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Abstract
Recently, the dependence group has been proposed to study the robustness of networks

with interdependent nodes. A dependence group means that a failed node in the group can

lead to the failures of the whole group. Considering the situation of real networks that one

failed node may not always break the functionality of a dependence group, we study a cas-

cading failure model that a dependence group fails only when more than a fraction β of

nodes of the group fail. We find that the network becomes more robust with the increasing

of the parameter β. However, the type of percolation transition is always first order unless

the model reduces to the classical network percolation model, which is independent of the

degree distribution of the network. Furthermore, we find that a larger dependence group

size does not always make the networks more fragile. We also present exact solutions to

the size of the giant component and the critical point, which are in agreement with the

simulations well.

Introduction
In the last decades, complex networks have attracted increasing attention [1, 2], since many re-
alistic systems can be described by networks, such as the Internet, metabolic system, food web
and traffic system [3]. One of the important topics in complex networks is the robustness of
the networked system, i.e., the ability of a network to resist change without adapting its initial
stable configuration.

In theory, network percolation model is usually used to study the robustness of networks
[4–6]. In simple terms, the network percolation model describes the behavior of connected
clusters of a network after a fraction 1 − p of nodes have been removed. This model usually ex-
hibits a second order phase transition, that is the size of the giant component continuously de-
creases to zero while p decreases to the critical point pc. In addition, the critical point pc is
usually used to evaluate the robustness of the networks. The smaller the critical point pc is, the
more robust the network is. For some specific cases, such as random networks, the critical
point can be solved exactly [7, 8].

PLOSONE | DOI:10.1371/journal.pone.0126674 May 15, 2015 1 / 10

a11111

OPEN ACCESS

Citation:Wang H, Li M, Deng L, Wang B-H (2015)
Percolation on Networks with Conditional
Dependence Group. PLoS ONE 10(5): e0126674.
doi:10.1371/journal.pone.0126674

Academic Editor: Daqing Li, Beihang University,
CHINA

Received: November 14, 2014

Accepted: April 6, 2015

Published: May 15, 2015

Copyright: © 2015 Wang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work is funded by the National Natural
Science Foundation of China (Grant No.: 11275186)
and the Open Funding Programme of Joint
Laboratory of Flight Vehicle Ocean-based
Measurement and Control (Grant No.:
FOM2014OF001). ML is also supported by the
Fundamental Research Funds for the Central
Universities. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126674&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126674&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126674&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Recently, to study the effects of the dependence between nodes on the robustness of net-
work, the concept of dependence group (link) has been proposed [9, 10]. The dependence
group means that if one of the nodes in a group fails, the group will fail totally, i.e., all the other
nodes of the group fail. For example, in a financial network, the trading and sale connections
between companies can be understood as the connectivity links of the network. Besides, the
companies in the same industrial chain could form a dependence group. If one company fails,
the other companies in the same industrial chain could also fail due to the rupture of the
industrial chain.

Parshani et al find that the robustness of such networks is determined by the size g of the de-
pendence group [10, 11]. A lager g could make such networks much more fragile than the net-
works without dependence group (g = 1), and the networks are more robust when the degrees
are distributed more broadly. Furthermore, instead of the second order percolation transition,
the networks with dependence group demonstrate a first order percolation transition for g> 1.
In ref.[12], Bashan et al find that ER(Erdos-Rényi) and RR(random-regular) networks topolo-
gies differ greatly in their stability in the case of large dependence group sizes. In addition,
when such networks are embedded into a two-dimensional space, they will be extremely
fragile [13].

After that, Li et al also show that the overlapping of the connectivity and dependence links
(g = 2) and the asymmetric dependence can make such networks more robust [14, 15]. In addi-
tion, the networks with dependence groups or links have also been studied in the form of inter-
dependent networks and multilayer networks, which also shows the fragility of networks when
nodes depend on each other [16, 17]. In these studies, some new phenomena have also been
found, such as assortativity decreases the robustness of interdependent networks [18], percola-
tion transitions are not always sharpened by making networks interdependent [19], simulta-
neous first and second order percolation transitions [20].

However, in reality, the failure of one node may not always lead to the failure of the depen-
dence group. For example, in an industrial chain, two or more companies may play a similar
role. Thus, if one of them fails, the other companies can also form a complete industrial chain.
But if all these companies fail, the missing links will make it impossible for the other companies
to form a complete industrial chain. As a result, all the other companies in this industrial chain
will fail. We can find the similar phenomenon when we consider the rumor spreading on on-
line social networks. Individuals on Facebook or Twitter always belong to some groups based
on interest, work, or region. Someone in a group will listen to a rumor, only when a fraction of
individuals in the same group listen to this rumor. Therefore, in reality, the dependence of
nodes in a group could be conditional, only when a fraction of nodes fail, the whole group
will fail.

