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Diabetic neuropathy (DN) is clinically characterized by a
“stocking and glove” pattern of symptoms such as sen-
sory loss, numbness, pain, and burning sensations. This
pattern implicates that Schwann cells, required to main-
tain the myelin sheath and the nodes of Ranvier, rather
than the neurons themselves, represent the primary
site of injury (Fig. 1). In PNAS, Guo et al. (1) explain how
the necroptosis protein, mixed-lineage kinase domain–
like protein (MLKL), causes Schwann cells to lose their
function.

DN is not a classical form of demyelinating neuropathy,
such as Guillain-Barr�e syndrome. However, chronic hyper-
glycemia in type 1 and type 2 diabetes mellitus patients
may induce typical features of demyelination, especially in
severely affected patients (2–4). Therefore, understanding
the death of Schwann cells might help unravel their mech-
anistic role in the associated loss of the myelin sheath and
clinical progression of DN.

Necroptosis is a form of regulated necrosis that is asso-
ciated with phosphorylation of MLKL (5, 6), a pseudokinase
(7, 8). Although activation of MLKL is not sufficient to kill a
cell (9), it is required for necroptosis. The only known
kinase to phosphorylate MLKL is receptor-interacting
protein kinase 3 (RIPK3) (5, 6) which is controlled by
death receptors through RIPK1 (10–13), Toll-like receptors
through the protein TIR domain–containing adapter induc-
ing interferon-beta (TRIF) (14–16), and nucleotide sensors
such as Z-DNA-binding protein 1 (ZBP1) (13, 17–23). Inter-
action with these proteins requires the RIP homotypic
interacting motif of RIPK3 (24, 25) which is also interfered
with by viruses such as cytomegalovirus (25–27), mechanis-
tically highlighting the well-established role for necroptosis
in viral defense.

In their current work, Guo et al. (1) first establish a
transmission electron microscopy–based readout system
of myelin decompaction following streptozotocin (STZ)–in-
duced loss of pancreatic beta cells, thereby inducing
diabetes. They demonstrate colocalization of MLKL with a
known myelin sheath marker, indicating localization in
the Schwann cells. Next, the authors investigate MLKL-
deficient mice which exhibit less myelin decompaction and
higher nerve conduction velocity in the STZ model, indicat-
ing MLKL to mechanistically induce DN. Further, they gen-
erate Schwann cell–specific MLKL-deficient mice employing
a tamoxifen-inducible Plp1 promotor and confirm the
above-mentioned findings. In yet another independent
approach, they replace the MLKL gene with an S441A point
mutation of MLKL in mice and, once again, reverse the dia-
betic phenotype in this setting when compared to MLKL
wild-type mice. Finally, and clinically most importantly, an
MLKL inhibitor (TC013249) is tested. As this inhibitor was
generated to ultimately treat humans, human MLKL knock-
in mice (hMLKL-KI) are employed for this important set

of experiments. The authors carefully confirm that the
hMLKL-KI mice do not express traces of mouse MLKL
and control for equal hMLKL expression levels compared
to wild-type mice. Intraperitoneal osmotic pumps are used
to continuously deliver TC013249 to the hMLKL-KI mice.
Upon treatment, significantly mitigated myelin sheath
decompaction is observed. This functionally correlates
with significantly less STZ-induced decreases in nerve con-
duction velocity.

MLKL inhibition, however, should be interpreted within a
bigger picture. Within the field of neurology, other conditions

Fig. 1. Demyelination during DN involves MLKL-mediated damage of
Schwann cells. In healthy individuals, the speed at which an electrochemical
impulse propagates down a neural pathway, referred to as nerve conduc-
tion velocity, requires Schwann cells for electric neuronal isolation. In DN,
demyelination of Schwann cells was recognized decades ago and is well
known to clinically associate with the stocking-and-glove pattern frequently
observed in diabetic patients. Currently, no treatment for DN is clinically
available. Guo et al. (1) set out to investigate how Schwann cells lose their
function. They report a critical pathophysiological contribution of MLKL, a
pseudokinase and key mediator of necroptosis. In the STZ-induced murine
model of diabetes and in patients suffering from DN, Schwann
cell degradation is a common feature. In that model, MLKL-deficient or
MLKL-mutant mice, and wild-type mice treated with the MLKL inhibitor
TC013249, exhibited less demyelination.
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that include demyelination include multiple sclerosis, March-
iafava Bignami disease, central pontine myelinolysis, and
others. It will be interesting to investigate
the role of MLKL in these disorders. In
addition, RIPK1 was demonstrated to play
critical roles in diverse pathologies of the
central nervous system (28). Interestingly,
and somehow in contrast to a proactive
role, MLKL-deficient patients may present with features
of neurodegeneration (29). Beyond the field of neurology,
MLKL was reported to be involved in acute conditions
such as ischemia-reperfusion injury (9, 28, 30–34). In the
preclinical limelight of the growing body of evidence for
MLKL as a mediator of diseases, clinical trials employing
MLKL inhibitors will be considered. Naturally, however,
inhibiting the downstream target of necroptosis will
result in the functional loss of necroptosis upon MLKL
inhibition. Although most primary data indicate a viral
inhibition of the kinase RIPK3 (11, 27, 35–37) rather than
MLKL directly, it must be predicted that viral infections,
known to be cleared by necroptosis (38), may appear
more frequently. Clinical trials for testing MLKL inhibitors
should therefore be designed to include more-detailed

assessments than usual of safety from viral infections
and associated complications.

It is estimated that the annual cost of DN is higher than
US$10 billion in the United States (39). In type 2 diabetes
mellitus, improvement of glycemic control is thought to
have little effect on neuropathy outcomes (39). Opioids are
not recommended even in painful DN, owing to the potential
for abuse. Novel treatment strategies, therefore, are of para-
mount clinical importance. In conclusion, the data presented
by Guo et al. (1) indicate a therapeutic target in a rodent
model that may be of potential future interest and clearly
warrants further preclinical and clinical investigations.
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