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Stress-induced alterations of social behavior are reversible
by antagonism of steroid hormones in C57/BL6 mice
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Abstract
Various disturbances of social behavior, such as autism, depression, or posttraumatic stress disorder, have been associated with
an altered steroid hormone homeostasis and a dysregulation of the hypothalamus–pituitary–adrenal axis. A link between steroid
hormone antagonists and the treatment of stress-related conditions has been suggested. We evaluated the effects of stress
induction on social behavior in the three chambers and its potential reversibility upon specific steroid hormone antagonism in
mice. C57BL/6 mice were stressed twice daily for 8 days by chronic swim testing. Social behavior was evaluated by measuring,
first, the preference for sociability and, second, the preference for social novelty in the three-chamber approach before and after
the chronic swim test. The reversibility of behavior upon stress induction was analyzed after applying steroid hormone antag-
onists targeting glucocorticoids with etomidate, mineralocorticoids with potassium canrenoate, and androgens with cyproterone
acetate and metformin. In the chronic swim test, increased floating time from 0.8 ± 0.2 min up to 4.8 ± 0.25 min was detected
(p < 0.01). In the three-chamber approach, increased preference for sociability and decreased preference for social novelty was
detected pre- versus post-stress induction. These alterations of social behavior were barely affected by etomidate and potassium
canrenoate, whereas the two androgen antagonists metformin and cyproterone acetate restored social behavior even beyond
baseline conditions. The alteration of social behavior was better reversed by the androgen as compared with the glucocorticoid
and mineralocorticoid antagonists. This suggests that social behavior is primarily controlled by androgen rather than by gluco-
corticoid or mineralocorticoid action. The stress-induced changes in preference for sociability are incompletely explained by
steroid hormone action alone. As the best response was related to metformin, an effect via glucose levels might confound the
results and should be subject to future research.
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Introduction

Long disturbances of social behavior, such as autism, depres-
sion, or posttraumatic stress disorder (PTSD), have been asso-
ciated with an altered steroid homeostasis and a dysregulation
of the hypothalamus–pituitary–adrenal axis (HPA) (Bondar
et al. 2018; Jacobson 2014; Du and Pang 2015; Sriram et al.
2012). Hence, autistic disorders have been associated with
HPA dysregulation (Brosnan et al. 2009; Marinović-Curin
et al. 2008; Hoshino et al. 1987), given differences of the
anatomic structure of the hypothalamus (Bitsika et al. 2014;
Hollocks et al. 2014), of the pituitary gland (Brosnan et al.
2009; Hamza et al. 2010; Curin et al. 2003; Iwata et al.
2011; Xu et al. 2015), and of the adrenal gland (Curin et al.
2003; Baron-Cohen et al. 2015; El-Baz et al. 2014; Taylor and
Corbett 2014; Ruta et al. 2011; Ingudomnukul et al. 2007;
Majewska et al. 2014; Takagishi et al. 2010; Chakrabarti
et al. 2009; Knickmeyer et al. 2006). It is generally accepted
that stress modulates the CRH (corticotropin-releasing hor-
mone)–ACTH (adrenocorticotropic hormone)–cortisol sys-
tem, while influencing the disease mechanism (Sapolsky
et al. 2000; Dallman 2007; Verbeek et al. 2019; Chrousos
2009; Apple et al. 1993; Gold 2015). Thus, the CRH–ACTH
system seems to be involved in different forms of depression
(Gold 2015; Checkley 1996). The behavior of social avoid-
ance is a core symptom of all these diseases. Animal models
demonstrated a higher level of social avoidance after exposure
to stress (Iñiguez et al. 2014). Interestingly, only 10 days of
stress were necessary to alter gene induction as associatedwith
glucocorticoid metabolism (Bondar et al. 2018). Chronic
stress is generally characterized by a strong stimulation of
the central drive combined with a downregulation of its nega-
tive feedback upon increased steroid hormone availability;
similar processes are also associated with depression
(Checkley 1996). Recent discoveries have shown that steroid
hormones can indeed exert rapid effects on social behavior
(Steinman and Trainor 2010). Steroid hormones allow to reg-
ulate behavior in response to sudden and short-lived environ-
mental or social change serving as intermediators (Steinman
and Trainor 2010; Ayash et al. 2019).