In this paper, we will study the cascading dynamics of networks with this conditional depen-
dence group. Following the model proposed by Parshani et al [10], we consider the network
with a degree distribution pk and each node belongs to a dependence group with size g. In our
model, only when the fraction of the failed nodes of a group is larger than β, the group will fail,
i.e., all nodes in the group fail. An illustration of this model is given in Fig 1. Obviously, our
model is equivalent to the model proposed by Parshani et al when β! 0 [10], and reduces to
the classical network percolation model when β! 1. In some sense, the parameter β represents
the dependence intensity of the nodes in a group. A large βmeans the dependence of nodes is
strong, one failed node could lead to the failure of the whole group. While the small βmeans
the dependence of nodes is weak, one failed node does not affect the functionality of the group.
Note that this model is different from the one proposed in ref.[15]. In their model, the failure
of a group is determined by the total degrees of the failed nodes, and the nodes with larger de-
grees are more important for a group to keep its functionality. So the nodes in their model are
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unequal, the dependence is asymmetric. However, the dependence in our model is mutual, all
the nodes in a group play the same role in keeping the group running.

The paper is organized as follows. In the next section, we will give the analytical results of
our model using generating function techniques. And then, we perform computer simulations
on ER networks to confirm the predictions of theoretical analysis. The discussion and conclu-
sion are given in the last section.

Fig 1. Networks with conditional dependence groups. The network is composed of nodes and connectivity links, and each node belongs to a
dependence group (surrounded by dash lines). In each group, if more than a fraction β of nodes fail, the group will fail, i.e., all the nodes of this group fail.
Take β = 0.5 as an example. In the group formed by nodes 5, 8 and 9, when node 9 fails, nodes 5 and 8 will still work since the fraction of failed nodes is less
than β. However, if nodes 5 and 9 fail simultaneously, node 8 must also fail. This model can also be described by the load model used in ref.[15], this article
does not cover details of this model.

doi:10.1371/journal.pone.0126674.g001
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Analysis
The iterative process of cascading failures on the network with dependence groups begins by
randomly removing a fraction 1 − p of nodes of the network as the initial failed nodes. The
failed nodes will lead to two cascading failure processes:

1. Links that belong to the failed nodes will also fail, which could result in the other nodes dis-
connecting to the network. This process is called percolation step.

2. If the fraction of the failed nodes of a dependence group is larger than β, the group will fail,
i.e., all the other nodes in this group fail. This process is called dependence step.

Once the cascade process begins, the two steps will occur alternately until there is no further
splitting of nodes.

We solve this model by the method used in ref.[14, 21], which considers the final state after
the cascades. In this paper, the probability that a randomly chosen node belongs to the giant
component is denoted as S, which is the order parameter usually used in percolation theory.
Furthermore, the parameter R gives the probability that a randomly chosen link connects to
the giant component. Therefore, for the steady state, S satisfies

S ¼ p½1� G0ð1� RÞ�f ðRÞ: ð1Þ

Here, G0(x) is the generating function of the degree distribution G0(x) = ∑k pk x
k. So it is easy to

know that p[1−G0(1−R)] gives the probability that a randomly chosen node is not removed at
the initial and belongs to the giant component. The function f(R) expresses the probability that
the dependence group which the chosen node belongs to is functioning.

Then, we check that the conditions of a dependence group is functioning after the cascades,
and give the expression of f(R). As the setting of the model, a functioning group can not have
more than a fraction β of nodes that do not belong to the giant component. This yields

f ðRÞ ¼
Xbgbc
i¼0

g � 1

i

 !(
1� p½1� G0ð1� RÞ�

)i(
p½1� G0ð1� RÞ�

)g�1�i

; ð2Þ

where g is the size of the dependence group, and bgβc is the largest integer smaller than or
equal to gβ. Note that only g − 1 nodes are considered in Eq (2), this is because the chosen node
we considered must belong to the giant component (see Eq (1)). For convenience, we rewrite f
(R) in the form of the incomplete beta function,

f ðRÞ ¼ Ilða; bÞ: ð3Þ

Here, λ = p[1 − G0(1 − R)], a = g − 1 − bgβc and b = bgβc + 1. Thus, Eq (1) can be written as

S ¼ p½1� G0ð1� RÞ�Ilða; bÞ ¼ lIlða; bÞ: ð4Þ

Obviously, when β! 1, Iλ(a, b) = 1, Eq (4) reduces to S = p[1−G0(1−R)], which is just the equa-
tion for the classic network percolation [7]. While β! 0, Iλ(a, b) = pg−1[1−G0(1−R)]

g−1, Eq (4)
reduces to S = pg[1−G0(1−R)]

g, which is the equation for the percolation on the network with
unconditional dependence group [10].

