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Abstract

The reliability of quantitative structure-property relationship (QSPR) and quantitative struc-

ture-activity relationship (QSAR) models is often difficult to assess due to the problems of

accessing the tools and data used to build the models. We present here BioPPSy, which

aims to fill this gap by providing an easy-to-use open-source software platform. We demon-

strate the program capabilities by calculating three key properties used in drug discovery,

aqueous solubility, Caco-2 cell permeability and blood-brain barrier permeability. A compari-

son is made with a number of previously reported methods, taken from the literature, for

each property. The software, including source code, current models and databases, is avail-

able from https://sourceforge.net/projects/bioppsy/.

Introduction

The ability to identify a priori successful drug-like molecules from a plethora of possible candi-

dates is a critical hurdle for the pharmaceutical industry in terms of time and resources [1]. To

address this obstacle, in silico prediction of chemical properties has become an essential tool in

the process of drug discovery and development [2]. Quantitative Structure-Property Relation-

ship (QSPR) models are widely used to predict all relevant pharmacokinetics properties, par-

ticularly adsorption, distribution, metabolism, excretion and toxicity (commonly known as

ADME/Tox properties).

QSPR methods are models that link a set of known variables (known as “descriptors”,

which are related to the chemical structure of the molecules) to a certain property. A mathe-

matical relationship between a set of descriptors and the property is established by fitting a

training set, i.e. a group of molecules whose experimental property value is known. Thanks to

their simplicity and good performance, many different QSPR models have emerged in recent

years [3]. The utility of QSPR tools is largely affected by two factors: (a) their reliability, i.e.

their ability to make predictions outside the training set, and (b) access to the tools, methods

and experimental databases reported in the literature. These two factors are tightly connected,

as limited access to raw data strongly hinders further improvement of the state of the art tools,

particularly when it would be desirable to incorporate new experimental data into the process

of model training.
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The BioPPSy software system addresses these problems by delivering an open-source tool

set for performing QSPR analysis and providing access to the experimental data used to derive

the models. BioPPSy presents an easy-to-use graphical interface (see Fig 1 for a snapshot). The

software is programmed in Java and is freely available to use and modify. At the current stage

of development several different analysis methods have been implemented, as well as a wide

set of molecular descriptors.

The BioPPSy software is a BIOchemical Property Prediction SYstem. Here we show the

capabilities of BioPPSy by predicting three critical ADME/Tox properties for drug discovery:

aqueous solubility, Blood-Brain Barrier (BBB) permeability and Caco-2 cell permeability. The

first property is arguably the most critical of any drug, as its solubility governs both the rate of

dissolution of the compound and the maximum concentration reached in the gastrointestinal

fluid[4]. As a result it determines whether the compound is orally available and can be ulti-

mately delivered to its intended target [5].

Blood-brain barrier permeability (BBB) is a measurement of how easily a molecule can

reach the brain from the general blood circulation; therefore BBB permeability is a central

property not only for neurotherapeutics (where high BBB permeability is desirable) but also

for other drugs that may be harmful for the brain [6]. Lastly, the Caco-2 cell line is one of the

most widely utilised models of intestinal absorption, being key to estimate the bioavailability

of a compound [7].

Fig 1. Snapshot of the BioPPSy software.

doi:10.1371/journal.pone.0166298.g001
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BioPPSy workflow

The BioPPSy program has 2 main functionalities, creation of a QSPR/QSAR model and the

prediction of properties using this model. The workflow involves the selection of a set of

descriptors, an algorithm, and the input of a molecule data set. The model is created from this

information, and stored for later use (Fig 2). The current version of the software includes ~100

descriptors–new descriptors can be included by placing Java scripts in the descriptor directory

and including the name of the new descriptor in the descriptor list. Algorithms currently

include MLR and other linear methods–non-linear methods will be included in the future.

The molecule dataset must be provided in structure data format (sdf).

Features

BioPPSy is designed to provide a simple and flexible tool for QSPR studies. It presents a user-

friendly graphical interface which allows the user to build their own models. Thanks to its

open-source Apache license, additional features can be included in the software using Java. The

program uses Chimera software for molecule visualisation [8], which should be downloaded

independently, and is partially based on JOELib, a freely available cheminformatics library [9].

The BioPPSy software completes the two main tasks of a QSPR software [10]: it builds

QSPR models from a given training set, and uses previously derived models to make property

predictions.