In contrast, substances affecting androgens, glucocorti-
coids, and mineralocorticoids have been considered as treat-
ment options for disorders such as autism, depression, or
PTSD (Bradstreet et al. 2006; Wink et al. 2017; Aman et al.
2018). However, antagonists of hormones produced by the
adrenal gland are rarely considered as potential treatment of
disorders with social avoidance, and the respective impact of
molecules with inhibitory action on androgens, glucocorti-
coids, and mineralocorticoids have not been conclusively
studied. Thus, we aimed to analyze the effects of stress induc-
tion on social behavior and its potential reversibility upon
steroid hormone antagonism. Specifically, we first analyzed
baseline conditions in mice using the three-chamber approach.

Second, we evaluated the effects of stress induction on social
behavior. Third, the reversibility of the stress-induced behav-
ioral changes was elucidated using specific steroid hormone
antagonism (Popper 1969).

Material and methods

Animals

Ten-week-old female C57BL/6JRccHsd mice all from the
same strain were purchased from Envigo Laboratories
(Venray, Netherlands). After their arrival, females were
placed in IVC cages (501-cm2 floor area, Green Line,
Tecniplast, Italy) in groups of 6 (except the two female ani-
mals under the inverted cup which were housed in separate
cages) and maintained under a 12-h dark–light cycle, room
temperature in the range of 22 ± 2 °C, and relative humidity
in between 45 and 65%. Mice had unrestricted access to irra-
diated rodent chow diet (3432, Granovit, Switzerland) and
autoclaved tap water. Aspen wood bedding (J. Rettenmeier
& Söhne GmbH, Germany), paper nestles, and cage enrich-
ment (red PVC house) (Plexx, Netherlands; LAB & VET
Service GmbH, Austria) were provided. Mice were not syn-
chronized. Animals in each cage were randomly subjected to
the force swim test. The strain of C57BL/6J mice was selected
due to their behavioral profile, including moderate to high
levels of social approach, exploration, and reversal learning
(Moy et al. 2007; Moy et al. 2004). Female mice were used
due to easier handling, higher preference for social behavior,
and less extraadrenal interference (Bronson 1979; Turcu et al.
2014). Experiments were performed during their active pe-
riods after 19:00. Five groups consisting of 8 animals were
subjected to chronic swim testing and randomized to the con-
trol group or specific drug interventions (Fig. 1). The animal
experiments were approved by the Ethics Committee for
Animal Experiments of the Veterinary Administration of the
Canton of Bern, Switzerland (BE128/16), and conformed to
the rules of the Swiss Federal Act on Animal Protections.
Experiments were carried out at the central animal facility of
the University of Bern.

Chronic swim stress

We chose forced swimming as behavioral mouse model of de-
pression or autism, which is stress response-based (Brown et al.
2001; Steru et al. 1985;Weiss et al. 1975; Blanchard et al. 1993;
Seligman and Maier 1967). Distinct behavioral patterns can be
discriminated and quantified to identify the maximal disappoint-
ment and signs of behavioral depression (Brown et al. 2001).
Mice were dropped into a cylinder (height 25 cm, diameter
10 cm, 6 cm of water at 21–23 °C) for 6 min with the duration
to immobility being scored (Brown et al. 2001) as adapted in
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Stone and Lin (2011) (Stone and Lin 2011; Porsolt et al. 1977;
Sun and Alkon 2003). Another approach consists of swimming
mice daily in lukewarm water in a plexiglass cube 24 × 43 ×
23 cm w × h × l for 15 min/day for 4 days, and thereafter once a
week. This procedure produced a progressive decrease in dis-
tance swum and a concomitant increase in immobility (floating)
in about 70% of mice, which persisted unaltered for weeks
(Stone and Lin 2011). The swim test seems to be a valid oppor-
tunity and an acceptedmodel, which can be easily handled and is
generally used for inducing stress in mice (Brown et al. 2001;
Yankelevitch-Yahav et al. 2015).

