promoterless firefly luciferase reporter vector (Promega).

Site-directed mutagenesis used the QuikChange Site-Directed Mutagenesis

Kit (Stratagene) with the PCR primers listed in Table S3. HEK293 cells

were transfected using Lipofectamine 2000 (Invitrogen). Pax6 was expressed

using the pCMV-Pax6 construct, generated by inserting full-length Pax6

cDNA into pCMV-Script plasmid (Stratagene). The Renilla luciferase vector

was pRLSV40 (Promega). HEK293 cells were harvested 48 hr after transfec-

tions and analyzed with the Dual Luciferase Reporter Assay System

(Promega).

Western Blots

The primary antibodies were mouse anti-Pax6 (1:200; DSHB), rabbit anti-Pax6

(1:500; Covance), rabbit anti-Cdk6 (1:500; Santa Cruz), rabbit anti-cyclin D2

(1:200; Santa Cruz), mouse anti-pRb (1:200; BD PharMingen), rabbit anti-

phospho-pRb (Ser780, 1:1,000; Cell Signaling), rabbit anti-phospho-pRb

(Ser807/811, 1:1,000; Cell Signaling), and rabbit anti-beta actin (1:2,000;

Abcam). Alexa-coupled secondary antibodies were used and blots were quan-

tified using the Li-Cor scanning system.
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