Definition of a QSPR model

A QSPR model is a mathematical rule that calculates a property P (such as solubility, blood-

brain barrier permeation or Caco-2 cell permeability) based on the values of a number of

Fig 2. Workflow of the BioPPSy software.

doi:10.1371/journal.pone.0166298.g002
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descriptors (d1, d2,. . ., dN) which can be computed from the molecular description, including

3-D structures, of the compounds. A new QSPR model can be set up in BioPPSy from the

“Algorithm” menu.

The relationship between property and descriptors is established by using a set of com-

pounds of known P, usually called the training set. The training sets used for the examples

shown in this article can be found as part of the BioPPSy source code, although any other mol-

ecule set (in multi-SDF format) can be selected by the user. Given a training set, the data is fit-

ted. There are many mathematical methods that can be used to perform this fitting [11].

BioPPSy has some of the most popular methods implemented, such as multivariate linear

regression (MLR), mean centered algorithm and mean centered unit variance (MCUV). Some

properties require more specific mathematical algorithms; as an example BioPPSy presents the

Klopman algorithm for solubility calculations [12]. This method does not fit the property P (in

this case, solubility) but its stereographic projection; this derived property is then fitted

through a MCUV algorithm [12].

Regarding the choice of descriptors, BioPPSy can currently calculate more than 165 differ-

ent descriptors. Some of them have been taken from the JOELib library of molecular descrip-

tors [9] while others have been specifically implemented for BioPPSy, mostly following their

description listed in the compendium by Todeschini & Consonni [13]. Other descriptors will

be implemented in the future and can also be added to the source code by the user.

Once the method of fitting and descriptors have been chosen, the algorithm is trained. The

quality of the obtained QSPR model can be automatically assessed through the software, as

BioPPSy automatically displays the coefficient of determination (r2) and the standard devia-

tion of the data (σ). In addition, a plot of P versus any of the used descriptors, di, can be dis-

played. Following algorithm development, the algorithm can be saved for later use.

Property prediction

The final aim of any QSPR software is property prediction. This can be done in BioPPSy

through the “Molecule Set” menu. Any molecule data set in multi-SDF format can be uploaded

and explored through BioPPSy, including structure visualization using the Chimera software

[8] (see Fig 1). A property can be predicted provided there is a suitable algorithm, which can

be selected from the BioPPSy options. If the data set already presents an experimental value for

the property (for instance, in the case of a test set), the quality of the prediction is automatically

evaluated for each compound in the data set.

Results

We have used BioPPSy to predict three key properties for drug discovery, solubility, blood-

brain barrier permeability and Caco-2 cell permeability. Many different QSPR methods have

been proposed for each of these properties. It is often difficult to compare the predictive ability

of the methods themselves, as they rely on different training and test sets, and have been gener-

ated using different software. In this Section we aim to carry out this comparison using the

same training sets and the BioPPSy software. This guaranties that the only differences in per-

formance are related to the models themselves, minimising additional and confounding

variables.

Aqueous solubility

Aqueous solubility has played a central role in in silico methods for drug discovery since the

pioneering observation of Lipinski and co-workers regarding the importance of aqueous solu-

bility in drug absorption [14]. They established the so-called “rule of five”, which relates the

BioPPSy
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solubility of a given compound to several molecular properties. Since then, many different

methods have been proposed [12,15–19]. We have selected several of these methods and re-

derived them using BioPPSy. The main difference across the methods lies in the nature and

number of descriptors used, and the origin and size of datasets used for training.

Klopman and Hou [12] used 118 group contribution descriptors; these descriptors refer to

general atomic properties, functional groups and fragment-based characteristics. Their model

was fitted using a training set of 1168 organic compounds. The model developed by McElroy

and [15] uses a combination of 11 topological, geometric and electronic descriptors. They used

a training set of 298 heteroatom-contaning organic compounds. Tetko et al. [16] proposed a

linear QSPR model based on 33 descriptors linked to electrotopological characterstics that was

fitted to a training set composed of 879 organic compounds. The Cheng and Merz [17] QSPR

model is based on 8 descriptors that included the count of hydrogen bond donors and accep-

tors, the number of rotational bonds, and the water/octanol partition coefficient; these descrip-

tors, which do not rely on the 3-D structure of the molecule, were used to fit a training set of

755 organic compounds. Delaney [18] proposed a method using just 4 descriptors, that also

did not require a 3-D representation of the molecules, trained against several datasets, includ-

ing one with 1144 small compounds and a larger one (contaning additional Syngenta propie-

tary molecules); neither the coefficient of determination nor the standard deviation were

reported for the small dataset, although, using the larger dataset a model with r2 = 0.69 and σ =