In our setting, the swimming area was 70 × 40 × 15 cm. The
water temperature was kept constant at around 24 °C.
Immobility was assigned when a mouse was immobile without
a forward movement, had ceased to struggle and remained float-
ing motionless with only the finest movements to keep equilib-
rium and its head out of the water. All experiments in the forced
swim test were observed and measured by the same person.

Three-chamber approach

Mice were assessed before and after the chronic swim test and
after drug administration in the three-chamber approach. The
preference for sociability and for social novelty was analyzed
(Moy et al. 2007; Moy et al. 2004) (Fig. 2). In both experi-
mental settings, the mice were initially placed into the center
of a 41 × 60 × 28 cm three-chamber apparatus, whereby the
outer compartment contained two empty, inverted wire cups.
For habituation, the sliding doors were opened and each
mouse was allowed to explore all three chambers for 5 min.
The mice were returned to the middle of the apparatus, the
sliding doors were closed, and companions were placed into
the other chamber(s). The doors were released for 5 min to

analyze the preference for sociability and the preference for
social novelty. The experiment for preference of sociability
measured the time shared with a previously unknown com-
panion (“together”) versus the time spent alone (“alone”). The
preference for social novelty experiment measured the time
spent with a novel (“with novel”) versus the time spent with
the previous companion from the sociability experiment
(“with familiar”) (Fig. 2). The companions in the first socia-
bility experiment and the novel companions in the social nov-
elty experiment were C57BL/6 mice that were always housed
separately and had no previous contact with the tested mice.
The test material was cleaned with water and dried with paper
towels in between experiments; at the end of a test battery, the
apparatus was cleaned with ethanol. All experiments in the
three-chamber approach were performed by the same person.

Drug administration

To test the reversibility of stress-induced behavioral changes,
drugs were administered to the interventional groups, yet not to
the animals under the inverted cup (Fig. 2). Drugs were from
Sigma Aldrich (Switzerland), dosing was adapted to average
mice weight (19.8 ± 1.02 g) (Brown et al. 2001). (i) Etomidat
Lipuro is a galenic solution which was injected intravenous into
the tail vein (250 μL, 25 mg/kg) (Anon 2017). Etomidate is an
imidazole-based sedative hypnotic whereby lower concentra-
tions are associated with an outlasting effect on adrenal cortical
suppression with a mainly anti-glucocorticoid action (Pejo et al.
2012). Etomidate binds with a high affinity to the cytochrome
P450 enzyme 11β-hydroxylase and inhibits the enzyme’s func-
tion,which converts 11-deoxycortisol to corticosterone inhibiting
glucocorticoid action in general while potently suppressing adre-
nocortical steroids for a substantial time (more than 5 h) (de Jong

Fig. 1 Timeline showing when each of the tests was performed. Mice
were assessed before and after the chronic swim test and after drug
administration in the three-chamber approach. After the first social test-
ing, chronic Swim stress (8 days of swimming twice a day for 6 min

swimming) was employed. Followed by testing in the three-chamber
approach the second time. Drug administration was performed on 5 con-
sequent days, followed by last social testing
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et al. 1984; Wagner et al. 1984). (ii) The competitive mineralo-
corticoid receptor antagonist potassium canrenoat (Canrenon)
was sterilized by microfiltration and concentrated (1.25 mg/kg
in 125 μL subcutaneously) (Anon 2017; Cunningham et al.
2012). (iii) The androgen receptor antagonist cyproteronacetat
was sterilized and diluted with castor oil plant (sterilized at
180 °C for 30 min, 6.25 mg/kg in 125 μL subcutaneously)
(Anon 2017; Kolkhof and Bärfacker 2017). (iv) Metformin in-
hibits testosterone synthesis and was pestled and soluted in
Ringer lactate (5.00 mg/kg in 125 μL subcutaneously) (Anon
2017; Ozaki et al. 2006).

