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Abstract

Abdominal aortic aneurysms (AAA) are common enlargements of the abdominal aorta which can 

grow larger until rupture, often leading to death. Detection of AAA is often by ultrasonography 

and screening recommendations are mostly directed at men over 65 with a smoking history. 

Recent large-scale genome-wide association studies have identified genetic loci associated with 

AAA risk. We combined known risk factors, polygenic risk scores (PRS) and precedent clinical 

diagnoses from electronic health records (EHR) to develop predictive models for AAA, and 

compared performance against screening recommendations. The PRS included genome-wide 

summary statistics from the Million Veteran Program and FinnGen (10,467 cases, 378,713 

controls of European ancestry), with optimization in Vanderbilt’s BioVU and validated in the 

eMERGE Network, separately across both White and Black participants. Candidate diagnoses 

were identified through a temporally-oriented Phenome-wide association study in independent 

EHR data from Vanderbilt, and features were selected via elastic net. We calculated C-statistics 

in eMERGE for models including PRS, phecodes, and covariates using regression weights from 

BioVU. The AUC for the full model in the test set was 0.883 (95% CI 0.873–0.892), 0.844 

(0.836–0.851) for covariates only, 0.613 (95% CI 0.604–0.622) when using primary USPSTF 

screening criteria, and 0.632 (95% CI 0.623–0.642) using primary and secondary criteria. Brier 

scores were between 0.003 and 0.023 for our models indicating good calibration, and net 

reclassification improvement over combined primary and secondary USPSTF criteria was 0.36–

0.60. We provide PRS for AAA which are strongly associated with AAA risk and add to predictive 

model performance. These models substantially improve identification of people at risk of a AAA 

diagnosis compared with existing guidelines, with evidence of potential applicability in minority 

populations.
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1. Introduction

Abdominal aortic aneurysms (AAA) is a common and life-threatening condition in which 

enlargement of the abdominal aorta can lead to a deadly rupture. Rupture is associated with 

a mortality rate as high as 81%, including mortality of over 50% even among individuals 

that rupture in a hospital setting1. Current estimates suggest that approximately 4% of the 

US population over 65 has an AAA, and 41,000 deaths a year are attributed to AAA 

complications2,3. Based on AHA 2019 Heart Disease and Stroke statistics, the prevalence of 

AAA ranges from 1.3% in males 45–54 years old to 12.5% in males 75–84 years old4. For 

females, the prevalence ranges from 0% in the youngest to 5.2% in the oldest age groups4.
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Common risk factors for AAA risk are race, age, sex, smoking behavior, atherosclerosis, 

hypertension, and hyperlipidemia5–7. A family history of AAA is associated with an 

adjusted OR of 2.178. Factors associated with aorta diameter from Mendelian randomization 

studies include pulse pressure, triglycerides, and height9. An estimate of SNP-based 

heritability for AAA is not available, however, heritability of AAA is estimated to be as high 

as 70%10. Multiple genome-wide association studies have been conducted and have detected 

24 distinct loci11–15. These observations provide a basis for including genetic information in 

prediction of future AAA events.

There are no currently available pharmacological therapies for prevention or treatment of 

AAA. When discovered, AAA cases are monitored using periodic ultrasounds, where the 

goal is to observe AAA expansion until the risk of rupture is deemed to be larger than the 

risks posed by surgical repair16, which for many patients is when the diameter reaches 5.5 

cm17. AAA cases are most often either discovered incidentally by abdominal imaging for 

some other indication, or by screening programs that target specific high-risk groups.

Current US Preventative Services Task Force (USPSTF) guidelines focus on screening 

men between 65 and 75 years of age with a history of smoking18. In a recent large 

retrospective study of almost 291,850 AAA hospitalizations, 23% were women, and over 

60% were not between 65 and 75 years of age19. USPSTF recommendations are not derived 

from statistical models and may underserve understudied groups or individuals who are at 

unusually high risk for their demographic category due to an accumulation of known and 

unknown risk factors.

Strong racial disparities have been observed in prevalence, risk, and response to surgical 

treatments in AAA patients20,21. These important and poorly understood aspects of 

AAA epidemiology are often neglected in screening guidelines. Because effective AAA 

management depends on detection, this opportunity for improving the screening strategy 

has the potential to save lives, many of whom are in underserved groups. In this paper, 

we leverage prior GWAS of AAA and electronic health records (EHR) linked to genetic 

information to develop predictive models that outperform the USPSTF guidelines in 

identifying high-risk individuals and evaluating the performance of polygenic predictors 

in multiple ancestral groups.

