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We present a computational model by which ensembles of regularly spiking neurons

can encode different time intervals through synchronous firing. We show that a neuron

responding to a large population of convergent inputs has the potential to learn to

produce an appropriately-timed output via spike-time dependent plasticity. We explain

why temporal variability of this population synchrony increases with increasing time

intervals. We also show that the scalar property of timing and its violation at short intervals

can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of

timing neurons. We explore how the challenge of encoding longer time intervals can be

overcome and conclude that this may involve a switch to a different population of neurons

with lower firing rate, with the added effect of producing an earlier bias in response.

Experimental data on human timing performance show features in agreement with the

model’s output.
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INTRODUCTION

Timing is an essential part of producing voluntary coordinated movements. Precisely timed
sequences of muscular contractions are required to generate a range of behaviors from speech
production to locomotion. These voluntary movements require neuronal timing systems that are
both precise and flexible.

The neural mechanism of timing has been studied via a variety of experimental and theoretical
techniques, and has implicated brain regions including the cerebellum, striatum, and neocortex
(Ivry, 1997; Malapani et al., 1998a,b; Matell and Meck, 2000; Klein-Flügge et al., 2011). The
prevailing theories of interval timing involve clock signals that are collated and/or interpreted
in order to gauge the passage of time. Two major (and mutually non-exclusive) theories are the
“pacemaker-accumulator model” and the “beat-frequency” model (Buhusi and Meck, 2005). Both
require some form of oscillatory signal, which is found in abundance in the brain (Buzsáki and
Draguhn, 2004).

Neurons generally communicate with each other and generate behavior via the relative timing
of their action potentials. Any timing mechanism must emerge out of, and be limited by
the mechanisms that modulate action potential timing. Neurons are temporally imprecise and
therefore make poor clocks; besides, even good clocks can be subject to temporal inaccuracies.
For example, in electronic engineering analog-to-digital conversion is subject to jitter in the
sampling interval. Every effort is made to minimize sampling clock jitter but there is always a
certain degree of sampling error that is in proportion to the duration of the recorded signal, which
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inevitably distorts the recorded data (Da Dalt et al., 2002).
The temporal precision of neurons is orders of magnitude
worse than that of electronic components, and hence trains
of action potentials accumulate temporal jitter very quickly.
Any neuronal clock that depends on repetitive action potentials
becomes increasingly limited in temporal accuracy with the
passage of time. Models of neuronal time-keeping should take
this unavoidable biological limitation into account. Additionally,
it has long been established that learning generally takes
place via synaptic plasticity. Therefore, we wish to investigate
the properties and limitations of a system that combines
synaptic plasticity with noisy oscillators to encode different
time intervals. To our knowledge previous models of interval
timing have not explicitly accounted for the noisy nature of
neurons or its effect on synaptic plasticity. Our model takes
into account the accumulation of temporal jitter and shows
that such populations of neurons can be used to encode
intervals from hundreds of milliseconds to several seconds—
times relevant for coordinated movements. We find that the
neuronal noise limits the length of time intervals that can
be encoded. Moreover we find that the generally-recognized
rules of spike dependent synaptic plasticity cause a bias in the
output for certain time intervals. The output of the model
is compared with human subjects performing an interval
timing task.

The cerebellum has been heavily implicated in controlling
the timing of movements: many clinical manifestations of
cerebellar lesions are failures of timing. For example patients
with cerebellar damage generate mistimed agonist and antagonist
muscle contractions resulting in jerky movements and dysmetria
(Holmes, 1939). Here we present a model for timing intervals
around 1 s, based on previous in vivo data from a pre-cerebellar
nucleus that has the characteristics of a neuronal clock (Xu et al.,
2013).

MATERIALS AND METHODS

Our model of interval timing consists of a large bank of
independently and regularly spiking pacemaker neurons that
converge onto a coincidence detector (Figure 1A). The time
interval to be encoded is demarcated at its start by a sensory
cue that resets the oscillatory phase of all the pacemakers and
at its end by another sensory stimulus that invariably causes the
coincidence detector to fire (stimulus-evoked spike).

Each pacemaker neuron sends an excitatory synapse onto
a coincidence detector neuron to produce an excitatory post-
synaptic potential (EPSP). If enough EPSPs are received within
a 10 ms time window (similar order to neuronal membrane time
constants—McCormick et al., 1985) then a threshold is exceeded
and the post-synaptic coincidence detector fires a spike.

Properties of Pacemakers
The pacemaker neurons emit pulses (spikes) which accumulate
temporal jitter in accordance with the rule demonstrated in the
lateral reticular nucleus (LRN) neurons of the rat (Xu et al., 2013;
experiments and modeling carried out by current first author)

and restated here:

Sn =
(

S1 + JFirst
)

+ (n− 1)I+

n−1
∑

k= 1

JInterval k. (1)

Sn is the time of the n’th spike in a spike train after phase reset, S1
is the expected time of the first post-reset spike, JFirst is a random
variable for the temporal jitter of the first spike, I is the expected
value of interspike interval and JInterval k is a random variable for
the temporal jitter in the k’th interspike interval.