Statistical analysis

For each trial in the chronic swim test, the mean ± SEM of
seconds floating was calculated. Linear regression between
the mean and the number of trials was calculated. From testing
in the three-chamber approach, the mean ± SEM of the time
spent in a respective chamber was computed. All measure-
ments underwent the Kolmogorov–Smirnov testing for nor-
mal distribution. As normality distribution could not be
rejected for subsamples of an alpha-level of 0.1, two-sided
heteroscedastic t tests were performed, which were corrected
for multiple comparison with Bonferroni. The calculations
were made with GraphPad Prism 5.0 (GraphPad Software,
Inc., La Jolla, CA, USA).

Results

The results of chronic swim testing are given in Fig. 3. A
steady increase in floating was detected over time with flow
time from 0.8 ± 0.2 min up to 4.8 ± 0.3 min (p < 0.01) of the
6 min total time (all: linear regression 0.3030 * n + 0.523,
R2 = 0.9614 and first daily trial: linear regression
0.6107 * n + 0.2139, R2 = 0.9825).

Figures 4 and 5 summarize the effects pre- versus post-
swimming and after drug administration. The first column
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Fig. 3 Effects of chronic swim stress on floating time. The number of
swimming trials (first of the day) is on the x-axis and the time that was
floated with the head out of the water without movement in percentage is
on the y-axis

Preference for sociability

Preference for social novelty with novelwith familiar

alonetogether

I

II
Fig. 2 Scheme of the three-chamber approach: a test mouse was first
placed in the middle chamber and allowed to explore all three chambers
during 5 min for habituation. Afterwards, the first (I) preference for so-
ciability was analyzed by measuring time “together” (time in the same
compartment) and time “alone” (in the compartment without a mouse).

Time spent is not an assessment of contact but simply the time spent in a
respective compartment. Secondly (II), for another 5 min, the preference
for social novelty was analyzed by measuring the time spent with the
mouse from the previous experiment (“with familiar”) or with a new
unfamiliar mouse (“with novel”)
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shows the baseline condition, and the second column shows
the measurements after stress induction but prior to drug

administration. The alterations of time spent in each of the
four conditions after stress induction were always significant.
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Fig. 4 Time measured in the three-chamber approach. Pre-stress, post-
stress, and after drug administration. The extension of “together” was
reversed upon all pharmacological interventions. N = 40 for pre-stress,
and N = 8 for post-stress. Data are given as the mean ± SEM. Df pre

versus post is 78; df post-stress versus application with one of the drugs
is 46. In order to get a proxy post application, p values according to
Bonferroni correction should be multiplied by four
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Fig. 5 Time measured in the three-chamber approach. Pre-stress, post-
stress, and after drug administration. The antiandrogen effect of cyprot-
erone acetate and metformin increased preference for social novelty be-
yond baseline conditions. N = 40 for pre-stress, and N = 8 for post-stress.

Data are given as the mean ± SEM. Df pre versus post is 78; df post-stress
versus application with one of the drugs is 46. In order to get a proxy post
application, p values according to Bonferroni correction should be mul-
tiplied by four
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Stress significantly increased “together” and decreased
“alone,” implying that stress increases the preference for so-
ciability (Fig. 4).

In the preference for social novelty, there was an increase
with “familiar” and a decrease “with novel,” implying a reduced
preference for social novelty after stress induction (Fig. 5).

The drug administration of the four substances yielded
partly to the reinforcement of pre-stress conditions.
However, etomidate with mainly glucocorticoid action is only
restored in the preference for the social novelty experiment.
Potassium canrenoate with mainly mineralocorticoid action
yielded no significant change of preference for sociability,
but a significant decrease “with familiar” and an increase
“with novel” resulting in the preference for social novelty
experiment. Cyproterone acetate significantly decreased in
“together” but had no significant effect on “alone.” In the
preference for social novelty, a significant effect on restoring
above baseline conditions was measured. Finally, metformin
was the only tested substance that affected the preferences for
sociability and social novelty significantly.