2. Methods

2.1. Synthetic Derivative

The Synthetic Derivative (SD) is a deidentified mirror of EHR at Vanderbilt University 

Medical Center (VUMC) with records for >3 million patients dating to January 1990 and 

updated regularly.

2.2. BioVU

The BioVU DNA Repository is a subset of the SD at VUMC with linkage to individuals’ 

DNA samples. A detailed description of the database and how it is maintained has been 

published elsewhere22,23. BioVU participant DNA samples were genotyped on a custom 

Illumina Multi-Ethnic Genotyping Array (MEGA-ex; Illumina Inc., San Diego, CA, USA). 
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Quality control included excluding samples or variants with missingness rates above 2%. 

Samples were also excluded if consent had been revoked, sample was duplicated, or 

failed sex concordance checks. Imputation was performed on the Michigan Imputation 

Server (MIS) v1.2.424 using Minimac4 and the Haplotype Reference Consortium (HRC) 

panel v1.125. AAA cases were identified using phecodes26,27: 2 or more instances of an 

International Classification of Diseases (ICD) version 9 or 10 diagnostic code for AAA, 

while controls were those without any ICD codes for AAA or phecodes in range 440–449.9 

(Diseases of Arteries, Arterioles, and Capillaries). Individuals with one AAA ICD code were 

excluded. Smoking status was defined using ICD codes.

2.3. eMERGE

The eMERGE Network is a consortium of several EHR-linked biorepositories formed 

with the goal of developing approaches for the use of the EHR in genomic research28,29. 

Consortium membership has evolved over eMERGE’s 11-year history, with many sites 

contributing data: Group Health/University of Washington, Marshfield Clinic, Mayo 

Clinic, Northwestern University, Vanderbilt University, Children’s Hospital of Philadelphia 

(CHOP), Boston Children’s Hospital (BCH), Cincinnati Children’s Hospital Medical Center 

(CCHMC), Geisinger Health System, Mount Sinai School of Medicine, Harvard University 

and Columbia University. The eMERGE study was approved by the Institutional Review 

Board at each site and all methods were performed in accordance with the relevant 

guidelines and regulations. Participants at all sites provided written informed consent. AAA 

cases and controls were defined as in BioVU.

2.4. Genome-wide Summary Statistics

We combined genome-wide summary statistics for AAA from the Million Veteran 

Program11 and FinnGen30 for a total of 10,467 cases and 378,713 controls of European 

ancestry) using fixed-effects inverse-variance weighted meta-analysis implemented in 

METAL31.

2.5. Polygenic Score Development

PRSs were constructed using PRS-CS32 software and PLINK233, followed by p-value 

thresholding (range: p=1 – 5×10−8) as in Ref34. Optimal p-value thresholds were 1.0 in 

Whites and p<5×10−3 in Blacks, as determined by maximal variance explained in BioVU 

(0.76% and 0.59%, respectively).

2.6. Identification of phecode risk factors

We extracted all diagnostic codes from individuals in the SD who were not part of the 

BioVU MEGA genotyped set who classified as either a case or control for AAA status. 

Codes for AAA cases were censored following the earliest AAA diagnosis code – i.e. 

all diagnoses post-AAA were removed, in order to capture only those diagnoses which 

preceded AAA diagnosis and represent potential risk factors for subsequent diagnosis of 

AAA. We performed a phenome-wide association study35 (PheWAS) on this temporally-

censored dataset with AAA as the outcome with each phecode status used as predictor, 
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adjusted for age and sex, stratified by self-reported race/ethnicity. Bonferroni correction was 

used to set significance thresholds to identify significant phecodes.

2.7. Selection of independent components with elastic nets

We used elastic net models with 10-fold cross validation in BioVU to estimate feature 

weights, implemented in the glmnet R package36,37 for selection of candidate risk features 

derived from the temporal PheWAS in the SD. Among the variables considered were 196 

candidate phecodes (significant in at least one temporal PheWAS), age, sex, BMI, smoking 

status, race, and ethnicity. Individuals missing status (with only one AAA ICD code or an 

exclusion code) were classified with controls (using probit linkages) in a case-cohort design 

to allow simultaneous modeling of phecodes.

2.8. Predictive models

Prediction of AAA diagnoses in eMERGE data used logistic regression implemented in R, 

and evaluated area under the receiver operator curve (pROC package), net reclassification 

index (nricens package), and Brier scores. Phecodes selected from the elastic net were 

included alongside age, sex, BMI, smoking status, polygenic scores, and principal 

components of ancestry.