All simulations described in this paper used a population
of 50,000 pacemaker neurons unless otherwise stated. For
each simulated neuron the value of S1 and I were chosen
randomly from Gaussian distributions whose means and
standard deviations were taken from experimental data in rat
LRN (Xu et al., 2013). The means were 48.6 and 76.7 ms and
standard deviations 11.9 and 6.2ms for S1 and I respectively.
For a given cell and trial, JFirst was chosen from a zero-mean
Gaussian distribution with standard deviation CVFirst S1, where
CVFirst is the coefficient of variation of the times of the first
post-reset spike. Similarly, the random variable JInterval k was
taken from a zero-mean Gaussian distribution with standard
deviation of CVInterval I. Jitter values could therefore be negative
or positive; the temporal variability of both the first post-
reset spike and the subsequent interspike intervals were scaled
according to their mean values. Both coefficients of variation
were determined based on experimental recordings (CVFirst =

0.245; CVInterval = 0.08). An example post-reset time histogram
for a simulated pacemaker cells is shown in Figure 1B.

Spike Time Dependent Plasticity of
Convergent Pacemaker Inputs
The general spike-time-dependent-plasticity (STDP) rule
followed here is that synapses that were active just before
post-synaptic firing were potentiated, whereas those active just
after post-synaptic firing were depressed. STDP of the synapses
between pacemakers and the coincidence detector neuron was
determined by a pair of exponential functions as shown in
Figure 1C. This function was taken from Song et al. (2000),
based on previous experimental work (Markram et al., 1997;
Bi and Poo, 1998; Debanne et al., 1998). The time constant
τ of the exponentials was 20 ms. The time interval of the
pre-synaptic pacemaker spikes immediately before and after
the stimulus-driven spike are respectively denoted 1t1 and 1t2
(1t1<0, 1t2>0). The overall sign and magnitude of synaptic
weight change after each trial was determined by the value of F
where:

F = f(1t1)+ f(1t2)

= r exp(1t1/τ)− r exp(−1t2/τ). (2)

The term r is the “learning rate” which determined the maximum
possible amount of synaptic potentiation and depression per
trial.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 December 2016 | Volume 10 | Article 123

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Xu and Baker Interval Timing by Population Synchrony

FIGURE 1 | Scheme of interval timing model. (A) Schematic diagram showing the convergence of a bank of independent pacemakers onto a coincidence

detector neuron. The cue signifying the start of the time interval resets all pacemakers and the stimulus signifying the end of the interval causes the coincidence

detector neuron to fire. (B) Post-stimulus time histogram and raster for a single example pacemaker neuron after phase reset at t = 0 (100 trials). (C) Spike time

dependent plasticity function of the post-synaptic neuron used to update the synaptic weights of every pacemaker. Pacemaker spikes (blue) that occur before the

stimulus-driven spike (red) cause potentiation of the synaptic weight; pacemaker spikes after the stimulus-driven spike reduce the synaptic weight. (D) Synaptic input

to the coincidence detector neuron, averaged over 100 trials with a learning rate of zero and target time provisionally set at 0.5 s, using a population of 50,000

pacemaker cells. Inset shows distribution of synaptic weights at trial 100.

After each trial the value of F was then used to update the
synaptic weight using a multiplicative rule (Rubin et al., 2001).

Wn+1 = Wn + 1W,

where 1W = (1−Wn)F if F > 0

and 1W = (Wn)F if F < 0. (3)

The current weight of a given synapse on the n’th trial, Wn, was
altered by the amount 1W to give the new weight of the next
trial, Wn+ 1. The magnitude and sign of 1W depend on how far
Wn is currently from the upper or lower hard boundaries of the
synaptic weights (respectively 1 and 0) and also on the magnitude
and sign of F. If, on a given trial, the synaptic weight exceeded the
maximal or minimal weight hard boundaries then it was set to
equal that boundary. The naïve weights of synapses (at the start
of trial 1) were randomly assigned from a uniform distribution
between 0 and 1.

The post-synaptic response was derived for each trial by
simulating a train of reset spikes for all pacemakers, binning the

pacemaker spikes in 10 ms-wide bins (same order as neuronal
membrane time constants; the onset of the first bin was at 0ms,
the time of the cue), multiplying the height of each bin by
the synaptic weight for that cell and then summing across the
population of pacemaker neurons.

Post-Synaptic Threshold
According to the scheme proposed in Figure 1 the coincidence
detector neuron can fire a spike either through being driven
by sufficient population synchrony in input pacemakers, or by
direct input from the stimulus that demarcates the end of the
time interval. We model the coincidence detector neuron to fire
first when its synaptic inputs first exceed its firing threshold—
in reality the neuron may fire a train of spikes for the duration
over which its synaptic inputs remain above threshold. We
assume that the first output spike carries the most accurate
timing information. If the pacemaker population synchrony is
insufficient to make the coincidence detector fire then it would be
made to fire a little later by the stimulus. In our scheme the first
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post-cue spike fired by the coincidence detector is used to encode
the target time and this spike is then used to generate a response
which necessarily occurs after an effector delay. This means
that on trials where the pacemaker population synchrony is not
enough to drive a spike (this depends both on the magnitude of
synchrony and on the post-synaptic threshold), a response will
always occur later than the stimulus that evoked it.