Similarly, we can get the equation for R,

R ¼ p½1� G1ð1� RÞ�Ilða; bÞ; ð5Þ

where G1(x) is the generating function of the excess degree distribution G1(x) = ∑k pk kx
k−1/hki.

Obviously, Eq (5) has a trivial solution R = 0, which means that the network has no giant
component. With the increasing of p, the point that the nontrivial solution of R appears for the
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first time is the critical point (pc, Rc). The nontrivial solution of R can be presented by the non-
zero crossing points of the curves X(R) = p[1−G1(1−R)]Iλ(a, b) and Y(R) = R. Thus, the critical
point (pc, Rc) corresponds to the tangent of the curves X(R) and Y(R), that is

pc½1� G1ð1� RcÞ�
dIlða; bÞ
dRc

� pc
dG1ð1� RcÞ

dRc

Ilða; bÞ ¼ 1: ð6Þ

Together with Eq (5), we can obtain the critical point of this model.
As we pointed in the last section, our model will reduce to two existing percolation models,

whose types of percolation transition are different. So, the crossover of the first and the second
phase transitions must can be observed in our model. In the first order transition region, Rc>

0, we can solve Eqs (5) and (6) numerically to obtain the first order transition point pIc.
For the second order transition, Rc = 0, thus λ = 0. For a> 0, Eq (5) is a no solution equa-

tion, since Iλ(a, b) = 0. Therefore, in the second order transition region, the parameters must
satisfy a = 0, i.e., gβ� g − 1. That is to say the tricritical point βc is (g − 1)/g. When a = 0 and λ
= 0, Iλ(a, b) = 1, so Eq (6) gives the critical point of the second order transition,

pIIc ¼ 1

G0
1ð1Þ

; b > bc: ð7Þ

This is the critical point of the classic percolation on a tree-like spare network [7]. This result is
obvious as the dependence group does not serve any function when β> βc = (g − 1)/g. In con-
clusion, unless the model reduces to the classic percolation model, it always demonstrates a
first order phase transition, which is independent of the degree distribution of the network. In
other words, the tricritical point of the system only depends on the size of the
dependence group.

ER network
As an example, we consider the cascade process on ER networks, for which the generating
function can be written as

G0ðxÞ ¼ G1ðxÞ ¼ e�hkið1�xÞ: ð8Þ

Substituting these generating functions into Eqs (4) and (5), we get a self-consistent equation
for the order parameter S,

S ¼ pð1� e�hkiSÞIpð1�e�hkiSÞða; bÞ: ð9Þ

Here, the relation S = R for ER networks is used. Solving this equation, we will obtain the rela-
tion of the order parameter S and the control parameter p.

To validate the theoretical results, we carried out simulations on an ER network with 20000
nodes, and plot the size of the giant component in the end of cascade process as a function of
the fraction p of nodes that have been left after random removal in Figs 2 and 3. One can see
that the simulation results are in agreement with the theoretical results well. From Fig 2, we
can find that the network becomes more fragile with β decreasing, and when β! 1, the system
demonstrates a second order phase transition. This is because a small β allows the nodes in the
same group to have a limited amount of independence.

It is easy to know that a larger dependence group will cause greater damage when it fails.
However, for a given β, a larger group also has a larger threshold bgβc, which means the large
dependence groups are robust. These two opposing effects will lead to that the networks with
large group sizes are not always more fragile than those with small group sizes (see Fig 3),
which is different from the model with unconditional dependence groups [10].
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For given β, g and g0 with g< g0, the inequality bgβc/bg0 βc � g/g0 must always hold. We find
that when bgβc/bg0 βc = g/g0, the network with the larger group size g0 is more fragile than the
one with group size g. While bgβc/bg0 βc< g/g0, the network with the smaller group size is
more fragile (see Fig 4).