1.01 was produced. The last model considered here was the model proposed by Hou et al. [19],

where 76 descriptors (based on the atom contribution approach) were used; the training set

consisted of 878 organic compounds. In summary, we have explored 6 different QSPR models

trained using between 4 and 118 descriptors on databases of different composition and sizes,

ranging from 298 to 1168 compounds. A comparison of the methods, and the performance of

BioPPSy to reproduce these models, is presented in Table 1. When creating these models, we

have used MLR in all cases; this differs from the approach employed by Klopman and Hou

who used MCUV with stereographic projection [12]. While this method is included in the

BioPPSy package, it did not produce superior results than standard MLR.

The regression analysis statistics from BioPPSy generally match closely the literature results,

indicating that BioPPSy can reproduce QSPR calculations reported in the literature; differ-

ences in coefficient of determination are typically less than 0.05. Not unexpectedly, the coeffi-

cient of determination is better (closer to 1.0) the larger the number of descriptors. The largest

Table 1. Comparison of performance of BioPPSy with literature methods for predicting the logarithm of aqueous solubility.

dN N Literaturea BioPPSya BioPPSyb

r2 σ r2 σ Δmax r2 σ MUE Δmax

Klopman and Hou. [12] 118 1168 0.95 0.50 - - - 0.73 1.05 0.80 -5.9

McElroy and Jurs [15] 11 298 0.79 na 0.74 0.94 3.4 0.70 1.11 0.85 3.9

Tetko et al. [16] 33 879 0.86 na 0.83 0.82 -3.0 0.83 0.84 0.66 -3.0

Cheng and Merz [17] 8 755 0.84 na - - - 0.84 0.42 0.61 -4.4

Delaney [18] 4 1144 na na 0.82 0.89 4.0 0.82 0.86 0.64 4.7

Hou et al. [19] 76 878 0.96 0.61 0.92 0.57 -2.2 0.90 0.64 0.50 -2.3

dN is the number of descriptors used in each model (excluding intercept). N is the number of molecules in the datasets used in the original model. r2 is the

coefficient of determination of the fitting and σ is the standard deviation. MUE is the mean unsigned error. Δmax is the largest difference between

experimental and predicted solubility. A dash (–) indicates the dataset was not available. ‘na’ indicates the coefficient of determination or standard deviation

was not reported.
aRegression statistics obtained using dN descriptors on datasets of size N reported in the literature.
bRegression statistics obtained using dN descriptors on the dataset of 1297 organic compounds extracted from the AQUASOL and PHYSPROP datasets.

doi:10.1371/journal.pone.0166298.t001
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difference between the results from BioPPSy and the literature data was for the Klopman and

Hou model; notably, 7 of the 118 descriptors used by Klopman and Hou were not represented

in the Huuskonen data set. Without access to the training set used by Klopman and Hou, we

cannot identify the root cause of the difference in regression statistics.

To test the relative performance of these 6 different methods, we used a single data set com-

plied by Huuskonen [22], formed by 1297 organic compounds extracted from the AQUASOL

database of the University of Arizona [20] and the PHYSPROP database [21], to train models

using the same set of descriptors used in each model. A comparison of the methods can be

found in Table 1. The models created by Tetko et al. and Hou et al. used a subset of the Huus-

konen set. The data sets used by McElroy and Jurs, and Delaney have 61% and 15% coverage,

respectively, by the Huuskonen set. Discrepancies between the predictions from BioPPSy and

the other methods could be attributed to the use of 3-D structures in BioPPSy to calculate

shape-based properties, such as polar surface area; Delaney, for example, uses 1-D SMILES

strings to predict the polar surface area.

Both the coefficient of determinations and standard deviations are remarkably similar to

the results obtained using the smaller training datasets, indicating that the models are some-

what independent of the size and contents of the training dataset. Additionally, all models per-

form well, with r2 greater than 0.8 in most cases. Notably, the good performance of these

models suggests that linear algorithms are reasonable methods for the prediction of aqueous

solubility. Arguably, the better performaning methods are those from Hou et al. [19], which

use group contribution descriptors, although this method also uses a very large number of

descriptors.

The experimental (log) solubilites in the combined AQUASOL [20] and PHYSPROP [21]

datasets cover a range of values from -11.6 to 1.6. The largest deviation between the experi-

mental and predicted solubilities (Δmax) and the mean unsigned error (MUE) was considerably

smaller using the Hou et al. model than the other models investigated.