The post-synaptic threshold in the coincidence detector
neuron was adjusted to minimize the total error of the
response times.

Total error was defined as:

E =

√

√

√

√

1

50

100
∑

n= 51

(rn − T)2

=

√

σ 2
r + B2, (4)

where σ 2
r denotes the variance of response times, and

rn = tn + d (5)

B = rn − T. (6)

rn is the response time for the n’th trial (rn is its mean over the
last 50 trials) and T is the target time; tn denotes the time of the
earliest post-reset spike of the coincidence detector neuron and
d denotes the effector delay. The response variance and its mean
bias (σ 2

r and B) respectively denote the variance and mean bias
of responses from trials 51 to 100. The value of E was calculated
from the last 50 trials of the simulation, testing thresholds ranging
from 1 to 30 standard deviations above baseline population
response. The threshold that gave the lowest value of E was taken
as the steady state post-synaptic threshold and its corresponding
response times were taken as the learned response time.

Psychophysics Experiment
Twenty healthy human subjects (13 males and 7 females, aged
between 20 and 30 except for one in his 40 s) were tested in an
interval learning experiment in which a somatosensory stimulus
denoted the interval start and a light flash denoted its end.
Median nerve stimulation (side randomly selected) was used as
the cue to denote the start of the time interval to be learned.
Monophasic current pulses (0.1 ms duration) were delivered
through pre-gelled silver/silver chloride electrodes attached to
the volar aspect of the wrist using a Digitimer DS7A stimulator.
The anode was applied over the carpal tunnel and the cathode
was applied more proximally on the wrist. Current intensity
was adjusted for each subject to be just below motor threshold
(gauged by the twitching of thenar muscles). A 100 ms-long red
LED flash at subject eye-level was used to signal the end of the
interval to be learnt. Using the same hand being stimulated the
subject operated a button with the thumb. He/she was instructed
to try to press the button at the same time as the LED flash onset.
Time intervals ranged from 0.3 to 2 s in 0.1 s steps. Each value
of time interval was tested with 100 trials with a random inter-
trial interval ranging between 2 and 3 s. Each subject was tested
using a randomly selected subset of time intervals. These were

picked from the whole set of intervals without replacement. Each
time interval was tested with at least 3 subjects. Performance
feedback was provided to the subject immediately after each
trial in the form of a cursor on a computer screen whose
horizontal position relative to the screen center (marked by a
vertical line) represented the relative time of subject’s button
press to the onset of the LED flash (left indicated button press
occurred before light flash, and right after). We assumed that
this feedback error signal would allow adjustment of response
threshold, which is a key component of our model. The subject
was instructed to try to superimpose the cursor onto the center
of the screen. The subjects’ performance was analyzed using
both the mean temporal error and timing variance of the button
press. All experiments with human subjects were approved by
the local ethics committee of Newcastle University’s Faculty of
Medical Sciences; subjects provided written informed consent to
participate.

RESULTS

Pacemakers Accumulate Spike Time
Variance Linearly
The model assumes that repetitive pacemaker pulses are
regenerated via intrinsic processes which have their own
variability (supported by the in vitro data of Xu et al., 2013).
Therefore, each pulse is associated with a degree of temporal jitter
causing the times of its subsequent pulses to become increasingly
uncertain. This is shown by the gradual smearing out of the peaks
and troughs in the sample simulated post-reset time histogram
in Figure 1B (100 trials). Unlike perfect oscillators, synchrony
between two units with inter-spike intervals that are, on average,
integer multiples of each other cannot occur with absolute
periodicity or predictability, because of the accumulation of
variability in successive intervals. One of the properties of the
simulated pacemaker neurons is that the inter-trial variance of
post-reset spikes (σ 2

n ) accumulates in an approximately linear
fashion with n because the variance of independent random
variables (here inter-spike intervals) is additive (see Figure 2A,
r2 = 0.91 ± 0.15 for 50 linear regressions—each line represents
a different simulated post-reset spike train). If post-reset spike
number, n, is taken as an approximation of time, then theWeber’s
fraction, defined as:

K = σn/T, (7)

where T ∼ S1 + (n - 1)I, (S1 and I defined in equation 1 in
Methods) takes on the shape as shown in Figure 2B. This is
because linear accumulation of variance implies: σ 2

r = cTWhere
c is the slope constant.

Substitution then gives:

K =
√

c/T. (8)

The plots of Weber Fraction vs. T from the model (Figure 2B)
appear to follow this relationship.
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FIGURE 2 | Pacemakers accumulate temporal variance linearly with

each subsequent spike. (A) Plot of inter-trial variance for the n’th post-reset

spike against post-reset spike number for 50 simulated reset spike trains. (B)

Plot of Weber’s fraction against estimate of post-reset time for simulated

spikes in (A). Gray line represents the mean binned Weber fraction calculated

from the linear regression coefficients of the lines in (A) (represented by c in

Equation 8).