3. Results

3.1. Polygenic risk score development, performance, and association with AAA

We performed meta-analysis of MVP and FinnGen summary statistics for AAA using 

a fixed-effects inverse-variance weighted method in METAL. Polygenic scores were 

constructed using PRS-CS to generate weights, followed by p-value thresholding. The 

optimal p-value threshold was 1.0 in non-Hispanic Whites (NHW), while the optimal 

threshold in non-Hispanic Blacks (NHB) was p<5×10−3 as determined by maximal variance 

explained in BioVU (0.76% and 0.59%, respectively; Table 1); at these thresholds, the PRSs 

contained 1,118,966 and 12,314 SNPs, respectively.

We observed increasing odds of AAA in eMERGE by PRS of both scores when modeled 

adjusting for age, sex, body mass index (BMI), and 10 principal components (Figure 1). 

In NHW, the scores were both significant (p-value = < 2e-16) and each explained 0.014% 

of the variance, while in NHB only the p<5e-3 score (PRS-B) was significant (p-value = 

0.0028). When modeled as deciles, associations trended toward higher odds ratios at higher 

deciles for both PRS in NHW, but more consistently in NHB with the p=5e-3 PRS (Figure 

1). The 95th and higher percentile vs. the rest odds ratios were 2.45 (95% Confidence 

Interval [CI]: 2.09–2.88; p-value <2×10−16) and 2.11 (95% CI 0.84–5.31; p-value = 0.11) 

for NHW and NHB subsets, respectively, for the p=1 score (Table 2). For the p=5×10−3 

PRS, the odds ratios were 2.2 (95% CI: 1.87–2.59; p-value <2×10−16) and 3.34 (95% CI 

1.49–7.47; p-value = 0.003) for NHW and NHB subsets, respectively.

3.2. Identification of phecode diagnosis risk factors

In order to identify risk-associated diagnoses which precede AAA diagnosis/events, we 

performed a temporally-censored PheWAS. Within the Vanderbilt Synthetic Derivative 

Hellwege et al. Page 5

Pac Symp Biocomput. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset, we censored any diagnosis codes occurring after an ICD code for AAA, and 

performed a PheWAS using AAA as the outcome and each phecode as the predictor. 

Atherosclerosis phecodes were broadly significant, while Kawasaki disease was significant 

only in NHB individuals. In total, 192 phecodes were significant in analyses of NHW, 10 

in NHB, 3 in Hispanic and none in non-Hispanic Asian (NHA) (Table 3). In total, 196 

phecodes were significantly associated in at least one analysis. All significant phecodes were 

included as components in the elastic net.

Of 202 variables (196 Phecodes) included in the elastic net, 87 were retained in the model- 

four a priori variables (smoking status, median BMI, age, and gender), and 83 Phecode 

diagnoses. 67 of 87 features were negatively associated, that is, diagnosis of a preceding 

Phecode was associated with a reduced risk of AAA diagnosis. Chromosomal abnormalities 

and genetic disorders diagnoses (phecode 758) had the largest weighting in the elastic net 

model, despite being generally uncommon in the population studied (0.04%). Evaluation 

of the 83 phecodes indicated several hierarchical codes which were collapsed to select 

independent features, resulting in a final set of 68 phecodes.

3.3. Predictive models

We validated our AAA risk prediction models developed in BioVU using external data to 

evaluate its discrimination and calibration. We benchmarked our models to the performance 

of the USPTF screening criteria. A sparse model containing age, sex, BMI, smoking status 

and principal components of ancestry performed substantially better than USPTF screening 

criteria, with AUCs over 0.8 in all three groups compared to AUCs ranging from 0.55–0.63 

for USPTF primary and secondary criteria (Table 4, Figure 2). The AUCs when including 

PRS and covariates were 0.846 (0.839–0.854), 0.846 (0.838–0.853) and 0.830 (0.776–0.884) 

for the entire dataset, in NHW, and in NHB respectively. Adding phecode predictors to the 

models improved AUCs further: 0.883 (0.873–0.892), 0.880 (0.870–0.890) in the entire data 

and NHW set, respectively, but not in NHB (AUC = 0.758 (0.659–0.857).

We evaluated model reclassification and calibration using net reclassification indices (NRI) 

and Brier scores, respectively. Generally, although model calibration was very good for the 

full models (0.003–0.023; Table 5), inclusion of both PRS and phecode predictors to models 

using covariates had a moderate impact on reclassification indices (0.23) in combined 

datasets, with larger impacts in NHB (Table 6). The NRIs from these data compared to 

USPTF guidelines is striking, with covariates alone having an NRI of 0.20–0.37, and full 

models 0.46–0.83.