Discussion

In these experiments, we could clearly establish the impact of
induced stress using the forced swimming model on social
behavior with an increase of the preference for sociability
and a decrease in the preference of social novelty. In line with
our hypothesis of an overly androgenic drive during these ex-
posures being responsible for these behavorial changes, drugs
with antiandrogenic action increased the preferences for socia-
bility and social novelty back to baseline. In contrast, the glu-
cocorticoid antagonist etomidate and the mineralocorticoid an-
tagonist potassium canrenoate had a profoundly reduced effect.
The most consistent beneficial response was seen with metfor-
min. It is known that metformin inhibits the mitochondrial
17,20-hydroxylase activity responsible to support androgen
production and accordingly significant effects on behavior.

These findings are limited by the fact that metformin is also
a potent antidiabetic drug, which might interact with blood
sugar levels confounding behavioral responses. Furthermore,
measurements of steroid hormones in mice pre versus post-
stress were not performed. In consequence, the overall link
between induced stress, altered HPA axis, and steroid hor-
mone metabolism remains vague. Other limitations include
the fact that the forced swim test was originally developed to
modulate learned helplessness (Steru et al. 1985; Seligman
and Maier 1967; Stone and Lin 2011; Maier and Seligman
1976). Consequently, the detected results of an increase of
floating might also be due to an adaptive strategy instead of
a stress response normally occurring in all chronic stress
models (Berton et al. 2006; Tsankova et al. 2006; Willner
1997). Yet, increased steroid hormones after stress induction

have been described and provide the physiological basis our
hypothesis was created upon (Markou et al. 2015). The
strength of the induced stress might be tremendous and not
just mild. Furthermore, the forced swimming test was also
developed as “a new behavioral method to induce a depressed
state in mice” which then would link to a depressive behavior
(Brown et al. 2001; Stone and Lin 2011). The exact discrim-
ination as in human illness which is characterized by not only
social impairment but also other clinical signs, such as insom-
nia, changes in eating patterns, or cognitive symptoms, is dif-
ficult in our experimental setup and could not be captured by
the study (Kammerer et al. 2018). As these experiments mon-
itor drug responses, simply dissimilar pharmacodynamics may
support unexplainable variance and simply not all mice even
from the same strain do react in a similar manner (Krishnan
et al. 2007; Touma et al. 2008). Female mice were used for
several reasons, yet the ovary (estrous cycle) was not con-
trolled (Bronson 1979; Turcu et al. 2014). Yet, given the clear
results, a sustained impact of this variable appears unlikely.

Our result that chronic swim stress elicited not only an
increase in social preference but also a decrease in social pref-
erence for a novel peer is in contrast to other findings implying
the detection of a decrease in preference for sociability and
novelty (Toth and Neumann 2013; Blanchard et al. 2003),
which could be due to the amount of stress experienced by
the animals (Willner et al. 1987).

In human clinical disease, in several diseases such as de-
pression, autism, or PTSD, a dysregulation of HPA seems to
exist. Our own data suggest that autistic children exhibited an
increased DHEA/cortisol ratio implying a redirection of ste-
roid hormone metabolism towards DHEA via increased
17,20-hydroxylase activity. Feedback-controlled lower corti-
sol levels will then require further stimulation of the HPA axis
even further increasing androgen generation (Gasser et al.
2020; Gasser et al. 2019).

In conclusion, stress-induced alterations of steroid hor-
mone balance do have a modulating impact on social behav-
ior. Upon pharmacological intervention which modulates the
steroid hormone availability, this effect was adapted. The ma-
jor improvement of androgen inhibitionwas an increased pref-
erence for social novelty. Given the induced changes by our
intervention and the restoration by reducing androgen respon-
siveness, we suggest this as a model for autism and an appro-
priate therapeutic intervention. Of interest, others suggested
such an approach even without our data basis. Bradstreet
et al. proposed spironolactone for autistic disorders, and met-
formin was considered in the treatment of autistic disorders
and for depression an involvement of the CRH–ACTH system
was implied (Gold 2015; Checkley 1996; Bradstreet et al.
2006; Wink et al. 2017; Aman et al. 2018). Given the safety
profile for both metformin and spironolactone, a clinical ap-
proach might be feasible in human studies. Nevertheless,
many factors remain to be elucidated.
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