Synaptic Input from Pacemaker Neurons
A large enough population of pacemakers will, by sheer chance,
contain subpopulations that have increased spike synchrony with
each other at certain times. This synchrony will not initially
be apparent because their relative synaptic input strengths
are not yet high enough. Synchrony between certain different
pacemakers was used by the coincidence detector neuron in
the model to encode time intervals. The learning strategy
was to potentiate those synapses that happened to have been
consistently active just before the coincidence detector neuron
fired, eventually leading to those synapses being strong enough
to drive the coincidence detector neuron in advance of the
stimulus. For a given target time most of the population will not
actually fire at the required time, therefore their inputs are not
strengthened (and may in fact be weakened).

Such a system of population synchrony coding is constrained
by the accumulation of temporal jitter in the pacemakers. Firstly
the population of pacemakers required to encode an interval
“sufficiently” will be larger than when using perfect oscillators.

Secondly the performance of synchrony coding decreases with
increasing time intervals, therefore the interval that can be
encoded cannot be made arbitrarily long.

An example of the pre-synaptic input to the coincidence
neuron for 100 trials without learning (i.e., learning rate r = 0)
is shown in Figure 1D. The notional target time in this case
was 0.5 s. An initial synchronization transient was followed
by almost constant input to the coincidence detector neuron.
Such a synchronization transient has previously been suggested
to underlie the “event-related potentials” seen in EEG signals
(Matell andMeck, 2000). The histogram in the inset to Figure 1D
shows a uniform distribution of synaptic weights which, given the
zero learning rate, was identical for all trials from 1 to 100. Clearly
in the absence of learning the naïve system response was of no use
for encoding the required time interval of 0.5 s.

Figure 3 shows the results obtained with a learning rate
r = 0.1, for two target times of 0.5 and 1.5 s. The pre-synaptic
pacemaker inputs developed a local peak around the target time,
which was present after 50 trials and remained unchanged at
trial 100 (Figures 3A,E, shown on an expanded time scale in
Figures 3B,F). For the target time of 0.5 s, the peak synaptic
input clearly preceded the target time (Figure 3B); this was
less clear for the 1.5 s target, where peaks before and after the
target were of similar amplitude (Figure 3F). In both simulations,
the synaptic weight distributions changed to become unimodal,
with a peak around the synaptic weight of 0.5 at the end
of the stimulation of 100 trials (Figures 3C,G). The increased
synaptic input that develops over a number of trials is not
due to increased temporal synchrony, but due to synchrony
that already exists within the subpopulation being made more
apparent in the input to the coincidence detector neuron by
STDP.

One problem with any scheme which attempts a
straightforward conversion of coincident synaptic inputs
into response is that the initial synchronization transient
immediately after population reset was much bigger than any
subsequent response peaks. Only by suppressing this peak can
a valid response be generated. Here, we achieved this by the
simple but arbitrary expedient of setting the synaptic input in
the first 250 ms after reset to equal the baseline mean (visible
in Figure 3D as a flat band). A more biologically plausible
mechanism to achieve the same effect might be a transient
inhibition of the coincidence detector neuron.

Given the odd symmetry of the STDP function the peaks
in synaptic input for short target times (<1 s) tended to occur
slightly but consistently earlier than target time, whereas for
longer target times the results were more variable. Results for
a single run of the model for target times from 0.3 to 2 s are
shown in Figure 4A. Due to the accumulation of jitter with
time it became increasingly unlikely for consistent synchrony
to occur between different pacemakers with increasing time.
Even after learning, synaptic input peaks were smaller for longer
intervals (Figure 4B), with a corresponding rise in the trial-to-
trial variance of peak time (Figure 4C).

The above results demonstrate that a large selection
of pacemakers with randomly distributed periodicities and
variabilities can be taught to produce a population response
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FIGURE 3 | Development of a peak in synaptic input to coincidence detector. (A) Total synaptic input to the coincidence detector cell after the 1st, 50th, and

100th trial (respectively black, blue, and red traces) for target time of 0.5 s. (B) Enlarged trace of total synaptic input showing a peak developing slightly before the

target time. (C) Distribution of synaptic weight after 100 trials. (D) Stacked plots of total synaptic input from trial 1 to 100, showing the development of the peak in the

first 50 trials. (E–H) Same plots as (A–D) but using a target time of 1 s.
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FIGURE 4 | The relationship between population response, target time and post-synaptic threshold. (A,B) Plot of respectively synaptic input peak time and

peak height against target time. (C) Semilog plot of peak time variance against target time. Measures have been made over trials 51–100; error bars denote standard

error of the mean.

around the end of a time interval via spike time dependent
plasticity. Moreover for shorter target time intervals the
population response occurs with a slightly early bias. This is likely
to be advantageous, since it may allow the system to compensate
for a conduction delay in the generation of the response.