4. Discussion

We have integrated a variety of data types to construct models for predicting AAA diagnoses 

across multiple EHR systems. Our polygenic scores for AAA, despite being developed using 

only European-ancestry genetic data, associated with AAA in NHB as well as NHW, and 

are being made available through the polygenic score catalog (pgscatalog.org). Addition of 

the PRS in the entire eMERGE dataset had a small negative effect on the model (ΔAUC = 

−0.008), however the model improved in the NHW and NHB strata separately, as did all 

PRS-B models.
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Our study suggests an enhanced disease screening program of asymptomatic individuals 

who would otherwise be considered lower risk by USPTF guidelines would substantially 

improve AAA detection in the US population. Even covariates alone perform substantially 

better than the USPTF guidelines, similar to what has been shown in a recent UK Biobank 

study with a simple predictive model that lacked variables for genetics, sex, or race38. This 

demonstrates the principle that opportunities exist to substantially improve the public health 

impact of AAA. Clinical decision support tools for identifying patients for AAA screening 

based on USPTF guidelines have existed for over a decade39–42, however, recent reports 

indicate that even those fitting USPTF criteria remain unlikely to receive screening (only 

13% of eligible patients within ≥ two years)43. Importantly, these studies focused on male 

patients, while in both BioVU and eMERGE, females made up 23–25% of the AAA cases, 

higher than the 17% observed in the UK Biobank risk prediction study38.

A critical aspect of implementing predictive models that rely on multiple structured data 

elements and complex calculations is scalability. Compared with the USPSTF guidelines, 

which are straightforward to incorporate into clinical practice, implementing the models 

we present here would require that calculations be integrated into EHR systems. Ideally 

risk determinations would be presented to the clinical practitioner in real time during an 

encounter with a patient. Given the significant discrimination improvement over USPSTF 

criteria, and examples of implementation for other traits44, we believe that real-time risk 

evaluation is feasible. Enhanced screening seems unlikely to lead to unnecessary invasive 

clinical procedures, as previous meta-analyses indicate that repair of small unruptured 

aneurysms had no advantage over routine ultrasound surveillance45.

Recent studies have explored integration of imaging-derived parameters in prediction of 

AAA growth, rupture and mortality46–49. While our analyses rely on diagnostic codes 

and demographic information, our overarching goal is to identify potentially high-risk 

individuals for AAA screening via imaging. The goals of these approaches are distinct: 

identification of who is likely to develop AAA and who among AAA patients requires 

intervention. Restriction to extant structured data in the EHR improves the likelihood and 

feasibility of implementation of models in the clinical setting.

Our study is most limited by sample counts for most diverse racial/ethnic groups being 

too small to include as separate strata. This is concerning due to racial/ethnic differences 

in screening prevalence but also in clinical presentation, treatment, and mortality following 

surgical repair19–21,50,51. We were able to include NHB individuals in all phases of this 

analysis, and confirmed that performance of USPTF criteria is lower in this group19,43,51, 

but that clinically meaningful prediction (AUC>0.8) were attainable using either basic 

covariates or medical diagnoses.

Our results in eMERGE NHB participants incorporating phecodes suggested that despite use 

of cross-validation, our models from BioVU were likely overfit due to sparseness of NHB 

participants relative to the number of terms estimated. Larger numbers of NHB participants 

would facilitate improved models, however, we observed good discriminative performance 

compared with USPTF.
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Predictive models including a PRS optimized in NHB individuals resulted in models that 

performed nearly equally as well in NHW but provided modest improvements in NHB. This 

is unusual for genetic studies based solely on European-ancestry participants52 but suggests 

that risk variants may persist across diverse populations, making prediction of events easier. 

Although the PRS alone was little better than chance at predicting AAA diagnosis, including 

covariates was sufficient to yield clinical utility53. Future work evaluating scalability and 

incorporating sex-stratified estimates into models will enhance quality of prediction and 

clinical implementation.

In summary, we provide predictive models and polygenic scores for AAA which strongly 

associated with and predict AAA risk in multiple populations. These models substantially 

improve identification of people at risk of a AAA diagnosis compared with existing 

guidelines.
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Figure 1. 
Odds ratios for AAA with p=1 PRS (A) and p=5e-3 PRS (B) deciles in eMERGE
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Figure 2. 
Receiver-operator curve plots using models applied in (top to bottom:) eMERGE overall, 

NHW and NHB for (left to right:) USPTF primary+secondary guidelines, covariates only, 

PRS-B only, covariates + PRS-B, phecodes only, and full models (covariates, PRS-B, and 

phecodes).
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Table 1.