Brain blood barrier permeation

Blood brain barrier permeation measures the ability of a compound to reach the central ner-

vous system, i.e. the brain uptake of the molecule. Computational QSPR models have been

used to predict BBB transport since the mid-1990s [23]. QSPR methods for BBB prediction

developed to date generally use descriptors that reflect two key aspects, molecular size and

lipophilicity [24]. We have selected several models [23,25–27] and attempted to reproduce the

results reported in the literature with BioPPSy. Additionally, we have trained these models

using a multivariate linear regression algorithm and a significantly larger training set of 181

compounds compiled by Garg and Verma [28].

The selected models use linear algorithms and differ in the number and characteristics of

the descriptors used, as well as the size and nature of their training sets. Kansy and van der

Waterbeemd [23] proposed a model based on only two descriptors (polar surface area and vol-

ume) and trained the model with a data set of just 20 compounds. Hou and Xu [25] related the

blood-brain barrier permeation with four descriptors, octanol/water partition coefficient,

PNSA2, number of rotatable bonds and radius of gyration, fitted to a training set of 59 com-

pounds. The model proposed by Clark [26] used the polar surface area and octanol/water par-

tition coefficient as descriptors and a training set of 55 compounds. Feher [27] developed a

model using 3 descriptors, polar surface area, octanol/water partition coefficient and number

of hydrogen bond acceptors, and a training set of 61 compounds. In summary, these models

for log BBB prediction used very few descriptors, but were applied to rather small training sets.

A comparison of the results reported in the literature and those obtained using BioPPSy is

BioPPSy
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presented in Table 2, along with the results for each method trained against the larger dataset

of Garg and Verma [28].

We were able to reproduce the results reported by Clark et al. [26] and Feher et al. [27] with

the original datasets used in these studies; this was not possible for the remaining methods

because the original datasets used in these studies were not available. BioPPSy produces equiv-

alent predictions in conditions similar to those reported previously. In stark contrast, when

applying these algorithms to a much larger dataset (roughly 3–times the size of the datasets

used previously) the performance is significantly poorer; in these cases the correlation between

descriptors and the experimental property reduces from r2~0.7, reported using the smaller

dataset, to r2~0.5 with the larger dataset. The Garg and Verma [28] data set covers 36% and

12%, respectively, of the Clark and Feher data sets, and thus represents a significant variation

on the training set over the original models. The compilation of log BBB by Garg and Verma

covered the range -2.2 to 1.5; the calculated mean unsigned errors from all models is signifi-

cant. This dramatic reduction in performance of the model highlights the necessity of using a

broad training set in developing a QSPR model. The origins of the large discrepancies between

reported and calculated data can be attributed to the small size of the training set [29], stressing

the need of additional descriptors and more complex models.

Caco-2 cell permeability

Caco-2 cell permeability is routinely computed in drug development studies as a surrogate for

intestinal absorption [7]. We have explored the performance of several methods from the liter-

ature [30–34]; the results are presented in Table 3. Each of the methods employ a small num-

ber of molecular and topological descriptors; in some cases only a single descriptor has been

used (for example, the topological surface area [32] or polar surface area [33]) while other

Table 2. Comparison of performance of BioPPSy with literature methods for predicting the logarithm of blood-brain barrier permeability.

dN N Literaturea BioPPSya BioPPSyb

r2 σ r2 σ Δmax r2 σ MUE Δmax

Kansy and van de Waterbeemd [23] 2 20 0.70 0.45 - - - 0.45 0.54 0.42 -1.68

Hou and Xu [25] 4 59 0.76 0.41 - - - 0.49 0.53 0.25 -1.52

Clark [26] 2 55 0.77 0.46 0.75 0.82 -1.42 0.52 0.51 0.38 -1.71

Feher et al. [27] 3 61 0.73 na 0.63 0.39 -1.17 0.54 0.50 0.38 1.58

aRegression statistics obtained using dN descriptors on datasets of size N reported in the literature.
bRegression statistics obtained using dN descriptors on a dataset containing 181 compounds [28].

doi:10.1371/journal.pone.0166298.t002

Table 3. Comparison of performance of BioPPSy with literature methods for predicting the logarithm of Caco-2 cell permeability.