Finding the Optimal Post-Synaptic
Threshold
The spike time of the coincidence detector neuron depends
not only on the synaptic weights of the inputs, but also on
the firing threshold of the post-synaptic neuron. Figure 5A

(blue line) illustrates the post-synaptic spiking times when we
set the threshold simply to be 3 standard deviations above the
baseline synaptic input established with the learning rate r =

0.1. Initially the output was stimulus-driven at the target time
(here 0.5 s); as learning took place the spike output shifted earlier
marking a response to pacemaker synchrony.

It is apparent from Figure 3 that the same post-synaptic
threshold value is not necessarily optimal for all time intervals.
Given that consistent coincident spiking becomes increasingly
unlikely with time, a threshold value that produces an
appropriately timed response for a short interval will be too
high for a longer interval. The optimal threshold must be a
trade-off. Too low a threshold will tend to respond to noise
fluctuations, yielding a response that is too early and too

temporally variable. By contrast, too high a threshold will miss
a synaptic peak input generated by pacemaker synchrony, and
produce a default response which is purely stimulus-driven.
We envisage a scheme whereby the post-synaptic threshold
is somehow optimized during learning to minimize both bias
and variability. This process could occur via feedback of the
difference between actual response time and desired response
time for a given trial, which would be used as an error signal
to shift the threshold to improve performance. Unfortunately,
we do not know the detailed biological process by which such
threshold optimization could be achieved, and are therefore
not in a position to simulate a biologically-realistic mechanism
(unlike the situation for the synaptic weight modification). We
have therefore taken a phenomenological approach. We took
the population response of the last 50 trials (when learning of
synaptic weights has reached steady state) and tested all threshold
values from 1 to 30 standard deviations (SDs) above mean
background response. The threshold was selected which gave the
minimal total error in response time (see Materials and Methods
for definitions).

Figures 5B–F illustrates this process. Figure 5B shows an
overlay of the synaptic input to the coincidence detector neuron
for the last 50 trials; the target time was 0.5 s (vertical dotted
line). It can be seen that thresholds that were too low (e.g.,
+3 SD) tended to give responses that were both too early and
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FIGURE 5 | Different thresholds give different response times and errors. (A) Plot of the time at which synaptic input first crosses a post-synaptic threshold of

3 (blue), 7 (red), and 12 (black) standard deviations above baseline against trial number, for a target time of 0.5 s. (B) Plot of synaptic input from trials 51 to 100 for a

target time of 0.5 s (indicated by vertical dotted line). Horizontal dotted lines indicate post-synaptic thresholds that are 3, 7, and 12 standard deviations about mean

background response level. (C) Plot of total error vs. threshold level after an effector delay of 20 ms is added. Arrows mark thresholds levels of 3, 7, and 12 standard

deviations above background. (D–F), response-time distributions for threshold of 3, 7, and 12 standard deviations above background.

too variable (see distribution of response times in Figure 5D;
assumed effector delay of 20 ms). Thresholds that were too
high missed the peak in synaptic input altogether (+12 SD) and
resulted in a default stimulus-driven response that was too late
due to effector delay (distribution in Figure 5F). Figure 5C plots
the total error vs. the threshold value. An optimal threshold
existed from 5 to 7.2 SDs above background, which effectively
minimized the total error value in response times (distribution
for threshold of 7 SD above background shown in Figure 5E).

Finding Optimal Learning Rate and
Realistic Effector Delay
The ability of population synchrony reliably to encode a time
interval depends both on its peak synaptic input value and the
variability of the peak in time. A good learning performance
would be one that generates both a peak input at the correct time
and a low variance in the time of its peak (i.e., a good performance
should be both accurate and consistent). To investigate the
relationship between learning rate and performance and to find
its optimal value, we plotted the peak synaptic input magnitude
(Figure 6A) and its time variance (Figure 6B) against learning
rate. The ratio of peak synchrony magnitude to time variance is
shown in Figure 6C, which conveniently represents a compound
performance measure. For all plots, results have been averaged
across a range of target times from 0.3 to 2 s. There was a peak
in performance around r = 0.3. It can be seen in Figure 6C

that excessively high learning rates degrades performance. This
is because it causes potentiation of chance coincident synapses,

giving an excessively noisy population response.We therefore use
a learning rate of r = 0.3 in subsequent simulations.

The effector delay has a subtle effect on the output of our
model, which is examined in Figure 6D. This plots the total error
vs. target time. In each case, the optimal value of firing threshold
has been used. If the delay is set to zero, stimulus-driven spikes
will occur at exactly the right time, with no jitter. There is thus no
benefit in learning synchrony-driven responses. Even for small
effector delays, learning conveys no benefit, and the best strategy
is simply to respond to the stimulus—the small but consistent
error at all target times (10 ms line in Figure 6D) is less than the
random error which would be produced by attempting to learn
the delay. For longer effector delays, the optimal performance was
achieved by using the learned synchrony response for short target
times, but switching to stimulus-driven responses for longer
times. We used an effector delay of 20 ms to illustrate the detailed
behavior further in the following section.