Variance explained across PRS p-value thresholds in BioVU Non-Hispanic Whites and Blacks

RACE 1 0.5 5.0E-02 5.0E-03 5.0E-04 5.0E-05 5.0E-06 5.0E-07 5.0E-08

NHW 0.0076 0.0070 0.0072 0.0062 0.0056 0.0042 0.0039 0.0031 0.0014

NHB 0.0018 0.0021 0.0018 0.0059 0.0032 0.0021 0.0023 0.0012 0.00001
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Table 2.

Association between AAA PRS and AAA outcome in eMERGE

RACE CASES / CONTROLS P=1 PRS OR (95% Cl) P=1 PRS P-
VALUE

P=5E-3 PRS-B OR (95% 
Cl)

P=5E-3 PRS-B P-
VALUE

NHW 2,165 / 42,843 2.45 (2.09–2.88) <2.×10 −16 2.20 (1.87–2.59) <2.0×10 −16 

NHB 42 / 4,492 2.11 (0.84–5.31) 0.11 3.34 (1.49–7.47) 0.003

Each PRS modeled as top 5% of distribution compared to remainder. Covariates included age, sex, BMI and 10 principal components of ancestry.
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Table 3.

Feature-identifying PheWAS in Vanderbilt Synthetic Derivative

RACE CASES CONTROLS PHECODES ANALYZED SIGNIFICANT PHECODES

NHW 4,416 1,202,332 1866 192

NHB 292 166,170 1860 10

NHA 23 23,490 1802 0

Hispanic 31 47,003 1843 3
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Table 4.

AUC (CI) for predictive models fit in BioVU and applied to eMERGE

MODEL ALL NHW NHB

USPTF-B 0.613 (0.604–0.622) 0.614 (0.605–0.623) 0.545 (0.504–0.586)

USPTF-C 0.632 (0.623–0.642) 0.632 (0.622–0.642) 0.594 (0.539–0.650)

COV 0.844 (0.836–0.851) 0.838 (0.830–0.845) 0.819 (0.765–0.873)

PHE 0.859 (0.849–0.870) 0.853 (0.842–0.864) 0.807 (0.732–0.883)

PHE+COV 0.883 (0.874–0.893) 0.877 (0.868–0.887) 0.758 (0.659–0.857)

PRS 0.494 (0.484–0.505) 0.598 (0.586–0.610) 0.531 (0.448–0.613)

PRS+COV 0.836 (0.829–0.844) 0.846 (0.838–0.854) 0.820 (0.766–0.874)

FULL 0.883 (0.874–0.893) 0.877 (0.868–0.887) 0.758 (0.659–0.857)

PRS-B 0.533 (0.522–0.544) 0.601 (0.589–0.613) 0.580 (0.498–0.662)

PRS-B+COV 0.846 (0.839–0.854) 0.846 (0.838–0.853) 0.830 (0.776–0.874)

FULL-B 0.883 (0.873–0.892) 0.880 (0.870–0.890) 0.758 (0.659–0.857)

PRS: Best performing PRS overall; PRS-B/FULL-B: models including p<5e-3 optimal PRS in NHB
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Table 5.

Brier scores for various models in eMERGE

MODEL ALL NHW NHB

FULL 0.021 0.023 0.0032

FULL-B 0.021 0.023 0.0030
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Table 6.

NRI for predictive models in eMERGE compared with USPSTF screening criteria

MODELS EMERGE EMERGE NHW EMERGE NHB

USPTF C : B 0 0 0

COV : USPTF B 0.37 0.31 0.20

COV : USPTF C 0.37 0.31 0.20

PRS+COV : COV 0.025 0.031 0.008

PRS-B+COV : COV 0.018 0.024 0.048

FULL : COV 0.23 0.25 0.61

BFULL : COV 0.23 0.24 0.63

FULL : USPTF B 0.60 0.50 0.82

FULL : USPTF C 0.60 0.50 0.82

BFULL : USPTF B 0.60 0.46 0.83

BFULL : USPTF C 0.60 0.46 0.83

PRS: Best performing PRS overall; PRS-B/FULL-B: models including p<5e-3 PRS (optimal in NHB).

Pac Symp Biocomput. Author manuscript; available in PMC 2023 January 01.


	Abstract
	Introduction
	Methods
	Synthetic Derivative
	BioVU
	eMERGE
	Genome-wide Summary Statistics
	Polygenic Score Development
	Identification of phecode risk factors
	Selection of independent components with elastic nets
	Predictive models

	Results
	Polygenic risk score development, performance, and association with AAA
	Identification of phecode diagnosis risk factors
	Predictive models

	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.