Next, we will find the first order transition point pIc and the second order transition point
pIIc . For ER networks, we have

G0
0ðxÞ ¼ G0

1ðxÞ ¼ hkie�hkið1�xÞ: ð10Þ

In addition, the incomplete beta function satisfies

dIlða; bÞ
dl

¼ la�1ð1� lÞb�1
: ð11Þ

Fig 2. The simulation results of ER networks with 20000 nodes for different β. In the simulation, the parameters are set as: hki = 6, g = 5. (a) The size of
the giant component S versus p, the fraction of nodes that have been left after random removal. The symbols represent simulation results, and the solid lines
show the corresponding analytical predictions of Eq (9). For β > (g − 1)/g, the dependence group has no effect on the cascading process, then the percolation
process leads to a second order phase transition. When β < (g − 1)/g, a first order phase transition can be found. Both the first and the second order phase
transition processes obey Eq (9). (b) As pointed in ref.[10], the number of iterative failures (NOI) sharply increases when p approaches the critical point, so
the sharp peaks can identify the corresponding critical points pI

c for the first order transition region.

doi:10.1371/journal.pone.0126674.g002
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Substituting these functions into Eq (6), we get a self-consistent equation for the critical
point pc,

la
cð1� lcÞb�1 þ Sc

lc

� �
dlc
dSc

¼ 1; ð12Þ

where lc ¼ pcð1� e�hkiScÞ. Here, we have used Eq (9) and the relation S = R for ER networks.

For the second order phase transition, Sc ! 0, thus la
cð1� lcÞb�1 ! 0, Sc/λc ! 1 and

e�hkiSc ! 1. And then, we will have the critical point for the second order region,

dlc

dSc
¼ pIIc hki ¼ 1: ð13Þ

This is just the critical point for the classic percolation on ER networks, which is consistent
with the previous discussion.

For the first order phase transition, Sc > 0, we can not get an analytical expression of the
critical point pIc. However, we can solve Eqs (9) and (12) numerically in the condition of Sc> 0

Fig 3. The results of ER networks with 20000 nodes for different g. In the simulation, the parameters are set as: hki = 6, g = 5 (solid symbols) and g = 10
(empty symbols). (a) The size of the giant component S versus p, the fraction of nodes that have been left after random removal. The symbols represent
simulation results, and the solid lines show the corresponding analytical predictions of Eq (9). When β = 0.15, 0.35, networks becomemore robust with g
increaseing. However, for β = 0.45, 0.65, networks becomemore fragile with g increaseing. (b) NOI sharply increases when p approaches the critical point,
so the sharp peaks can identify the corresponding critical points pI

c for the first order transition region.

doi:10.1371/journal.pone.0126674.g003
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to obtain the critical point pIc. Because the incomplete beta function is a discontinuous function
when a and b are positive integers, the curve of the critical point pIc versus β is discontinuous at
β = n/g, n = 1, 2, 3, . . ., g −1 as shown in Fig 4.

In Fig 4, we plot the values of pc as a function of β for different g and hki. As the theoretical
analysis, one can find the crossover between the two types of phase transitions, and the tricriti-
cal point βc is only dependent on the size g of the dependence group and independent of the av-
erage degree hki of the network.

Discussion and conclusions
Considering the conditional dependence in real networks, we have proposed a cascading failure
model on the networks with conditional dependence group. In our model, a dependence group
fails only when it has more than a fraction β of failed nodes, which covers the model that the
failure of only one node can lead to the failure of a dependence group. We think that this will
reflect the actual dependence of real networked system in some sense.

Both simulation and analytical results reveal the existence of the crossover between the first
and the second order phase transition in our model. When β is small, only one or two nodes

Fig 4. The critical point pc versus β. In the simulation, the network size is set as 20000 and the average degree is hki = 6. The dependence group sizes are
set as g = 5 (square) and g = 10 (star). The solid and dash lines are the corresponding theoretical prediction of Eq (12) for the first order transition region, and
the dot lines for the second order transition region. As discussed in the text, the curve of the critical point pI

c is discontinuous at β = n/g, n = 1, 2, 3, . . ., g −1.
For β > (g − 1)/g, the system demonstrates a continuous phase transition. In addition, the critical points of the networks with large dependence group sizes
are not always larger than those with small group sizes. This means dependence group size is not the sole factor determining the robustness of
such networks.

doi:10.1371/journal.pone.0126674.g004
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fail, the dependence group will fail. So the networks can be easily destroyed in the form of the
first order phase transition. That is to say, the dependence between nodes is strong. For a larger
β, the nodes in a dependence group can keep more independence, so the network is more ro-
bust. However, the type of percolation is always first order, unless the model reduces to the
classic network percolation model. In other words, the tricritical point of our model only de-
pends on the size of the dependence group. Furthermore, we find that larger dependence group
size does not always make such networks more fragile, which is meaningful for understanding
the robustness of the real networked system with dependence.
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