Simulating Response Times for Different
Population Sizes
Using a learning rate r = 0.3 (Figure 6C), an effector delay
of 20 ms (Figure 6D) and a post-synaptic threshold chosen to
minimize total error, we investigated the model performance
in more detail for target times from 0.3 to 2 s. All measures
were computed after learning had stabilized, using the last 50
trials of a 100 trial stimulation, and were tested with three
different pacemaker population sizes (30,000, 50,000, and 70,000
units). Figure 7A shows the bias of response times, defined
as the difference between the mean response and the target
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FIGURE 6 | Influence of learning rate and effector delay. (A,B) Respective plots of total synaptic input peak amplitude and the variance in its time as a function of

learning rate (error bars indicated SEM). (C) The ratio of the peak amplitude to peak time variance plotted against learning rate. (D) Total error in response time plotted

against target time for four different values of effector delay (labeled); learning rate was fixed at 0.3. Dotted horizontal lines indicate the total errors produced by

stimulus-evoked responses if there was no learning.

time (negative values represent a tendency to respond too
early). For the smallest population examined, there was a slight
but consistent bias toward responding early for target times
shorter than 0.9 s (Figure 7A red trace); for longer intervals the
system defaulted to responding with the stimulus-driven spike,
representing the learned synchronization response’s failure to
produce an accurate and consistent enough response. This led to
a late bias equal to the 20 ms effector delay. The learned response
failed later for larger populations, but in all cases there was an
eventual default to stimulus-driven reactions before target times
reached 2 s (Figure 7A blue and black traces).

Figure 7B shows that the response time variance increased
for longer target times before dropping down to zero for
target times where the system has defaulted to the stimulus-
driven response. The relatively constant variance (and therefore
standard deviation) values for shorter target times resulted
in the Weber fraction (σ/T) exhibiting an upward-going tail
for shorter target times (Figure 7C—a similar relationship
to Figure 2B). The ability to learn longer time intervals by
larger populations is due to the randomly distributed nature
of pacemaker parameters. This results in a larger number of
pacemakers that are appropriate to within a small margin of
error for a given time interval. Figures 7D,E show that for a

given time interval (in this case 2 s) the amplitude of the synaptic
input peak increased and its variance in time decreased with
increasing population size. This is why larger populations can
produce learned responses for longer time intervals (Figure 7F).

The relationship between the Weber fraction and target time
has been previously attributed to the presence of a time-invariant
source of variability that gains proportionately more weight for
smaller time intervals (Getty, 1975). In our model the time-
invariant source of variability is the jitter in the time of the first
post-reset spike (the term JFirst in Equation 1). However, even if
we set this jitter value to zero some of the upward slope was still
preserved (Figure 7F); as expected the effective encoding time is
also extended. We suggest that the upward slope of the Weber
fraction is due not only to the time-invariant jitter in the timing
of the first post-reset spike, but also to the linear accumulation of
jitter in subsequent spikes.

Timing Behavior May Be Limited by
Underlying Neuronal Network Properties
The simulation results presented above suggest that if interval
timing is fundamentally driven by resetting of convergent
pacemakers whose impulses accumulate temporal variance
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FIGURE 7 | Failure of learned responses for longer time intervals. (A–C) Plot of response bias, response variance and Weber fraction against target time for

three sizes of pacemaker population (30,000, 50,000, and 70,000 represented by red, blue and black traces). (D–F) Plot of mean amplitude of the peak in total

synaptic input to the coincidence detector cell, the time variance of that peak, and the time at which the system defaults to the stimulus driven response against

population size (measures have been calculated for a target time of 2 s; error bars are smaller than the size of the data points. (G) Plot of the Weber fraction against

target time where the jitter of the first post-reset spike was set to zero. Population size 50,000.
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linearly, then behavior should be subject to certain limitations
imposed by such a strategy. One limitation would be that subjects
cannot encode longer intervals as accurately as shorter intervals;
and that beyond a certain duration the subject would completely
fail to encode the interval (Figure 7B). Another limitation would
be that the Weber’s fraction of subjects’ response increases as
the time interval to be encoded decreases (Figure 7C). Naturally
human performance may have many other limitations produced
by the transformation of the low-level output represented by
our model to an overt motor behavior. However, if processes
similar to those which we have modeled are at work in human
interval timing, it may be possible to discern their signature in
psychophysical data.

In order to examine this, we devised an interval learning
experiment to compare the results of the above simulations
with human performance. The cue demarcating the start of
the interval was a median nerve stimulus and the target time
was indicated by a light flash (see Materials and Methods). The
variance, Weber fraction and response bias for the last 50 trials
are plotted against the target time in Figures 8A–C. Subjects
showed significantly earlier bias and greater response variance
for longer target times and significantly higher value of Weber’s
fraction for smaller target times (all P < 0.05, one-way ANOVA).