dN N Literaturea BioPPSya BioPPSyb

r2 σ r2 σ Δmax r2 σ MUE Δmax

Ertl et al. [32] 1 9 0.98 na 0.96 0.22 -0.32 0.31 0.71 0.61 -2.67

Palm et al. [33] 1 6 0.99 na 0.96 0.15 0.15 0.23 0.78 0.65 -2.89

Osterberg & Norinder [31] 4 11 0.92 0.21 0.99 0.04 0.07 0.39 0.70 0.56 -2.39

van de Waterbeemd et al. [30] 2 17 0.69 na 0.65 0.61 -1.12 0.24 0.78 0.65 -2.88

Gozalbes et al. [34] 13 97 0.77 0.49 0.70 0.50 -1.31 0.58 0.58 0.45 -1.68

aRegression statistics obtained using dN descriptors on datasets of size N reported in the literature.
bRegression statistics obtained using dN descriptors on the 159 compound dataset of Gozalbes et al. [34].

doi:10.1371/journal.pone.0166298.t003
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methods use a combination of them (polar surface area and molecular weight [30] or hydrogen

bond-related properties and the octanol-water partition coefficient [31]). A slightly different

approach is used by Gozalbes et al. [34], where a combination of thirteen different descriptors

(mostly based on atomic group types and charge-related group types) is used. We have imple-

mented these descriptors in BioPPSy to further analyse the software performance. A training

set of 159 compounds has been used, taken from the training, validation and external datasets

of Gozalbes et al. [34]. In all cases we have used multivariate linear regression algorithms to

obtain the results presented in Table 3.

The results using the Gozalbes et al. data set showed large discrepancies with the originally

reported data, as had been observed for the prediction of blood brain barrier permeation. The

main source of this variance comes again from the very different sizes of the data sets, with the

data set compiled by Gozalbes et al. being up to 25-times larger than some of those used in the

earlier work. The predictions using BioPPSy were comparable to those reported by Gozalbes

et al. [34]. Critically, using the data sets used in the original work of the other methods listed in

Table 3 we were able to obtain very similar coefficients of determination (r2) as those reported.

The impact of the database size on the accuracy and applicability of QSPR models is widely

appreciated, and had been discussed in relation to Caco-2 cell permeability in particular in the

original work of Gozalbes et al. [34]. The Gozalbes data set of the logarithm of the Caco-2 cell

permeability covers the range -7.6 to -3.7; the average mean unsigned error from all 5 models of

0.58 represents 15% of the experimental range, and reflects the most optimistic accuracy that

can be obtained from these models. In all models, the largest error was associated with the same

molecule, 2-(1-(aminomethyl)cyclohexyl)acetic acid, normally zwitterionic at neutral aqueous

pH. None of the models examined here include specific descriptors that define a zwitterion.

Summary and Conclusions

Two of the main challenges of QSPR modelling are the access to raw data and the reliability of

the models reported in the literature. These two issues can be partly solved by the use of open-

source software and datasets. BioPPSy is an open-source software that provides an easy-to-use

interface for QSPR modelling. At the current stage it presents a reasonably wide selection of

descriptors as well as several linear algorithms, which will be extended in the future to other

linear and non-linear algorithms.

We have studied several QSPR models for three key properties in drug development, aque-

ous solubility, Caco-2 cell permeability and brain-blood barrier permeation. In all cases we

have used resonably large datasets already reported in the literature (also available through

BioPPSy source code) and the functionalities currently implemented in the software. In the

first case, aqueous solubulity, we have obtained a very good agreement between the models

produced using BioPPSy and the literature models.

In the latter two cases, Caco-2 cell permeability and brain-blood barrier permeation, how-

ever, larger differences were observed. The source of these differences could be linked to the

sizes of the training sets used; the larger and more diverse data sets could not be modelled

accurately with a limited number of descriptors. Caco-2 cell permeability results still correlated

well using the descriptors of the earlier methods but the BBB data presented only low-to-mod-

erate correlations, indicating that further model development is needed.

We have limited our review of earlier models to those derived using MLR. These models

are plagued by issues of overfitting, yet MLR remains ubiquitous in the field, and is the princi-

ple reason why we focused on this particular approach of QSPR. We are currently expanding

the capabilities of the program to include more contemporary methods (in particular non-lin-

ear methods) that will permit a comparison across a variety of different approaches.

BioPPSy
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A number of on-line web applications (eg. ochem [35], Chembench [36]) and open-source

programs (eg. ChemmineR [37] and CDK [38]) with functionalities similar to BioPPSy have

been developed. The BioPPSy platform offers several advantages: (1) both the datasets

employed in model generation and source-code are available, (2) BioPPSy is not only a library,

but a full working program, and (3) Java is a user-friendly language that makes further devel-

opment by any user simple and straightforward.
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