For longer target times the human results did not seem to
suffer the predicted limitation. The model predicts that the
subjects will fail to learn the longer time intervals and default to
responding by reacting to the stimulus, thereby giving a late bias

and a very low response time jitter (see Figures 7A,B). However,
in reality the subjects responded with an increasingly early bias
and increasingly larger response time variance for target times
over 1 s (P < 0.05, one-way ANOVA). This result is also at odds
with the postulate that the effectiveness of learning is extended for
longer intervals by recruiting more pacemakers. This is because
recruiting more pacemakers will not lead to an increasingly
earlier bias for longer time intervals (see Figure 7A).

One method the subjects might have used to overcome the
predicted limitation is to use a separate and slower population
of pacemakers for longer time intervals. A slower population
of pacemakers will, on average, give an earlier response bias.
The slight early bias shown by the model for shorter target
times is due to the odd symmetry of the STDP function,
resulting in the potentiation of synaptic inputs that fire slightly
before the target time. If the average inter-spike interval of
pacemakers is increased, then for a given spike pair which fall
at random before and after the stimulus the values of both 1t1
and 1t2 (see Figure 2A) would be increased by on average the
same amount, resulting in the same ratio of potentiation and
depression (because potentiation and depression have the same
time constant). However, if a spike occurs consistently just before
the stimulus, the spike after the stimulus will be further away if
the inter-spike interval is increased. Synaptic potentiation due to
the preceding spike will thus be less canceled by depression by the
succeeding spike. Population synchronywill then start to increase
at an earlier time, and reach threshold earlier.

FIGURE 8 | Comparison between model and psychophysics data. (A–C) Response variance, Weber fraction and bias plotted against target time for human

subjects performing an interval timing task. Points are mean±SEM, and are calculated on the last 50 trials out of a total of 100 performed for each subject at each

interval; between 3 and 10 subjects contributed to each data point. (D–F) Plot of response variance, Weber fraction and bias for simulated data. Blue traces are

responses using a population of 50,000 pacemaker cells with properties as in all previous figures. Red traces illustrate the responses of the same sized population of

pacemakers with interspike intervals double that used previously.
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In order to illustrate how two populations of pacemakers
might replicate the human data, we used the population of
pacemakers from Figure 7 up to target times of 1.4 s, the
point at which learning fails (for 50,000 units, blue traces in
Figures 8D–F). For longer target times we used pacemaker cells
which had double the average inter-spike interval of the original
population (also 50,000 units, red traces in Figures 7D–F). The
inter-spike interval jitter was scaled up proportionately; the
optimal learning rate and minimal realistic effector delay was
derived as above. It can be seen that the simulated responses of
the slower population had a much earlier bias and the response
variance continued to increase up to a target time of 2 s, similar
to the experimental data.

DISCUSSION

We present here a variation of the beat-frequency coincidence
detection model (Miall, 1989; Matell andMeck, 2000; Buhusi and
Meck, 2005) using noisy pacemakers whose timing properties
are derived from prior in vivo data (Xu et al., 2013).
We show that a large population of resetting pacemakers
with randomly distributed intrinsic timing parameters and
millisecond timescales can be taught to encode specific time
intervals in the seconds range using population synchrony and
spike time dependent plasticity (Markram et al., 1997; Bi and Poo,
1998).

Previous models of interval timing tend to involve both
pacemakers and an accumulator that keeps a running count of
the number of pulses (Penney et al., 2000; Meck and Benson,
2002; Buhusi and Meck, 2005; Lustig and Meck, 2005). Our
model does not require an accumulator. In this respect it is
similar to the scheme of Miall (1989) in that the pacemakers
that happen consistently to fire a pulse at the right time have
their inputs potentiated via synaptic plasticity (and inappropriate
pacemakers are suppressed) leading eventually to the selection
of a useful subpopulation of inputs. However, our model also
explains increasing variability in the responses encoding longer
time intervals and the violation of the scalar property for short
intervals.

Physiological Basis of Model
Wemake no direct quantitative comparisons between our model
and our psychophysics data and only use the human experiment
to try to falsify the fundamental principles of themodel. Although
the actual numerical values of our model come from those
measured in neurons of the LRN (Xu et al., 2013) the general
timing principle of our model could apply to other systems
in the brain such as the basal ganglia (Oprisan and Buhusi,
2011). The LRN is a major pre-cerebellar brainstem nucleus that
projects mossy fibers extensively to most of the cerebellar cortex
and nuclei (Wu et al., 1999). Although we do not constrain
our principle to the cerebellum, this structure has been heavily
implicated in timing production and perception (Ivry and Keele,
1989; Miall et al., 1993; Salman, 2002; Ivry and Spencer, 2004;
Buhusi and Meck, 2005; Gooch et al., 2010). It is therefore
plausible that LRN neurons could play the role of a population of
clocks whose outputs are selectively monitored by downstream
cerebellar circuitry.

The geometry and number of parallel fibers, the dendritic
tree of cerebellar Purkinje cells and its feedforward inhibition
by molecular layer interneurons are all ideally suited to the role
of temporally precise coincidence detection (Braitenberg et al.,
1997; Mittmann et al., 2005). An alternative site of convergence
is the deep cerebellar nuclei, where patterns of input from
the cerebellar cortex could be combined with timing signals
from the LRN to drive appropriately timed responses. However,
the general principle proposed by our model can be plausibly
mapped onto numerous brain regions.

The number of convergent pacemaker neurons required in
our model falls between the estimated total number of excitatory
synapses onto a pyramidal neuron (Megias et al., 2001) and
the estimated total number of parallel fiber synapses on the
cerebellar Purkinje neuron (Napper and Harvey, 1988). We do
not assume that the only function of each of this large number
of inputs is to act as a pacemaker because such a large degree of
redundancy could be costly and inefficient. We assume that only
the coincidence detector neuron is dedicated for timekeeping.
We envisage that timing can occur alongside other functions of
the convergent neurons and they may send axonal collaterals to
the dedicated timekeeping coincidence detector neuron. Under
normal functions, these inputs would have insufficient synchrony
to fire the coincidence detector. However, in response to certain
stimuli sufficient numbers of the inputs may undergo a phase
reset that enables them to act temporarily as pacemakers. Because
this does not actually add or subtract any spikes in the post-
reset period, other possible parallel downstream targets of the
neurons might be unaffected if they normally undergo frequency
encoding.

The post-synaptic coincidence detector’s threshold in our
model seeks to minimize both the mean error and the variability
of responses. This is a strategy designed to compensate for the
noisy nature of neurons; the existence of such a mechanism is
conjecture. It would require a dynamic threshold that decreases
when the response is too late and increases when the response is
too early, as well as a strategy to avoid levels that give too great a
temporal variability. This could arise out of a negative feedback
of error, with a feedback gain changed according to response
variability to avoid large oscillations in responses. However, what
the biological underpinning of such a system might be is unclear.

Synaptic Plasticity
Previous experiments have demonstrated the existence of more
than one shape of STDP function (Shouval et al., 2010). The
function used in our model originally derives from in vitro results
(Bi and Poo, 1998) which has since been adopted by numerous
modeling studies (Song et al., 2000; Van Rossum et al., 2000;
Gütig et al., 2003; Morrison et al., 2008). For our purposes
the exact shape of the STDP function is not important as long
as synapses generating coincident input at the right time are
potentiated.

There is evidence that the amount of change in synaptic
weight depends on the initial weight (Debanne et al., 1996, 1999;
Bi and Poo, 1998). Therefore, we adopted a multiplicative weight
update rule (Van Rossum et al., 2000; Gütig et al., 2003) which
ensured that synaptic weights reached saturation more smoothly
and produced a unimodal weight distribution after learning.
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It has also not escaped our notice that spikes other than
the adjacent pair around the post-synaptic spike can contribute
to synaptic plasticity. However, given the relatively short and
symmetrical time constant of our STDP function and the fact that
in our model the pacemakers do not speed up or slow down their
firing but simply reset after the cue, we have simplified things by
modifying the “nearest-neighbor-takes-all” rule (Izhikevich and
Desai, 2003) into an “adjacent-neighbors-take-all” rule.

Scalar Property and Its Violation
The scalar property refers to a proportionate relationship
between the standard deviation of a response and the magnitude
of the stimulus that drove it. Weber’s law implies such a
relationship and has been observed across a wide range of sensory
modalities (Gibbon, 1977).

We propose a mechanism that underlies the temporal
scalar property by explicitly taking into account the spike-
wise accumulation of uncertainty in spike timing. Indeed such
a mechanism could explain the observed phenomenon in
associative learning where increasing the amount of time between
the conditioning stimulus and the unconditioned stimulus
decreases the speed of learning (Schneiderman and Gormezano,
1964). We also propose (and support with psychophysics data)
that for short intervals the scalar property is violated because of
both the linear fashion by which spike time variance accumulates
and also the time-invariant source of variability in the time of the
first post-reset spike.

The Possibility of Different Timing
Apparatus for Different Intervals
The general strategy proposed in our model could exist in more
than one neuronal system. A clear result was that, due to the odd

symmetry of the STDP function, the learned responses tended
to be slightly early for short target times. It is conceivable that
such a small bias could in reality be swamped by the additional

variability introduced by variable subject attention and effector
mechanisms to give the results seen for target times under 1 s
in human subjects. For target times over 1 s human subjects
showed a significant bias toward responding early and had
a much greater degree of inter-subject variability in response
variance. We show that the slight early bias of responses in
our model can be increased if the mean inter-spike interval
of the pacemaker population is made longer. However, this
may require an anatomically distinct set of pacemakers. We
suggest that in human subjects at least two different sets of time
keeping apparatuses using the same general strategy could be
responsible for encoding intervals below approximately 1 s and
those over it. The apparatus encoding longer time intervals might
even be more prone to differences in levels of attention and
cognitive strategies between subjects. Our conjecture matches
previous fMRI evidence suggesting that motor areas such as the
cerebellum are used to measure sub-second intervals, whereas
attentional regions such as the parietal lobes are used to measure
supra-second intervals (Lewis and Miall, 2003).
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